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Abstract
Purpose  To understand the tumor immune microenvironment precisely, it is important to secure the quantified data of 
tumor-infiltrating immune cells, since the immune cells are true working unit. We analyzed unit immune cell number per 
unit volume of core tumor tissue of high-grade gliomas (HGG) to correlate their immune microenvironment characteristics 
with clinical prognosis and radiomic signatures.
Methods  The number of tumor-infiltrating immune cells from 64 HGG core tissue were analyzed using flow cytometry and 
standardized. After sorting out patient groups according to diverse immune characteristics, the groups were tested if they have 
any clinical prognostic relevance and specific radiomic signature relationships. Sparse partial least square with discriminant 
analysis using multimodal magnetic resonance images was employed for all radiomic classifications.
Results  The median number of CD45 + cells per one gram of HGG core tissue counted 865,770 cells which was equivalent 
to 8.0% of total cells including tumor cells. There was heterogeneity in the distribution of immune cell subpopulations among 
patients. Overall survival was significantly better in T cell-deficient group than T cell-enriched group (p = 0.019), and T8 
dominant group than T4 dominant group (p = 0.023). The number of tumor-associated macrophages (TAM) and M2-TAM 
was significantly decreased in isocitrate dehydrogenase mutated HGG. Radiomic signature classification showed good 
performance in predicting immune phenotypes especially with features extracted from apparent diffusion coefficient maps.
Conclusions  Absolute quantification of tumor-infiltrating immune cells confirmed the heterogeneity of immune micro-
environment in HGG which harbors prognostic impact. This immune microenvironment could be predicted by radiomic 
signatures non-invasively.

Keywords  Quantification · Tumor-infiltrating lymphocyte · Tumor-associated macrophage · High-grade glioma · 
Radiomics

Introduction

High-grade gliomas (HGGs) are undisputedly poorly prog-
nostic central nervous system (CNS) tumors, and most 
patients die of the disease notwithstanding the current best 
management protocols. Tremendous strides have been made 
recently in the field of cancer immunotherapy, with relatively 
disappointing news for HGGs so far. Although the CNS is 
generally accepted as an immunologically privileged site, it 
has long been recognized that clinically relevant lymphocyte 
infiltration occurs in gliomas [1]. Recent anatomical discov-
eries in CNS lymphatics highly suggest active participation 
of immune cells in the brain tumor microenvironment [2, 3]. 
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Empirically, diverse populations of immune cells have been 
found to exist intrinsically in glioma tissue [4–9]. However, 
there have been perennial debates on the prognostic impact 
and dominancy of immune cell subpopulations in glioma 
[5, 10–16]. The inconsistent results are largely due to quali-
tative or semiquantitative analyses of immune cell pheno-
types from unspecified tumor areas using diverse evaluation 
methodologies. Employing the expression level of surface 
markers in defining the immunophenotype of tumors using 
genomic data also connotes issues about the cross-reactivity 
of non-immune cell populations. Considering the nature of 
cancer immunobiology, precise assessments of the status of 
the tumor immune microenvironment should be based on 
the number of immune cells involved as a unit of analysis 
rather than the expression level of immune surface markers. 
Therefore, it is important to gain insights into the census 
figures of the immune microenvironment of the tumor tissue 
to understand their exact clinical relevance.

Recent advances in radiogenomics have shown that 
utilizing multimodal magnetic resonance imaging (MRI) 
to reflect the cellularity and perfusion characteristics of 
tumors enables a more accurate prediction of the status 
of genetic mutations [17, 18], which may lead to different 
immune phenotypes [12]. Because certain statuses of tumor 
immune microenvironments have been known to guide the 
tumor response to immunotherapy [19], multimodal MRI-
based signatures that identify the immune phenotype can 
play a role as a potential biomarker for screening patients for 
immunotherapy and for the noninvasive monitoring of treat-
ment responses as well as immune-related adverse events.

