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Abstract
Simultaneous induction of tumor antigen-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) is 
required for an optimal anti-tumor immune response. WT1332, a 16-mer WT1-derived helper peptide, induce HTLs in an HLA 
class II-restricted manner and enhance the induction of WT1-specific CTLs in vitro. However, in vivo immune reaction to 
WT1332 vaccination in tumor-bearing patients remained unclear. Here, a striking difference in WT1-specific T cell responses 
was shown between WT1 CTL + WT1 helper peptide and WT1 CTL peptide vaccines in patients with recurrent glioma. 
WT1-specific CTLs were more strongly induced in the patients who were immunized with WT1 CTL + WT1 helper peptide 
vaccine, compared to those who were immunized with WT1 CTL vaccine alone. Importantly, a clear correlation was dem-
onstrated between WT1-specific CTL and WT1332-specific HTL responses. Interestingly, two novel distinct populations of 
WT1-tetramerlow WT1-TCR​low CD5low and WT1-tetramerhigh WT1-TCR​high CD5high CTLs were dominantly detected in WT1 
CTL + WT1 helper peptide vaccine. Although natural WT1 peptide-reactive CTLs in the latter population were evidently 
less than those in the former population, the latter population showed natural WT1 peptide-specific proliferation capacity 
comparable to the former population, suggesting that the latter population highly expressing CD5, a marker of resistance to 
activation-induced cell death, should strongly expand and persist for a long time in patients. These results demonstrated the 
advantage of WT1 helper peptide vaccine for the enhancement of WT1-specific CTL induction by WT1 CTL peptide vaccine.
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TNF	� Tumor Necrosis Factor
TAP	� Transporter associated with Antigen Processing

Introduction

CD4+ helper T lymphocytes (HTLs) recognize antigenic 
peptides presented on major histocompatibility complex 
(MHC) class II of antigen-presenting cells such as dendritic 
cells (DC). By the recognition of antigenic peptides, they 
activate to produce a lot of cytokines promoting cellular 
immunity. HTLs also activate DC and up-regulate MHC 
class I/II and co-stimulatory molecules such as CD80 and 
CD86 on the cell surface of the DC by direct interaction via 
CD40/40L, which is a critical step, so-called licensing, for 
priming/induction of cytotoxic CD8+ T lymphocytes (CTLs) 
eliminating tumor cells [1, 2]. Besides, they also contribute 
to the recruitment of CTLs within a tumor and CTL effector 
function such as proliferation and granzyme B expression at 
tumor environment [3–5]. Furthermore, HTLs can enhance 
the generation of memory CTL and restore exhausted CTLs 
[6, 7]. Importantly, these benefits in CTLs by CD4 help are 
required for the presence of cognate-antigen-specific HTLs. 
Moreover, in addition to their helper functions, it is well-
known that CD4+ T cells can also serve as cytotoxic T cells 
against HLA class II-expressing tumor cells. In fact, HLA 
class II expression on cancer cells is associated with a good 
prognosis [8–10]. These findings reported previously indi-
cate that tumor-associated antigen (TAA)-specific HTLs 
play a central role in anti-tumor immunity.

In cancer immunotherapy, Wilms’ tumor gene 1 (WT1) 
is the most promising target that ranked as first among 75 
TAAs [11]. Several WT1-derived HLA class I-restricted 
epitopes (killer peptides) that can induce CTLs capable of 
killing WT1-expressing tumor cells have been identified 
and phase I/II clinical trials using these killer peptides 
against hematological malignancies and solid cancers have 
been performing. For the simultaneous induction of WT1-
specific HTLs and WT1-specific CTLs, we, in addition to 
the killer peptides, have identified WT1332 (KRYFKLSH-
LQMHSRKH) as a WT1-derived HLA class II-restricted 
epitope (helper peptide) [12]. WT1332 can bind multi-
ple HLA class II molecules such as HLA-DRB1*01:01, 
DRB1*04:05, DRB1*07:01, DRB1*08:02, DRB1*08:03, 
DRB1*13:02, DRB1*14:03, DRB1*14:05, DRB1*15:01, 
DRB1*15:02, DRB3*02:02, DQB1*04:01, DPB1*05:01, 
and DPB1*09:01 and induce Th1-type HTLs that can pro-
mote CTL responses [12–16]. We previously demonstrated 
that WT1332-specific Th1 cells and/or WT1332 could 
enhance the induction of WT1-specific CTLs in vitro [12, 
16]. In addition, it has been shown that WT1332-specific 
Th1 responses can spontaneously be induced in cancer 
patients [17], suggesting that WT1332 is an immunogenic 

helper peptide in human body. Thus, these results encour-
age us to administer WT1-derived killer peptides in com-
bination with WT1332 as a helper peptide to enhance WT1-
specific CTL response and the resultant clinical response.

