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Abstract
CD99 is a surface molecule expressed on various cell types including cancer cells. Expression of CD99 on multiple myeloma 
is associated with CCND1-IGH fusion/t(11;14). This translocation has been reported to be a genetic hallmark of mantle 
cell lymphoma (MCL). MCL is characterized by overexpression of cyclin D1 and high tumor proliferation. In this study, 
high expression of CD99 on MCL cell lines was confirmed. Our generated anti-CD99 monoclonal antibody (mAb), termed 
MT99/3, exerted potent antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity 
(CDC) activities against mantle B-cell lymphoma without direct cytotoxic effects. The anti-tumor activities of mAb MT99/3 
were more effective in MCL than in other B-cell lymphomas. Moreover, in a mouse xenograft model using Z138 MCL cell 
line, treatment of mAb MT99/3 reduced tumor development and growth. Our study indicated that mAb MT99/3 is a promis-
ing immunotherapeutic candidate for mantle cell lymphoma therapy.
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Abbreviations
CCND1  Cyclin D1
CD  Cluster of differentiation
FITC  Fluorescein isothiocyanate
HRP  Horseradish peroxidase
PE  Phycoerythrin

Introduction

CD99, also known as E2, is an extensive O-glycosylated type 
I single-chain transmembrane protein [1]. CD99 molecules 
express at different levels on several human cell types, both 
hematopoietic and non-hematopoietic [2–4]. These mole-
cules display two isoforms; CD99 long form (wild-type) and 
alternative splicing CD99 short form (truncated) [5]. The 
expression of CD99 isoforms differs among cell types, and 
elicits distinct functions [6–8]. Multifunction of CD99 has 
been demonstrated in both physiological and pathological 
conditions [9]. It has been implicated in numerous cellular 
processes including cell apoptosis [10, 11], cell adhesion 
[3, 5], transendothelial migration of leukocytes [12], cell 
differentiation [13], T-cell regulation [14, 15] and protein 
trafficking [16, 17]. Expression of CD99 on particular types 
of malignancies was also demonstrated [10, 18]. In tumors, 
CD99 can have either oncogenic or oncosuppressive func-
tions [19]. Among its oncogenic functions, strong expression 
of CD99 has been proposed as a potential therapeutic target 
for monoclonal antibody treatment in Ewing’s sarcoma (ES) 
[20], acute lymphoblastic leukemia (ALL) [21, 22], acute 
myeloid leukemia (AML) and the myelodysplastic syn-
dromes (MDS) [23]. Monoclonal antibodies (mAbs) target-
ing CD99 expressed on these cancers are directly cytotoxic, 
inducing cancer apoptosis in the absence of immune effector 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0026 2-020-02789 -0) contains 
supplementary material, which is available to authorized users.

 * Watchara Kasinrerk 
 Watchara.k@cmu.ac.th

 * Seiji Okada 
 okadas@kumamoto-u.ac.jp

1 Division of Clinical Immunology, Department of Medical 
Technology, Faculty of Associated Medical Sciences, 
Chiang Mai University, Chiang Mai 50200, Thailand

2 Division of Hematopoiesis, Joint Research Center for Human 
Retrovirus Infection and Graduate School of Medical 
Sciences, Kumamoto University, Kumamoto 860-0811, Japan

3 Biomedical Technology Research Center, National Center 
for Genetic Engineering and Biotechnology, National 
Science and Technology Development Agency at the Faculty 
of Associated Medical Sciences, Chiang Mai University, 
Chiang Mai 50200, Thailand

http://orcid.org/0000-0003-3124-5206
http://crossmark.crossref.org/dialog/?doi=10.1007/s00262-020-02789-0&domain=pdf
https://doi.org/10.1007/s00262-020-02789-0


1558 Cancer Immunology, Immunotherapy (2021) 70:1557–1567

1 3

cells or complement. In ES and AML, the anti‐tumor effect 
of anti-CD99 mAb was confirmed in mouse xenografts [20, 
23]. These data show that CD99 surface molecules can be 
targeted by antibodies and may emerge as a promising thera-
peutic target for other CD99-overexpressing cancers.