Here, we analyzed the unit immune cell number per unit 
volume of core tumor tissue to correlate the characteristics 
of the immune microenvironment and the clinical progno-
sis of HGG. Moreover, we also investigated whether multi-
modal MRI radiomics analysis can identify imaging-based 
biomarkers that can predict the immune phenotype.

Materials and methods

Patient samples

Fresh tumor tissues were obtained from 64 patients under-
going surgical resection of newly diagnosed HGG with 
informed consent in accordance with the approval of the 
institutional review board of Seoul National University 
Hospital (IRB No. H-1902-062-1010). Histological diag-
nosis revealed of 46 glioblastomas (GBM), 9 anaplastic 
oligodendrogliomas (AO), and 9 anaplastic astrocytomas 
(AA). Tissue specimens were collected from the core area 
of the tumor showing strong red intensity on 5-aminole-
vulinic acid fluorescence excluding the necrotic area and 
immersed in RPMI media at room temperature immediately 

after surgical resection. After the tissue specimens were 
weighted, a MACS brain tumor dissociation kit (Miltenyi 
Biotec, Auburn, CA, USA) and gentleMACS™ Dissociators 
(Miltenyi Biotec, Auburn, CA, USA) were used to dissoci-
ate tissue samples within 2 h of collection, and debris was 
removed using MACS Debris Removal Solution (Miltenyi 
Biotec, Auburn, CA, USA) according to the manufacturer’s 
protocol. Only samples with viable single cells that showed 
cell viability > 80% after dissociation were included in this 
study. Meanwhile, we found that the MACS brain tumor 
dissociation kit included an enzyme, papaya proteinase I, 
which mildly destroys cell surface epitopes, resulting in the 
downregulation of CD8 on the cell surface. However, we 
confirmed that the relative frequency of CD8+ T cells was 
maintained even after using the MACS brain tumor disso-
ciation kit.

Antibodies

Multicolor flow cytometry was performed using the follow-
ing fluorochrome-conjugated mAbs: anti-CD25-Brilliant 
Violet (BV) 421 (562442; clone M-A251), anti-CD19-
BV605 (562653; clone SJ25C1), anti-CD4-BV650 (563875; 
clone SK3), anti-CD14-BV711 (563372; clone MφP9), 
anti-CD3-BV786 (565491; clone UCTH1), anti-CD11c-
Brilliant Blue 515 (564490; clone B-ly6), anti-CD45-
PerCP-Cy5.5 (564105; clone HI30), anti-CD68-PE-CF594 
(564944; clone Y1/82A), anti-CD163-APC (562669; 
clone GHI/61), anti-CD56-APC-R700 (565,139; clone 
NCAM16.2), and anti-CD8-APC-Cy7 (557834; clone SK1; 
all from BD Bioscience); and anti-FoxP3-PE (12-4776-42; 
clone PCH101; from eBioscience).

Flow cytometry

Cryopreserved single cell suspensions were thawed and 
stained using the LIVE/DEAD Fixable Aqua Dead Cell 
Stain Kit (Invitrogen: L34975). The cells were then washed 
once with 2 ml FACS staining buffer. After centrifuga-
tion and removal of the supernatant, the cells were stained 
with 40 μl fluorochrome-conjugated antibody cocktails for 
20 min at 4 °C. After one washing step, for the staining of 
FoxP3, cells were fixed and permeabilized using a FoxP3 
staining buffer kit (eBioscience: 00-5523-00) according to 
the manufacturer’s instructions. Multicolor flow cytometry 
was performed using an LSR II flow cytometer (BD Biosci-
ence), and the data were analyzed by FlowJo V10 software 
(Treestar).

Quantification analysis

The number of isolated live single cells from tumor tissues 
was measured as the cell number/gram of tumor tissue. In 
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flow cytometric analysis, the percentage of CD45+ cells 
among the total singlet cells was first determined. Each 
immune cell subset was identified by specific lineage mark-
ers. The gating strategy for each immune cell subset is pre-
sented in Supplementary Figure S1. The percentage of each 
immune cell subset among the CD45+ cells was determined, 
and the number of cells in each immune cell subset was 
calculated as the cell number/gram of tumor tissue by mul-
tiplying the above values.