We recently performed a phase I clinical study of a 
combination vaccine with WT1-derived killer and helper 
peptides (WT1332) for recurrent malignant glioma such 
as glioblastoma multiforme and anaplastic astrocytoma 
[18]. In the study, we reported on the safety of the com-
bination vaccine and observed that WT1-specific CTLs 
were strongly induced by the combination vaccine. Fur-
thermore, in accordance with the strong induction of 
WT1-specific CTLs, cytokine production such as IFN-γ 
and TNF-α from CD8+ T cells in response to the killer 
peptide was also observed. Moreover, we confirmed that 
WT1332-specific cytokine production from CD4+ T cells 
was induced after the combination vaccine. These results 
supported the combination vaccine to be a promising 
strategy for cancer immunotherapy. However, it remains 
unclear what the actual effect of the combination vaccine 
is on WT1-specific CTL responses because of the lack of 
comparative analysis using a control cohort who received 
WT1-derived killer peptide alone, and in addition, there 
have also been concerns that helper peptides do not always 
enhance CTL responses specific for co-vaccinated CTL 
epitope [19, 20]. In this study, we clearly demonstrate here 
that the combination vaccine with WT1-derived killer and 
WT1332 peptides enhances WT1-specific CTL responses 
by inducing WT1332-specific Th1-type HTLs. Further-
more, we identified two distinct WT1-specific CTL popu-
lations that differed in binding capacity to WT1-tetramer, 
CD5 and TCR expression levels, and responsiveness to 
WT1 peptide, indicating that these two populations play 
different roles in WT1-targeted immune responses in can-
cer patients.

Materials and methods

Patients and peripheral blood mononuclear cells 
(PBMCs)

In clinical studies reported previously [18, 21], peripheral 
blood samples were collected at pre-vaccination and post-
vaccination (4–7 weeks after the first vaccination) from 
recurrent glioma patients who received WT1 killer pep-
tide (modified WT1235; CYTWNQMNL) vaccine alone or 
a combination vaccine with WT1 killer peptide and WT1 
helper peptide (WT1332; KRYFKLSHLQMHSRKH) vac-
cine. Peripheral blood mononuclear cells (PBMCs) were iso-
lated with Lymphocyte Separation Solution (nacalai tesque, 
Japan) and frozen until use.
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WT1 peptides

HLA-A*24:02-restricted killer peptides, natural WT1235 
(CMTWNQMNL) and modified WT1235 (CYTWN-
QMNL) [22], and HLA class II-restricted helper peptide, 
WT1332 (KRYFKLSHLQMHSRKH) were purchased from 
PEPTIDE INSTITUTE INC. (Osaka, Japan).

Antibodies

For flow cytometry analysis, the following monoclonal 
antibodies (mAbs) were used: anti-CD3-Pacific Blue 
(UCHT1), anti-CD3-V500 (SP34-2), anti-CD4-V500 
(RPA-T4), anti-CD4-APC-H7 (SK3), anti-CD5-PE-Cy7 
(L17F12), anti-CD8-V450 (RPA-T8), anti-CCR7-PE-Cy7 
(3D12), and anti-IL-2-FITC (MQ1-17H12) purchased 
from BD Biosciences (San Jose, CA), anti-CD45RA-APC 
(MEM-56) purchased from Life Technologies (Carlsbad, 
CA), anti-CD8-FITC (T8) purchased from Beckman Coul-
ter (Brea, CA), anti-αβTCR-PE (IP26), anti-TNF-α-APC 
(MAb11), and anti-IFN-γ-PE (4S.B3) purchased from 
eBioscience (San Diego, CA).