B-cell non-Hodgkin lymphomas (NHL) are the most fre-
quent among all hematologic and lymphoid malignancies 
[24]. Mantle cell lymphoma (MCL) is a subtype of B-cell 
NHL that probably derives from naive B cells in the man-
tle zone of lymphatic follicles [25]. MCL represents about 
6–8% of NHL cases [26]. MCL was defined as a highly pro-
liferative lymphoma due to a chromosomal translocation 
t(11;14)(q13;q32). This translocation is a genetic hallmark 
of MCL that juxtaposes CCND1 gene to the immunoglobu-
lin heavy chain (IGH) gene enhancer region resulting in the 
overexpression of cyclin D1 and accelerated cell prolifera-
tion [27]. Hence, MCL patients have frequent relapses and a 
median survival of only 3–5 years [28]. The combination of 
the anti-CD20 antibody (rituximab) with chemotherapeutic 
drugs such as R-CHOP has improved clinical outcomes of 
MCL patients [29]. Nevertheless, the disease remains incur-
able [29]. Currently, only one immunotherapeutic drug, 
rituximab, is available for MCL treatment; new and effec-
tive candidates are needed. Recently, CD99 expression was 
shown to be retained on CCND1-IGH fusion/t(11;14) mye-
loma but reduced on t(11;14)-negative myeloma [30]. It is 
likely that MCL, which is also CCND1-IGH fusion/t(11;14), 
expresses CD99 at high levels. Targeting CD99 on MCL 
with a specific antibody might affect tumor growth and lead 
to novel immunotherapeutic drugs.

In this study, we demonstrated that human mantle cells 
highly express CD99. Anti-human CD99 mAb (named 
MT99/3) exerts potent anti-tumor effects via ADCC and 
CDC on MCL. mAb MT99/3 could reduce tumor develop-
ment and growth in a Z138 MCL cell xenograft model. This 
mAb appears to be a candidate antibody drug for treatment 
of MCL.

Materials and methods

Cell lines

Z138 (obtained from JCRB cell bank, Osaka, Japan), 
RC-K8, MM1R, L-363 (gift from Dr. Hidekatsu Iha, Oita 
University Faculty of Medicine), Jurkat (obtained from 
RIKEN cell bank, Tsukuba, Japan) and Granta-519 cell lines 
(gift from Dr. Siwanon Jirawatnotai, Department of Phar-
macology, Faculty of Medicine Siriraj Hospital, Mahidol 
University, Bangkok, Thailand) were maintained in RPMI 
1640 medium (Wako, Osaka, Japan) supplemented with 10% 
heat-inactivated fetal bovine serum (FBS) (HyClone, Logan, 
UT, USA), 100 U/ml penicillin, and 100 µg/ml streptomycin 

(10%FBS-RPMI 1640) at 37 °C in a humidified 5%  CO2 
atmosphere.

For mouse splenocytes, spleens were harvested from 
female BALB/c nude mice (Japan Clea, Tokyo, Japan) then 
homogenized in RPMI 1640 and centrifuged. Red blood 
cells were lysed by  NH4Cl hypotonic lysis buffer. After 
washing, mouse splenocytes were resuspended in 10%FBS-
RPMI 1640.

Preparation of monoclonal antibody MT99/3 
and Isotype‑matched control mAb

Mouse hybridoma clone MT99/3 (anti-human CD99 mAb; 
IgG2a) was generated in our laboratory [3]. Hybridoma 
clone 4G2 (anti-dengue viral protein; IgG2a) was obtained 
from Dr. Prida Malasit (Division of Medical Molecular 
Biology, Faculty of Medicine Siriraj Hospital, Mahidol 
University, Bangkok, Thailand). Hybridoma cells were 
cultured in Iscove’s Modified Dulbecco’s Media (IMDM; 
Gibco) supplemented with 10% fetal bovine serum (FBS; 
Gibco), 40 μg/ml gentamycin and 2.5 μg/ml amphotericin 
B (10%FBS-IMDM) at 37 °C in a 5%  CO2 incubator. For 
mAb purification, the hybridoma cells were adapted to grow 
in hybridoma serum free media (H-SFM; Gibco). Culture 
supernatants containing mAbs were collected from hybri-
doma culture and purified by affinity chromatography using 
HiTrap Protein G HP (GE Healthcare BioSciences AB, Upp-
sala, Sweden). The concentration of monoclonal antibodies 
was measured at 280 nm absorbance. The purity of mAbs 
was monitored by SDS–polyacrylamide gel electrophoresis 
(SDS-PAGE).