Multimodal MRI radiomic features

For all (n = 64) patients, multimodal MR images or pre/post-
contrast enhanced T1-weighted (T1, T1CE) and T2-weighted 
fluid attenuated inversion recovery (T2-FLAIR) images 
as well as relative cerebral blood volume (rCBV) maps 
obtained from dynamic susceptibility contrast-enhanced 
(DSC) MRI and apparent diffusion coefficient (ADC) maps 
obtained from diffusion-weighted images (DWI) were 
coregistered using NordicICE (NordicNeuroLab, Bergen, 
Norway). All MRI images were isotropically resampled 
(1 mm) and skull-stripped using ‘bet’ from the FSL library. 
Tumor segmentation was performed using a convolutional 
neural network, the winner of BraTS 2017 [20], followed 
by manual correction by a neuroradiologist (7 year experi-
ence, K.S.C.). Next, pre/postcontrast enhanced T1-weighted 
and T2-weighted FLAIR images were normalized using the 
whitestripe [21] R package (R Core Team, Vienna, Austria). 
For the rCBV and ADC maps, outliers over three times the 
standard deviation were removed. Finally, a total of 428 fea-
tures (107 radiomics features for each MRI sequence; 19 
first-order, 16 shape-based, 24 Gy level cooccurrence matrix 
(GLCM), 16 Gy level size zone matrix (GLSZM), 16 Gy 
level run length matrix (GLRLM), 5 neighboring gray tone 
difference matrix (NGTDM), and 14 Gy level dependence 
matrix (GLDM) features) were extracted from the T1CE 
and T2-FLAIR images and the rCBV, and ADC maps using 
Pyradiomics [22]. For each T1CE and FLAIR sequence, 
an enhancing tumor (ET) and a peritumoral edema (ED) 
subregion mask was used, and a whole mask was used for 
both the rCBV and ADC maps (detailed in Supplementary 
Figure S2).

Development and evaluation of radiomic signatures

For all classifications, sparse partial least squares discri-
minant analysis (sPLS-DA) was performed to predict the 
class labels using the mixOmics [23] R package. Because 
radiomic data is typical high-dimensional data (i.e., dimen-
sionality, or the number of features is larger than the sample 
size of data), dimension reduction should be performed to 
avoid both severe multicollinearity of input variables, and 
overfitting, when developing the prediction model [24]. 

For example, principal component analysis (PCA) is the 
most common algorithm for dimension reduction. How-
ever, PCA considers only input data (X), maximizing the 
variance of components. Partial least squares (PLS) is a 
well-known multivariate projection-based method that 
maximizes the covariance between components from input 
(X) and response (Y) variables [24], namely radiomics and 
immune features in the present study. In other words, PLS 
is a supervised version of PCA, simultaneously consider-
ing input (X) as well as response (Y) variables, instead of 
considering input (X) variables only. In PLS, a linear com-
bination of variables from each of dataset (X and Y) are 
called a ‘latent feature’ or ‘latent component’. The weight 
vectors used to calculate the linear combinations are called 
the ‘loading’ vectors. Sparse PLS is a variant of PLS, where 
ℓ1 penalization is applied on the loading vectors associated 
to the input (X) data, allowing both feature selection for 
improved interpretability, and computational efficiency [23, 
24]. sPLS-DA is a special case of sparse PLS that performs 
feature selection and multiclass classification in a one-step 
procedure [24], coding response (Y) variables as dummy 
block matrix [25]. For sPLS-DA models, hyperparameters 
such as the number of components and dimension of projec-
tion were determined using a grid-search-like manner and 
cross-validation [23].