WT1‑tetramer assay

Frozen PBMCs from patients were thawed and incubated 
for 1 h at 37 °C in X-VIVO 15 medium (Lonza, Walkers-
ville, MD) supplemented with 10% AB serum (Gemini 
Bio-Products, Woodland, CA). The cells were passed 
through 40  μm nylon mesh to remove debris. Half of 
the cells were used for tetramer assay, and the other half 
was used for in vitro stimulation with WT1 peptides as 
described below.

For tetramer assay, these cells were incubated with Clear 
Back (MBL, Aichi, Japan) in phosphate-buffered saline 
containing 2% FBS and 0.02% sodium azide (FACS buffer) 
at room temperature for 5 min and then these cells were 
stained with PE-labeled HLA-A*24:02/modified WT1235 
tetramer (WT1 tetramer) (MBL, Aichi, Japan) for 1 h at 
4 °C. These cells were then stained with anti-CD3, -CD8, 
-CD4, -CD45RA, and -CCR7 antibodies for 25 min at 4 °C 
in the dark, washed three times, and finally resuspended in 
appropriate quantities of FACS buffer and incubated with 
7-AAD (eBioscience) for 5 min before analysis. The cells 
were analyzed with FACSAria (BD Biosciences). The data 
were analyzed with FlowJo software (TreeStar, San Carlos, 
CA). For evaluation of expansion capacity in WT1-tetramer-
high and WT1-tetramerhigh cells, tetramer assay was per-
formed again after in vitro stimulation (as described below) 
and fold expansion was calculated based on the frequency of 
WT1-tetramer+ cells before in vitro stimulation.

In vitro stimulation with WT1 peptides

PBMCs were suspended in 2 ml of X-VIVO 15 medium 
supplemented with 10% AB serum, 40 IU/ml of human 
recombinant IL-2 (SHIONOGI & CO., LTD., Osaka, Japan), 
1 μg/ml of natural WT1235, and 20 μg/ml of WT1332 helper 
peptide. The cell suspensions were plated into one well of a 
24-well plate. The cells were cultured for a week and then 
were used for tetramer assay and intracellular cytokine stain-
ing assay.

Evaluation of WT1 peptides‑specific cytokine 
production from T cells

Cells were incubated with or without 1 μg/ml of natural 
WT1235 or 10 μg/ml of WT1332 in the presence of 2.5 μl/
ml CD28/CD49d Costimulatory Reagent (BD Biosciences) 
and 10 μg/ml Brefeldin A (Sigma, St Louis, USA) for 5 h. 
Intracellular staining for cytokines was performed using BD 
Cytofix/Cytoperm Buffer (BD Biosciences) according to 
the manufacture’s procedures after surface staining of CD3, 
CD4 and CD8 molecules. The cells were analyzed with 
FACSAria. The data were analyzed with FlowJo software.

For the assessment of cytokine production from WT1-
specific CTL clones, TAP-deficient and HLA-A*24:02-
positive cell line, T2-2402 (kindly provided by Kiyotaka 
Kuzushima, Aichi Cancer Center Research, Aichi, Japan) 
was used as a stimulator. T cells were stimulated for 4 h with 
or without WT1 peptides in the presence of T2-2402 (1 × 105 
cells) and Brefeldin A. Then, intracellular cytokine staining 
was performed as described above after surface staining of 
CD8 molecule.

Establishment of WT1‑specific CTL clones 
from WT1‑tetramerhigh and WT1‑tetramerlow cells

Frozen PBMCs from Patient 007 at post-vaccination were 
thawed and stained with WT1-tetramer as described above. 
Patient 007 showed stable disease and a long overall sur-
vival (> 320.1 weeks) in our previous clinical study [18]. 
WT1-tetramerhigh and WT1-tetramerlow cells were single-
cell sorted and expand at 96-well U-bottomed plates in the 
presence of 1 × 105 irradiated allogeneic PBMCs, 100 IU/ml 
IL-2, and 2 μg/ml HA16 phytohaemagglutinin (PHA, Remel 
Inc., Lenexa, KS).