Immunofluorescence staining and flow cytometric 
analysis

For direct immunofluorescence staining, cell lines (5 × 105 
cells) were stained with PE-conjugated anti-human CD99 
mAb (Caltag Laboratories Burlingame, CA, USA) or PE-
conjugated mouse IgG isotype control mAb (Immuno-
Tools, Friesoythe, Germany) on ice for 30 min. For indi-
rect immunofluorescence staining, cell lines (5 × 105 cells) 
were blocked with Fc receptor using 10% human AB serum 
on ice for 30 min. Cells were then incubated with 10 µg/
ml of mAb MT99/3 or isotype mAb or without Abs on ice 
for 30 min. After washing, bound antibodies were detected 
using Alexa Flour-488-anti-mouse IgG Abs (H + L chains 
specific) (Invitrogen Life Technologies, Grand Island, NY, 
USA). After incubation on ice for 30 min, the excess con-
jugates were washed out. Stained cells were suspended in 
propidium iodide (PI) solution (0.5 µg/ml) and analyzed 
by a FACSCelesta flow cytometer (BD Biosciences, San 
Jose, CA). Live cells (negative staining for PI) were gated 
to determine CD99 expression using FlowJo software (Tree 
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Star Inc., Ashland, OR). Gating strategy was shown in Sup-
plementary Fig. 5.

Mouse splenocytes were stained with PE-conjugated 
anti-mouse CD49b (DX5) mAb (Miltenyi Biotec, Bergisch-
Gladbach, Germany) and FITC-conjugated anti-mouse 
CD19 mAb (Miltenyi Biotec). The percentages of NK cells 
 (DX5+CD19− cells) were determined by flow cytometry 
(FACSCelesta flow cytometer, BD Biosciences, CA, USA). 
4–7% of NK cells were present in the prepared splenocytes.

Protein extraction and Western blot analysis

Cells were lysed using lysis buffer (25 mM HEPES, 10 mM 
 Na4P2O7, 1% Triton X-100, 5 mM EDTA, 100 mM NaF, 
2 mM  Na3VO4, and protease inhibitor cocktail). Cell lysates 
were collected and protein concentrations were quantified 
by a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). 
Thirty micrograms of total protein were loaded in each lane 
of SDS-PAGE. The proteins were separated by SDS-PAGE 
and electrically blotted onto a PVDF membrane (Merck Mil-
lipore, Tullagreen, Ireland). The primary antibodies used 
were anti-CD99 mAb (MT99/3) and anti-actin mAbs (C-2) 
(Santa Cruz Biotechnology, Santa Cruz, CA). HRP-conju-
gated anti-mouse IgG Abs (Cell Signaling Technology, Inc., 
Danvers, MA, USA) was used as the conjugate. Immunore-
action bands were developed using Chemi-Lumi One Super 
reagents (Nacalai Tesque, Kyoto, Japan) and detected by the 
ImageQuant LAS 4000 system (GE Healthcare).

Direct cytotoxicity and ADCC assay by freshly 
isolated mouse splenocytes

Cell lines were labeled with carboxyfluorescein diacetate 
succinimidyl ester (CFSE) (Molecular Probes, Eugene, 
OR, USA) and used as target cells. CFSE-labeled cell lines 
(1 × 105 cells) were pre-incubated with mAb MT99/3 or 
isotype-matched control mAb (20 µg/ml), or kept in culture 
medium (no mAb) for 15 min at room temperature (RT). 
After incubation, CFSE-labeled cell lines were co-cultured 
with mouse splenocytes (effector cells) at E:T ratios of 50:1, 
100:1 or without effector cells in 250 µl of 10%FBS-RPMI 
1640, and incubated for 4 h at 37 °C in a 5%  CO2 incubator. 
Cells were harvested, washed with PBS and resuspended in 
PI solution (0.5 µg/ml). The percentage of dead target cells 
 (CFSE+PI+) was determined by a FACSCelesta flow cytom-
eter. The data were analyzed by FlowJo software. Gating 
strategy was shown in Supplementary Fig. 5.