We developed four different sPLS-DA models or signa-
tures for predicting immune phenotypes, defined according 
to 1) T cell fraction (enriched and deficient groups); 2) T 
cell subclass without Treg (T4* and T8 dominant groups); 
3) M2 fraction (M2 high and low groups); and 4) IDH geno-
type (IDH-mut and IDH-wt groups), using radiomics fea-
tures, which consist of the significant prognostic factors in 
the overall survival analysis. For all the signatures, receiver 
operating characteristic (ROC) analysis was performed to 
evaluate the performance of the sPLS-DA models using 
5-fold cross-validation rather than dividing the data into 
training and validation sets because of the limited sample 
size, and reported area under the curve (AUC) scores are 
mean AUC scores of 5-folds [23, 25]. For feature selection, 
to evaluate the importance of radiomics features for the pre-
diction of immune phenotypes, the coefficients of variables, 
or loadings of features, of the first component of radiomics 
signatures were analyzed. For example, top 10 important 
features are the radiomic features with 10 largest loadings. 
For features selection, full dataset was subjected to sPLS-DA 
in each of the classification models. To visualize the predic-
tion of immune phenotypes by the corresponding radiomics 
signatures, the results of classification of all subjects, or full 
dataset, were plotted in the two-dimensional latent space 
using the first and second components of the signatures as 
the two axes.

In addition, correlation analysis was performed between 
the different types of cell counts and the IDH-projected 
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radiomics signature scores obtained from the output of the 
developed sPLS-DA model to predict IDH genotype. The 
Shapiro–Wilk test was performed for assessing the normal-
ity of the distributions of the variables, and Spearman rank 
correlation analysis was performed when the distribution of 
variables was not normally distributed.

Statistics

Descriptive data statistics were visualized using the Tableau 
Desktop platform (version 2020.1, Tableau Software, Inc., 
Seattle, WA, USA). Comparative data analysis was con-
ducted using one-way ANOVA with post hoc Tukey honestly 
significant difference, independent t test, and Mann–Whit-
ney U test depending on the number of groups, sample size, 
and F-distribution. Hierarchical clustering analysis of the 
raw values of cell number with scaling and centering using 
Euclidean distance and Ward linkage was performed to iden-
tify the T cell-enriched or T cell-deficient groups (Biovinci 
version 1.1.5, BioTutoring Inc., San Diego, CA, USA). A 
linear regression model with 95% confidence interval was 
applied to classify the subgroups of interest. Survival anal-
ysis was performed, and cumulative statistics for survival 
were calculated using the Kaplan–Meier survival analysis 
and log-rank tests. The significance level was set at p < 0.05, 
and statistical analyses were performed using the R free sta-
tistical software package (version 3.5.1; http://www.r-proje​
ct.org/).

Results

Number of immune cells per unit volume of HGG 
tissue

A  m e d i a n  o f  4 8 , 0 5 0 , 0 0 0  c e l l s  ( r a n g e : 
4,600,000–155,000,000) per sample was collected from 
the core area of HGG tissue weighing from 0.87 to 14.50 g 
(median 4.92 g). We confirmed that the number of cells, 
including tumor cells, increased as the volume of tumor tis-
sue increased; however, the unit number of CD45+ hemat-
opoietic cells was not correlated with either the number of 
cells in tumor tissue or the tumor tissue volume (Fig. 1a). 
The median number of CD45+ cells per gram of HGG core 
tissue was 865,770, equivalent to 8.0% of the total cells, 
including tumor cells (Fig. 1b). The absolute numbers of 
the subclasses of tumor-infiltrating immune cells accord-
ing to the histological diagnosis are summarized in Table 1. 
Although the median numbers of tumor-infiltrating immune 
cells tended to be higher in GBMs than in AAs or AOs, 
there were no significant differences in every subclass of 
cells among the histological diagnoses (Fig. 1c, d, e). We 
were able to ensure that considerable numbers of immune 

cells were infiltrated in the core of HGG tissue regardless of 
histological diagnosis or grade, although they varied among 
individual patients.