Statistics

Data were analyzed using Prism 6 or 8. Normally and non-
normally distributed data were analyzed by parametric 
(unpaired t test) and nonparametric (Mann–Whitney test and 
Wilcoxon test) tests, respectively. Wilcoxon test and Fisher’s 
exact test were used for comparison between paired samples 
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(i.e.; pre and post sample) and evaluation of difference in 
response rates, respectively.

Results

WT1332‑specific CD4+ T cell responses in patients 
immunized with WT1 killer and WT1 helper peptide 
combination vaccine

WT1332-specific CD4+ T cell responses were evaluated in 
patients immunized with WT1 killer and WT1 helper pep-
tide combination (K + H) vaccine or WT1 killer peptide 
(K) vaccine alone. Th1-type cytokine (IFN-γ, TNF-α, and 
IL-2) production from the WT1332-specific CD4+ T cells 
by the stimulation with WT1332 peptide was measured. As 
expected, Th1-type WT1332-specific cytokine-producing 
CD4+ T cells were strongly induced in K + H vaccine, 
whereas they were not induced in K vaccine alone (Fig. 1 
and Table 1).

WT1‑specific CTL responses at higher frequencies 
and rates in K + H vaccine compared to K vaccine 
alone

WT1-specific CTL responses were examined. Frequen-
cies of WT1-tetramer+ CD8+ T cells in CD8+ T cells 
significantly increased in both K and K + H vaccines at 
post-WT1 vaccination (Fig. 2a). It was likely that K + H 
vaccine could induce WT1-specific CTLs at higher fre-
quencies than K vaccine alone although it was not sta-
tistically significant (p = 0.066). In fact, the induction of 
WT1-tetramer+ CD8+ T cells at frequencies of ≥ 0.33% 
(mean + SD) was observed in 7 out of 11 patients (induc-
tion rates: 63.6%) immunized with K + H vaccine whereas 
it was observed in only one out of 11 patients (induction 
rates: 9.0%) immunized with K vaccine alone (Table 1). 
Next, cytokine production from CD8+ T cells in response 
to natural WT1235 peptide, which was endogenously 
expressed in WT1-expressing tumors and could be recog-
nized by WT1-specific CTLs, was examined. Frequencies 
of natural WT1235 peptide-specific IFN-γ-producing CD8+ 
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Fig. 1   Induction of WT1332-specific Th1-type CD4+ T cells. PBMCs 
were cultured in the presence of WT1 peptides as described in “Mate-
rials and methods” section. One week later, the cells were re-stimu-
lated with/without WT1332 for 5 h and evaluated for cytokine (IL-2, 

IFN-γ, and TNF-α) production from CD4+ T cells by intracellular 
cytokine staining. The frequencies (%) subtracted the frequencies of 
cytokine-producing cells in non-stimulated samples from those in 
WT1332-stimulated samples are shown. **p < 0.01; ***p < 0.001

Table 1   Differences between 
K + H and K alone group in 
WT1-specific T cell responses

Positive responses were defined by the following criteria: a The percentage is ≥ 1% and increases ≥ 1% from 
pre-vaccination in Fig. 1, b The percentage is ≥ 0.33% (mean + SD of all pre-samples) and increases at post-
vaccination in Fig. 2a, c The percentage is ≥ 0.76% (mean + SD of all pre-samples) and increases at post-
vaccination in Fig. 2b, d The percentage is ≥ 0.50% (mean + SD of all pre-samples) and increases at post-
vaccination in Fig. 2b, e The percentage increases ≥ 0.1% at post-vaccination in Fig. 4b, f Fisher’s exact test

Responses Response rate p valuef

K + H group K alone group

WT1332-specific CD4 responsea 10/11 (90.9%) 0/11 (0%) < 0.0001
Increase in WT1-tetramer + cellsb 7/11 (63.6%) 1/11 (9.0%) 0.0237
Natural WT1235-specific TNF-α responsec 8/11 (72.7%) 5/11 (45.4%) 0.3807
Natural WT1235-specific IFN-γ responsed 9/11 (81.8%) 9/11 (81.8%) 1.0000
Increase in WT1-tetramerhigh cellse 8/11 (72.7%) 2/11 (18.1%) 0.0300
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T cells significantly increased in accordance with the 
increase in WT1-tetramer+ CD8+ T cells in both K + H and 
K vaccines although there was no significant difference in 
both the frequencies and response rates between K + H and 
K vaccines (Fig. 2b, Table 1). Interestingly, the frequency 
of WT1-specific TNF-α-producing CD8+ T cells signifi-
cantly increased in only K + H vaccine (Fig. 2c), and the 
response rates were higher in K + H vaccine (72.7%) than 
K vaccine alone (54.4%), although it was not statistically 
significant (Table 1). Thus, these results indicated that 
K + H vaccine could more strongly induce WT1-specific 

CTL responses at both their frequencies and rates, com-
pared to K vaccine alone.