ADCC assay by IL‑2 activated mouse splenocytes

Cell lines were labeled with CFSE and used as target cells. 
CFSE-labeled cell lines (5 × 104 cells) were pre-incubated 
with mAb MT99/3 or isotype-matched control mAb (20 µg/

ml), or kept in culture medium (no mAb) for 15 min at room 
temperature (RT). Mouse splenocytes (1 × 107 cells/ml) were 
treated with mouse IL-2 (mIL-2, PeproTech, Rocky Hill, NJ) 
at 20 ng/ml and incubated for 3 days at 37 °C in 5%  CO2 
incubator. After incubation, IL-2 activated mouse spleno-
cytes were harvested and added into CFSE-labeled target 
cell lines (5 × 104 cells) at E:T ratios of 0:1, 25:1 and 50:1 in 
125 µl of 10%FBS-RPMI 1640 at 37 °C in a 5%  CO2 incu-
bator for 4 h. Cells were harvested and stained with Ghost 
Dye Red 780 (Cell Signaling Technology, Danvers, MA). 
The percentage of dead target cells  (CFSE+Ghost  Dye+) was 
determined by a FACSCelesta flow cytometer. The data were 
analyzed by FlowJo software. Gating strategy was shown in 
Supplementary Fig. 5.

CDC by MTT assay

Cell lines (1.2 × 105 cells) were seeded into 100 µl of RPMI 
1640 medium supplemented with 5% rabbit serum or 5% 
heat-inactivated rabbit serum in 96-well plates in the pres-
ence of mAb MT99/3 or isotype-matched control mAb 
(20 µg/ml), or kept in culture medium (no mAb). Treated 
cells were incubated for 2 h at 37 °C in a 5%  CO2 incuba-
tor. Subsequently, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT; Sigma-Aldrich, St. Louis, 
MO, USA) was added into each well at a final concentra-
tion of 0.5 mg/ml. Plates were incubated for 4 h at 37 °C in 
a 5%  CO2 incubator. The formazan crystal was dissolved by 
adding 100 µl of 0.04 N HCl in isopropanol. Absorbance 
was measured at 570 nm using an iMark microplate reader 
(Bio-Rad, Hercules, CA, USA).

Z138 mantle cells xenograft

Z138 cells at 2 × 107 cells suspended in 100 µl of 10%FBS-
RPMI 1640 were subcutaneously inoculated into whole-
body gamma-ray irradiated BALB/c Nude mice (4 Gy). 
mAbs at 100 µg/100 µl of PBS or PBS only was injected 
into the peritoneal cavity of each mouse. The antibody was 
injected into each mouse when palpable tumors were formed 
(around 3 mm in diameter). The antibodies were injected 
three times per week, as indicated in Fig. 4. The tumor diam-
eter and tumor volume were determined on the day of Ab 
injection. The tumor weight was measured after mice were 
humanely sacrificed.

Statistical analysis

Data were expressed as mean ± SEM or mean ± SD as indi-
cated in the figure legends.

All statistical analyses were performed using GraphPad 
Prism version 8.0.2 (GraphPad Software, CA, USA). The 
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unpaired t-test or one-way or two-way analysis of variance 
(ANOVA) was used. P < 0.05 was considered significant.

Results

CD99 is highly expressed in t(11;14) translocated 
B‑cell lymphoma

CD99 expression levels on CCND1 overexpressing cells 
were determined. Human mantle cell lymphoma Z138 
and Granta-519 cell lines were used as representatives 
for the CCND1-IGH/t(11;14) translocated cells. Other 
human malignant B-cell lines including diffuse large B-cell 

lymphoma RC-K8 cell line, which has t(11;14) transloca-
tion in a different region from mantle cells, as well as two 
multiple myeloma cell lines, MM1R and L-363, were also 
evaluated. CD99-expressing Jurkat T-cell line was used as 
a positive control. Upon immunofluorescence staining, the 
generated anti-human CD99 mAb clone MT99/3 and com-
mercial anti-human CD99 mAb showed the same immu-
noreactivity pattern (Fig. 1a). CD99 is strongly expressed 
in t(11;14) translocated B-cell lymphomas. The two mye-
loma cell lines showed different CD99 expression patterns; 
MM1R highly expressed CD99, but L-363 was negative.