A clear correlation between WT1‑specific CTL 
and WT1332‑specific CD4+ T cell responses

Whether or not there was a correlation between WT1-spe-
cific CTL and WT1332-specific CD4+ T cell responses was 
investigated in K + H vaccine. As shown in Fig. 3a, there was 
a clear and significant correlation between frequencies of 
WT1-tetramer+ CD8+ T cells and those of WT1332-specific 
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Fig. 2   Induction of WT1-specific CTLs. a Frozen PBMC samples 
were thawed and measured for frequencies of WT1-tetramer+ cells by 
flow cytometer. Frequencies (%) of WT1-tetramer+ cells in CD8+ T 
cells are shown. b, c The thawed PBMCs were cultured in the pres-
ence of WT1 peptides as described in “Materials and methods” sec-
tion. One week later, the cells were re-stimulated with/without natural 

WT1235 for 5 h and cytokine (IFN-γ and TNF-α)-producing CD8+ T 
cells were evaluated by intracellular cytokine staining. The frequen-
cies (%) subtracted the frequencies of cytokine-producing cells in 
non-stimulated samples from those in natural WT1235-stimulated 
samples are shown. *p < 0.05; **p < 0.01; ***p < 0.001. ns not sig-
nificant
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Fig. 3   A clear correlation between WT1332-specific HTL and 
WT1-specific CTL responses. PBMC samples at post-vaccina-
tion were cultured with natural WT1235 and WT1332 peptides for 
1  week and examined for the frequencies of WT1-tetramer+ CD8+ 
T cells, natural WT1235-specific cytokine-producing CD8+ T cells, 
and WT1332-specific cytokine-producing CD4+ T cells. Correla-

tion between the frequencies of WT1-tetramer+ CD8+ T cells and 
WT1332-specific cytokine-producing CD4+ T cells (a) and between 
the frequencies of natural WT1235-specific cytokine-producing CD8+ 
T cells and WT1332-specific cytokine-producing CD4+ T cells (b) 
was examined. Spearman correlation was used for statistical analysis
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IFN-γ and/or TNF-α-producing CD4+ T cells. Furthermore, 
we also observed a correlation between frequencies of natu-
ral WT1235-specific IFN-γ and/or TNF-α-producing CD8+ 
T cells and those of WT1332-specific IFN-γ and/or TNF-α-
producing CD4+ T cells (Fig. 3b). Thus, these results indi-
cated that WT1332-specific CD4+ T cells induced by WT1332 
helper peptide vaccine strongly promoted the induction and 
cytokine response of WT1-specific CTLs.

Efficient induction of WT1‑tetramerhigh CD8+ T cells 
by K + H vaccine

Interestingly, WT1-tetramerhigh CD8+ T cells were induced 
at higher frequencies in K + H vaccine than K vaccine alone 
although it was not statistically significant (Fig. 4a, b and 
Table 1). Our previous clinical trials showed that there was 
a correlation between the frequencies of WT1-tetramerhigh 
CD8+ T cells and clinical response [23, 24]. However, it 
remained unclear what roles the WT1-tetramerhigh CD8+ 
T cells played in WT1-specific immune responses because 
they were normally too low in PBMCs to investigate their 
function. Thus, the enhanced induction of WT1-tetramerhigh 
CD8+ T cells by the K + H vaccine allowed us to investigate 
their properties.