Two isoforms of CD99, long form (CD99LF; 32 kDa) 
and short form (CD99SF; 28 kDa), have been reported 
[19]. As shown in Fig. 1b, human mantle cell lymphoma 
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Fig. 1  CD99 expression in malignant B-cell lines. a Direct immu-
nofluorescence staining using commercial anti-CD99 mAb is shown 
in upper panel. The indicated cells were stained with PE-conjugated 
anti-CD99 mAb (white peak) or PE-conjugated isotype mAb (gray 
peak). Indirect immunofluorescence staining using mAb MT99/3 is 
shown in lower panel. Cells were stained with mAb MT99/3 (white 
peak) or isotype-matched control mAb (gray peak) followed by Alexa 

Flour-488-conjugated anti-mouse IgG (H + L) Abs. Mean fluores-
cence intensity (MFI) of CD99 expression is indicated at right upper 
corner of histogram graph. b Western blot analysis for CD99 isoform 
expression of the indicated cells is shown. Actin was used as a load-
ing control. Jurkat T-cell line was used as a positive control of CD99 
expression
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Z138 and Granta-519 cell lines expressed only CD99LF. 
RC-K8 and MM1R cell lines expressed both CD99LF and 
CD99SF. In the flow cytometry results, western blotting 
analysis confirmed that L-363 was CD99-negative. Jur-
kat T-cell line, which expressed both CD99 isoforms, was 
used as a reference in the western blotting experiment.

Anti‑CD99 mAb MT99/3 mediates ADCC activities 
against CD99‑positive B lymphoma cells

To determine ADCC activity promoted by anti-CD99 mAb 
MT99/3 on malignant B cells, a panel of B-cell lines was 
used as target cells. Freshly isolated mouse splenocytes 
and IL-2 activated mouse splenocytes were employed as 
effector cells. Upon mAb MT99/3 treatment, significant 
cell death was observed in two mantle cell lymphoma cell 
lines, Z138 and Granta-519, as well as diffuse large B-cell 
lymphoma RC-K8 cell line. This phenomenon was not 
observed with isotype-matched control treatment (Fig. 2).

To confirm that mAb MT99/3 mediated target cell death 
was via specific targeting of CD99, CD99-positive MM1R 
and CD99-negative L-363 cells were used as target cells. 
mAb MT99/3 boosted the cytotoxic effects of effector cells 
in killing only the CD99-positive cells (Fig. 2; MM1R), 
but not the CD99-negative cells (Fig. 2; L-363). In addi-
tion, in the absence of effector cells, mAb MT99/3 had 
no direct cytotoxic effect in any of the cell lines tested 
(Fig. 2 and Supplementary Fig 1. These results indicated 
that mAb MT99/3 mediates ADCC activities via specific 
targeting of CD99 on the target cell surface. Moreover, 
the ADCC activities mediated by mAb MT99/3 were more 
potent in IL-2 activated effector cells (Fig. 2b) than in 
unstimulated effector cells (Fig. 2a). These results sug-
gested that IL-2 could be utilized to enhance the anti-
tumor activities of effector cells.

We wondered whether mAb MT99/3-induced target cell 
death via ADCC activities or whether this mAb could bind 
to CD99 expressed on effector cells and then activate cyto-
toxicity of the effector cells. The cross-reactivity of anti-
human CD99 mAb (MT99/3) to mouse CD99 (expressed 
on effector cells) was thus determined. mAb MT99/3 spe-
cifically recognized human CD99 expressed on target cells 
(Fig. 1a), but did not bind to CD99 on mouse splenocytes 
(Supplementary Fig. 2). The cytotoxic activities of effector 
cells observed in mAb MT99/3 treatment were, therefore, 
induced via ADCC. These results demonstrate the ability 
of mAb MT99/3 to induce target cell death through effec-
tor cell functions.

Taken together, our findings indicated that mAb 
MT99/3 was effective at exerting ADCC activities against 
CD99-expressing cells, particularly mantle cells.