To characterize the WT1-tetramerlow and WT1-tetramer-
high (hereafter, described as WT1-tethigh and WT1-tetlow, 
respectively) cells in detail, a number of clones were 
established by single-cell sorting from WT1-tethigh and 
WT1-tetlow CD8+ T cells of PBMCs of Patient 007 and 
then evaluated for a binding capacity to WT1-tetramer. As 
shown in Fig. 4c, there was a clear and significant differ-
ence in the binding capacity between WT1-tethigh CD8+ T 
cell- and WT1-tetlow CD8+ T cell-derived clones. Since the 
expression levels of WT1-specific TCRs are one of causes 
to determine WT1-tethigh or WT1-tetlow, they were examined 
on WT1-tethigh and WT1-tetlow clones. As shown in Fig. 4d, 
the expression levels of WT1-specific TCRs were signifi-
cantly higher in WT1-tethigh clones than WT1-tetlow clones. 
However, there was no correlation (r = − 0.19) or only weak 
correlation (r = 0.54) between the binding capacity to WT1-
tetramer and TCR expression level in WT1-tethigh or WT1-
tetlow clones, respectively (data not shown), indicating that 
the binding capacity to WT1-tetramer can not be explained 
only by the expression level of TCR. Next, since the target 
antigen of WT1-specific CD8+ T cells was natural WT1235 
peptide that expressed on the patients’ tumor cells in a com-
plex with HLA-A*24:02 molecules, the responsiveness to 
the natural WT1235 peptide was examined for WT1-tethigh 
and WT1-tetlow clones at low (10 ng/ml) and high (1000 ng/
ml) concentrations of the WT1235 peptide. Surprisingly, 
there was a remarkable difference in the responsiveness 
between the two clones. In WT1-tetlow clones, the posi-
tive response, which was defined as cytokine production in 

≥ 10% CD8+ T cells with stimulation of natural WT1235 
peptide, was observed in 28 (87.5%) out of the 32 clones 
at both low and high concentrations (Fig. 4e, upper). On 
the other hand, in a striking contrast, only 12 (21.0%) and 
15 (26.3%) out of the 57 clones showed a positive response 
at the low and high concentrations, respectively, in WT1-
tethigh clones (Fig. 4e, lower). These results showed that 
the cytokine-productive responsiveness to natural WT1235 
peptide was stronger in WT1-tetlow clones than WT1-tethigh 
clones. Importantly, many of WT1-tethigh clones that could 
not produce cytokines in response to natural WT1235 pep-
tide showed modified WT1235 peptide-specific responses in 
which frequencies of cytokine-producing CD8+ T cells at 
the low concentration were almost same with those at the 
high concentration (data not shown). This finding suggests 
that they were too high-avidity to modified WT1235 peptide 
to cross-react to natural WT1235 peptide.

Next, expansion capacities in response to natural WT1235 
peptide were compared between WT1-tetlow and WT1-tethigh 
cells. There was no significant difference between them 
(Fig. 4f). Interestingly, CD5 expression was higher in WT1-
tethigh clones and unsorted WT1-tethigh cells than WT1-
tetlow clones and unsorted WT1-tetlow cells, respectively 
(Fig. 4g, h). Since it had been reported that CD5high CD8+ 
T cells were protected from apoptosis and that they clon-
ally expanded more efficiently than CD5low CD8+ T cells 
[25–27], WT1-tethigh CD8+ T cells may have higher expan-
sion capacities than WT1-tetlow CD8+ T cells in response 
to natural WT1235 peptide (see “Discussion” section about 
these issues).

Discussion

Although we previously reported the in vitro high immu-
nogenicity of WT1332 helper peptide, the immunogenicity 
in the clinical settings remained unknown until this study. 
Here, we reported for the first time the high induction rates 
of WT1332 helper peptide-specific CD4+ T cells in the 
patients who were vaccinated with WT1332 helper peptide. 
We previously reported that WT1332 helper peptide-specific 
CD4+ T cells were spontaneously induced in some cancer 
patients prior to WT1 vaccination, and the spontaneous 
induction, or presence of the CD4+ T cells before WT1 vac-
cination correlated with good clinical responses to K vac-
cine. These results indicated the high immunogenicity of the 
WT1332 peptide antigen. Therefore, the present results will 
be compatible with the above findings.

Slingluff et al. reported that response rates to the helper 
peptides in the patients who were vaccinated with 12 MHC 
class I-restricted melanoma peptides and a mixture of six 
melanoma helper peptides (6MHP) or with 6MHP alone 
were 40% and 41%, respectively [20, 28]. HTL response 
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rate to a tetanus toxoid-derived helper peptide was only 
59% although it was generally a foreign antigen with strong 
immunogenicity. Thus, it is likely that WT1332 helper 

peptide is higher immunogenic than foreign antigen such 
as a tetanus toxoid. This finding raises the question of 
why WT1332 helper peptide can be so high immunogenic. 
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of WT1-tetramerhigh and WT1-tetramerlow CD8+ T cells after in vitro 
stimulation with natural WT1235 peptide in each patient. The fold 
expansion was calculated by dividing frequencies of WT1-tetramer-
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those before in  vitro stimulation. Red shows Pt. 007. g Expression 
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Kobayashi et al. had demonstrated that WT1332 helper pep-
tide could bind to several HLA class II molecules such as 
HLA-DRB1*01:01, 04:05, and 09:01 more stably than the 
class II invariant chain-associated peptide (CLIP) [15], 
which occupied the peptide-binding groove of HLA class 
II molecules and prevented the binding of endogenous self-
peptides to the molecules. This strong binding property to 
HLA class II molecules may determine high immunogenic-
ity of WT1332. In fact, it has been shown that the stability of 
a peptide/MHC class II complex is the principal determinant 
of the peptide immunogenicity in vivo [29]. Accordingly, 
high immunogenicity of WT1332 helper peptide should be in 
part ascribed to the stronger binding capability of the peptide 
to HLA class II molecules.

Preclinical studies using mouse models have demon-
strated that CD4 help confers various benefits (for example, 
resistance to apoptosis, tolerance induction, and exhaus-
tion and enhancement of effector/memory development 
and migratory potential to inflammation sites) to CTLs [5], 
supporting the concept that simultaneous induction of both 
TAAs-specific CTLs and HTLs should dramatically improve 
anti-tumor immune responses [30, 31]. Consequently, many 
efforts have been spent to identify human TAA-derived 
helper peptides capable of binding multiple HLA class II 
molecules and then inducing HTLs [12, 32, 33]. However, 
the enhancement of CTL responses by the addition of helper 
peptide was not induced in human clinical studies [19, 20, 
28]. On the other hand, DC vaccines succeeded in enhancing 
anti-tumor CTL responses by the combination with helper 
peptides [34–36]. The reason is as follows: It is generally 
thought that CD4 help plays critical roles in the enhance-
ment of CTL responses, especially at a priming phase, at 
which HTLs can condition DCs to express CD70 via CD40-
CD40L interaction through the recognition of peptide/HLA 
class II complex by HTLs [37] and that subsequently, the 
conditioned DCs induce fully functional and exhaustion-
resistant CD8+ T cells via CD70-CD27 and peptide/HLA 
class I complex. Accordingly, the indirect three-cell-inter-
action via DCs that presented simultaneously both CTL and 
helper epitopes on their HLA class I and class II molecules, 
respectively, is essential for optimal induction of CTLs. This 
recommends us to vaccinate simultaneously with both WT1 
CTL and helper peptides. In this study, the enhancement 
of CTL responses by helper peptide was for the first time 
demonstrated in a peptide vaccine setting.

In this study, we identified two different populations, 
WT1-tetlow and -tethigh CD8+ T cells. Interestingly, WT1-
tethigh CD8+ T cells expressed CD5 molecule higher than 
WT1-tetlow CD8+ T cells. CD5 expression is known to indi-
cate the potential of clonal expansion and the resistance 
to activation-induced cell death (AICD) [25–27]. Accord-
ingly, WT1-tethigh CD8+ T cells were expected to expand 
greater than WT1-tetlow CD8+ T cells. In fact, although 