Anti‑CD99 mAb MT99/3 mediates CDC activities 
against CD99‑expressing B lymphoma cells

mAb IgG2a isotype-mediated CDC activities have previ-
ously been reported [31]. Therefore, we investigated whether 
mAb MT99/3 (mIgG2a) induces tumor death via CDC. B 
lymphoma cells were incubated with mAb MT99/3 in the 
presence of complement, and cell death was determined. 
mAb MT99/3 could induce cell death in almost all of the 
CD99-positive cells tested (Fig. 3), except for the MM1R 
cell line (Fig. 3; MM1R). No target cell death was observed 
in isotype-matched control mAb treatments. As expected, 
mAb MT99/3 did not induce CD99-negative L-363 cell 
death (Fig. 3; L-363). “Complement” refers to the heat-labile 
serum component. Cell death mediated by mAb MT99/3 
was rescued by adding heat-inactivated serum (Fig. 3). To 
confirm whether CDC activities mediated by mAb MT99/3 
induce cell death, cell death determined by PI staining and 
flow cytometric analysis were carried out in representative 
CD99-positive and -negative cells. Corresponding to the 
MTT method, via complement activity, anti-CD99 mAb 
caused cell death (PI positive cells) in CD99-positive Z138 
but not-CD99-negative L-363 cells (Supplementary Fig. 3). 
Interestingly, among the CD99-positive cell lines, anti-CD99 
mAb showed higher CDC activities in both mantle cell lines, 
Z138 and Granta-519 (Fig. 3).

As CD99 molecules are also expressed on the surface of 
normal blood cells (Supplementary Fig. 2), it is important to 
examine anti-CD99 mAb mediated CDC activities in normal 
cells. CDC activities mediated by mAb MT99/3 were further 
tested in human PBMCs. mAb MT99/3 did not exert CDC 
activities in PBMCs (Supplementary Fig. 4). These results 
indicated that mAb MT99/3 mediation of CDC activity 
would not occur in CD99-positive normal cells.

mAb MT99/3 exerts anti‑tumor activities of Z138 
xenograft models

To investigate the therapeutic possibility of anti-CD99 mAb, 
anti-tumor activities mediated by mAb MT99/3 were con-
ducted in vivo. Z138 cells were implanted into the flanks 
of 4 Gy irradiated nude mice. Antibody was injected into 
each mouse when palpable tumors were formed (around 
3 mm in diameter). Tumor formation was observed in 100% 
of the control group (Fig. 4), but mAb MT99/3 treatment 
reduced tumor development. The tumor volume was sig-
nificantly limited by mAb MT99/3 (Fig. 4b, c). The tumor 
weights of mice in the mAb MT99/3 treatment groups were 
significantly lower than in the control group (Fig. 4d). These 
results indicate that administration of mAb MT99/3 inhib-
ited the tumor growth of Z138 mantle cell lymphomas in 
xenograft mice.
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Discussion

Even if the precise functional mechanism of CD99 is still 
undefined, CD99 has been shown to have oncogenic func-
tions in several tumor types [19]. During tumor develop-
ment, CD99 is upregulated and expressed on the cell surface. 
Hence, CD99 is become a promising therapeutic target for 
antibody treatment of CD99-overexpressing cancers.

In this study, we demonstrated various expressions of 
CD99 and its isoforms among B-cell lymphomas. Differ-
ences in CD99 expression at each stage of B-cell differen-
tiation have been reported [32]. Immature pre B1 stage has 
high CD99 expression. During the transition from pre B1 to 
pre B3 stages, CD99 expression is lost and remains low in 
naïve B cells. CD99 is upregulated again when naïve B cells 
are activated and differentiated into plasma cells. However, 
CD99 downregulation is mainly found on plasma cell neo-
plasm (multiple myeloma) [30]. Nevertheless, CD99 expres-
sion is retained on CCND1-IGH/t(11;14) translocated mye-
loma samples. In agreement with these reports, we found 
that mantle cell lines with CCND1-IGH/t(11;14) exhibited 
high CD99 expression. A DLBCL cell line with a distinct 
region of t(11;14) also has high CD99 expression. Consistent 
with a previous report [33], CD99 positivity was investigated 
in DLBCL patients associated with advanced stage. Two 
multiple myeloma cell lines showed differential expression 
levels of CD99; CD99-positive and CD99-negative cells.

Two isoforms of CD99 have been revealed [6, 7]. The 
expression of CD99 isoforms is dependent on cell type [9]. 
Hence, CD99 in each cell type provides different functional 
outcomes due to distinct isoform expression and the spe-
cific cellular context [8, 18]. We investigated CD99 isoform 
expression in B-cell lymphomas. The expression of CD99 
isoforms was unique to each cancer type. Co-expression 
of the two isoforms is required to trigger immature T-cell 
death by anti-CD99 mAb [6, 34]. Nevertheless, targeting 
CD99 in Ewing’s sarcoma, which expresses only long form, 
could induce cell death [10]. We then determined the direct 
effect of anti-CD99 mAb generated in our laboratory, termed 
MT99/3. mAb MT99/3 had no direct cytotoxic effect on the 
tested cells. Monoclonal antibody-induced cell death is 

influenced by epitope recognition sites [4]. mAb MT99/3 
might not have reacted on the bioactive domains for death 
signals on the CD99 molecules expressed on the tested 
tumor cells.

Currently, the ADCC and CDC mechanisms of Abs have 
been highlighted as important for therapeutic efficacy in 
various cancers [35, 36]. In the present study, mAb MT99/3 
was found to exert potent ADCC and CDC activities in man-
tle cell lymphoma. Anti-human CD99 mAb clone MT99/3 
effectively induced killing of mantle cells via the ADCC 
mechanism. This mAb, however, could not bind to mouse 
CD99, indicating that it did not directly activate effector 
cell function. The killing effect might come from the ADCC 
mechanism. Moreover, mAb MT99/3-induced ADCC activ-
ity was not observed in CD99-negative cells. This result con-
firmed that mAb MT99/3 specifically binds human CD99 
molecules expressed on target cells and mediates target cell 
death, probably by NK-cell-mediated ADCC.

IL-2 has been demonstrated to augment the NK-medi-
ated ADCC response [37]. We therefore compared the mAb 
MT99/3 mediation of ADCC between mouse splenocytes 
and IL-2-activated mouse splenocytes. We found that IL-
2-activated mouse splenocytes (as effector cells) exerted 
more potent ADCC activities than unstimulated mouse 
splenocytes. These results suggested that the combination 
of IL-2 activation and mAb MT99/3 might be a potential 
approach to enhance anti-tumor activity in mantle cell 
lymphoma.

In addition, we demonstrated that mAb MT99/3 could 
powerfully induce mantle cell death via complement activa-
tion, with a greater effect than CD99-positive DLBCL cells. 
The CDC activities mediated by mAb MT99/3 did not occur 
in CD99-negative L-363 cells, a CD99-expressing MM1R 
cell line, as in CD99-positive human PBMC. These find-
ings indicated that the CDC activity of mAb MT99/3 is cell 
type specific [38]. According to previous reports, multiple 
myeloma cells increase the levels of complement regulatory 
proteins CD55 and CD59 at the time of progression during 
anti-human CD38 antibody (daratumumab) treatment [39]. 
Higher levels of CD59 were also found in CLL cells that 
were not cleared from the blood after anti-CD20 antibody 
(rituximab) therapy [40]. We speculated that mAb MT99/3 
might increase complement regulatory proteins levels in 
some CD99-positive cells after treatment, leading the cells 
to become resistant to CDC. As no CDC activity occurs 
in normal blood cells by MT99/3, but an anti-tumor effect 
is seen specifically in mantle B-cell lymphoma, this mAb 
offers a potential immunotherapeutic strategy for treatment 
of mantle cells with low side effects.

ADCC and CDC are important mechanisms of anti-
tumor activity in vivo [41]. To confirm the therapeutic 
effect of mAb MT99/3, mouse xenograft experiments were 
conducted. We confirmed that mAb MT99/3 also showed 

Fig. 2  ADCC activities mediated by anti-CD99 mAb MT99/3. CFSE-
labeled Z138, Granta-519, RC-K8, MM1R and L-363 cell lines 
(target cells) were co-cultured with a freshly isolated mouse spleno-
cytes (effector cells) or b IL-2 activated mouse splenocytes (effec-
tor cells) at various E:T ratios in the presence of anti-CD99 mAb 
(mAb MT99/3) or isotype-match control (mIgG2a) or without Abs 
(No mAb) for 4  h at 37  °C. The dead cells were analyzed by flow 
cytometry. Percent cytotoxicity was calculated as [(Dead target cells 
(%)  −  spontaneous death (%))/(100  −  spontaneous death)] × 100%. 
The experiments were carried out in triplicate. The values are shown 
as mean ± SEM. One-way ANOVA followed by Tukey’s multiple 
comparisons test was used for comparison, *P < 0.05. **P < 0.01. 
***P < 0.001. ****P < 0.0001. ns not statistically significant