WT1-tethigh CD8+ T cells contained natural WT1235 pep-
tide-unresponsive cells at higher frequency compared to 
WT1-tetlow CD8+ T cells, there was no significant differ-
ence in expansion capacity in response to natural WT1235 
peptide between the two populations. Importantly, Tabbekh 
et al. have demonstrated that CD5-deficient tumor antigen-
specific CD8+ T cells elicited stronger effector function, 
such as the production of cytokine and cytotoxicity, than 
CD5-positive ones, but were more sensitive to AICD than 
CD5-positive ones, indicating that CD5 protected CD8+ 
T cells from AICD by attenuating their excess activation 
[26]. These findings including ours suggested that WT1-
tetlow CD8+ T cells contributed to induce strong but transient 
anti-tumor immune responses, while WT1-tethigh CD8+ T 
cells played an important role in moderate but persistent 
anti-tumor immune responses. Since persistence of tumor 
antigen-specific CD8+ T cells was crucial for tumor eradica-
tion both in mouse and human [38, 39], WT1-tethigh CD8+ T 
cells might be strongly involved in the induction of clinical 
response to WT1 peptide vaccine. These results should be 
compatible with the clinical findings that the frequencies 
of WT1-tethigh CD8+ T cells positively correlated with the 
clinical effect of WT1 peptide vaccine.

Importantly, we observed a clear correlation (r = 0.872, 
p < 0.001) between frequencies of WT1-tethigh CD8+ T cells 
and those of WT1-tetlow CD8+ T cells (data not shown). In 
addition, although WT1-tethigh CD8+ T cells were thought to 
be predominantly modified WT1235 peptide-specific CD8+ T 
cells, the frequencies of WT1-tethigh CD8+ T cells also cor-
related with frequencies of natural WT1235 peptide-specific 
cytokine-producing CD8+ T cells (r = 0.836, p < 0.01, data 
not shown). These findings demonstrated that the induction 
of natural WT1235 peptide-specific CD8+ T cells deeply 
links to the induction of modified WT1235 peptide-specific 
CD8+ T cells, which is consistent with the concept that a 
modified (analog) peptide can used as a vaccine to induce 
a natural (tumor-expressing) peptide-specific CTLs. In the 
present study, WT1332 helper peptide enhanced the induc-
tion of CTLs specific for not only modified WT1235 peptide 
but also natural WT1235 peptide and the resultant immune 
responses revealed two different populations, WT1-tetlow and 
-tethigh CD8+ T cells.

The relationship among the binding capacity of TCRs 
to peptide/MHC multimers, and TCR and CD5 expression 
levels have been investigated, notably, in murine T cells, 
but the results were different between experimental mod-
els [27, 40]. Mandl et al. showed that the binding capacity 
of TCRs to peptide/MHC multimers correlated with CD5 
expression levels, but did not correlate with TCR expression 
levels [40]. On the other hand, Fulton et al. had reported that 
there was no relationship between CD5 expression levels 
and binding capacity of TCRs to peptide/MHC multimers 
[27]. To our knowledge, there was no study to investigate 
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the relationship between CD5 expression levels and bind-
ing capacity of TCRs to peptide/MHC multimers in human 
T cells. Our results showed that WT1-tethigh T cells were 
also TCR​high and CD5high, demonstrating clearly a positive 
correlation among the binding capacity of TCRs to peptide/
MHC multimers, and TCR and CD5 expression levels. This 
inconsistency with previous studies might come from the 
difference in species (human or mouse) and the specific-
ity of T cells (self-antigen or foreign-antigen). It should be 
noted that these WT1-tethigh CD5high T cells were directly 
isolated from PBMCs of cancer patients without in vitro cul-
ture, demonstrating that this was not an artifact produced 
by in vitro culture. Thus, a novel population of WT1-tethigh 
CD5high (and TCR​high) T cells was described here for the 
first time.

In this study, we demonstrated for the first time that 
WT1332 was highly immunogenic and enhances the induc-
tion of WT1-specific CTLs, promising improvement of 
clinical outcomes in cancer patients. It should be noted 
that WT1332 could induce not only HTLs but also CD4+ 
cytotoxic T cells [15, 16, 41]. Accordingly, WT1332 could 
serve as both an enhancer and a direct inducer of anti-tumor 
immune responses, especially, in patients with cancer 
expressing both HLA class I and II. A randomized clinical 
study is needed to clarify the accurate effects of WT1332 
on clinical responses in cancer patients and should be per-
formed in the near future.

Precis  WT1 killer + helper peptide vaccine-induced greater WT1-
specific CTL response than WT1 killer peptide vaccine in recurrent 
glioma patients, thereby revealing the existence of two distinct popu-
lations, WT1-tetramerhigh TCR​high CD5high and WT1-tetramerlow TCR​
low CD5low T-cells.
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