◂
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anti-tumor activities in a Z138 mouse xenograft model. The 
administration of mAb MT99/3 reduced tumor development 
and dramatically inhibited tumor growth. Nevertheless, 
tumors were not complete eradication. This is probably due 
to limitation of NK cell number in immunosuppressed nude 
mice. In this study, in the xenograft model, the ADCC and 

CDC might contribute in anti-tumor activity. However, in 
nude mice, ADCC might play a major role and more impor-
tant than CDC [41–43]. It has been demonstrated that nude 
mice have less serum C3c levels and complement activa-
tion comparing to BALB/cJ and SCID mice [44]. Therefore, 
CDC in nude mice might be the minor role for anti-tumor 
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Fig. 3  CDC activities mediated by anti-CD99 mAb MT99/3 against 
B lymphoma cell lines. Z138, Granta-519, RC-K8, MM1R and L-363 
cell lines were plated into RPMI 1640 medium supplemented with 
5% rabbit serum or heat-inactivated rabbit serum (Heated serum). 
mAb MT99/3 or isotype-matched control (mIgG2a) were added or 
kept in culture medium (no mAb) and incubated for 2  h at 37  °C. 
MTT reagent was added then continuously incubated for 4  h. The 

formazan crystal was dissolved and the absorbance was measured 
at 570 nm. Each experiment was performed in triplicated wells. The 
survival index (%) was calculated by the absorbance of each condi-
tion normalized to mean absorbance of no mAb in rabbit serum as 
100%. Bar graphs show mean ± SD from six values of two independ-
ent experiments. Two-way ANOVA followed by Tukey’s multiple 
comparisons test was used for comparison, ****P < 0.0001
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effect in vivo. The study of in vivo models is a preclinical 
validation, bridging in vitro research with human studies for 
predicting the efficacy of anticancer therapies [45, 46]. The 
success of antibody treatment in preclinical models is a criti-
cal step for using potential antibodies in clinical trials [47]. 
Furthermore, preclinical models for screening anticancer 
agents require vigorous clinical correlation [45]; in this case, 
to reliably predict how mantle cells will respond to mAb 
MT99/3 treatment in clinic. However, the distribution of 
CD99 expression among normal blood cells, hematopoietic 
stem cells and normal tissue including endothelial cells and 
epithelial cells has been reported [23, 48, 49]. An antigenic 
sink effect upon anti-CD99 antibody therapy may occur and 
limits efficiency of therapeutic antibody. Consequently, the 
appropriated doses for treatment must be concerned.

Taken together, CD99 appears to have potential as a novel 
therapeutic target for mantle B-cell lymphoma. Targeting 
CD99 on mantle B cells with anti-CD99 antibody clone 
MT99/3 exerted potent anti-tumor effects in both in vitro 
and mouse models. mAb MT99/3 is a promising immuno-
therapeutic candidate for improving long-term survival in 
mantle cell lymphoma patients. Humanized mAbs need to 

be generated before application in patients, to reduce the risk 
for immunogenicity of the mAbs.
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Fig. 4  Anti-tumor activities of mAb MT99/3 in Z138 xenograft 
model (2 × 107 cells/100 µl). Z138 mantle cells were subcutaneously 
inoculated into 4  Gy irradiated BALB/c nude mice. mAb MT99/3 
(100 µg/100 µl of PBS) or only PBS was injected into the peritoneal 
cavity of the mice as specified (control group: n = 10; mAb MT99/3 
group: n = 12). a Comparison of tumor size between mAb MT99/3 
and PBS control injection in a representative of Z138 xenograft nude 
mice. b Comparison of tumor size in a representative of Z138 xeno-

graft (day 14 of treatment). c Tumor diameters were measured at the 
indicated time points and tumor volumes were calculated using the 
following formula: tumor volume = 3.14 × (W2 × L)/6, where W is 
short diameter and L is long diameter. d Tumor weight of Z138 xeno-
graft (day 14 of treatment). c, d Values are the mean ± SD. Unpaired 
t test with Welch’s correction was used for comparison, **P < 0.01. 
***P < 0.001. ****P < 0.0001
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