Prognostic value of quantified distribution 
of tumor‑infiltrating T cells

Hierarchical clustering with a dendrogram revealed a cluster 
of T cell-enrichment (n = 16) and two separate clusters of 
T cell-deficiency (n = 14) (Fig. 2a). There were no statis-
tically significant signatures for histological diagnoses or 
genomic characteristics that could define the T cell-enriched 
or T cell-deficient groups (Fig. 2a). However, overall sur-
vival was significantly better in the T cell-deficient group 
than in the T cell-enriched group (p = 0.019, Fig. 2b). To 
investigate the effect of quantified tumor-infiltrating T cells 
on survival prognosis in detail, we sorted the groups with 
CD4+ cells dominant over CD8+ cells (n = 13, T4 dominant 
group) and vice versa (n = 34, T8 dominant group) from the 
scatter plot of the T cell subclass ratio among CD45+ cells 
using a linear regression line with 95% confidential inter-
vals (Fig. 2c). Although there were no biased histological 
diagnoses between the two groups, the T8 dominant group 
showed significantly better overall survival than the T4 dom-
inant group (p = 0.023, Fig. 2d). This prognostic difference 
was more clearly observed when we performed a similar 
analysis excluding the regulatory T cell population (Treg, 
CD4+FoxP3+CD25+ cells) from the CD4+ cells (n = 16, T4* 
dominant group). The overall survival was significantly bet-
ter in the T8 dominant group than in the T4* dominant group 
(p = 0.006, Fig. 2f). However, the number of Treg cells in 
HGG tissue was not a pivotal prognostic variable for over-
all survival. Neither the proportions of CD4+FoxP3+CD25+ 
cells in CD4+ cells (Supplementary Figure S3A and B) nor 
the ratio of CD4+FoxP3+CD25+ cells versus CD8+ cells 
(Supplementary Figure S3C and D) showed any prognostic 
value for overall survival.

Tumor‑infiltrating macrophage numbers are 
decreased in IDH‑mutated gliomas

The numbers of tumor-infiltrating monocytes, including 
macrophages, were analyzed. Although we could not find 
any significant differences in the numbers of CD14 + cells 
(monocyte/macrophage), CD14+CD68+ cells (tumor-asso-
ciated macrophage, TAM), and CD14+CD68+ CD163+ cells 
(M2-TAM) among the groups of histological diagnoses, 
there was a significant decrease in the number of TAMs 
and M2-TAMs in isocitrate dehydrogenase (IDH)-mutated 
gliomas (Fig. 3a, b). We defined the M2-TAM-high group 
(n = 13) by sorting out the higher ratio of M2-TAMs in 
relation to the ratio of monocytes/macrophages in CD45+ 
cells located above the 95% confidence interval of the 

http://www.r-project.org/
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Fig. 1   Absolute quantification of tumor-infiltrating immune cells 
in the core area of high-grade gliomas. a The total number of live 
cells is proportional to tumor tissue volume. However, the number 
of CD45+ cells (hematopoietic cells) is randomly distributed regard-
less of the number of cells or tissue volume. b The median number of 
CD45+ cells was 865,770 per gram of tumor tissue (range: 40,800–

9,362,500). c The number of CD45+ cells and CD3+ cells (T cells) 
in glioblastoma (GBM), anaplastic astrocytoma (AA), and anaplastic 
oligodendroglioma (AO) tissues. d The number of CD14− immune 
subclass cells in GBM, AA, and AO tissues. e The number of CD14+ 
immune subclass cells in GBM, AA, and AO tissues
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linear regression line, and they were correlated to the num-
ber of TAMs (Fig. 3c). The M2-TAM-high group showed 
a tendency of poorer prognosis than the remaining cases, 
although the difference in survival was not statistically sig-
nificant (Fig. 3d, p = 0.100).

Radiomics signatures of immune phenotypes

A total of 51 patients were included in the radiomics anal-
ysis; 13 patients were excluded for missing rCBV maps 
(n = 7) and poor coregistration/segmentation (n = 6). A heat-
map of radiomics features using hierarchical clustering with 
a dendrogram showed the largest cluster at the left lower 
corner, which is mostly comprised of GLRLM, GLCM, 
GLDM, and GLSZM features from T2-FLAIR images and 
rCBV maps (Fig. 4a). The radiomic signatures of immune 
phenotypes developed using the sPLS-DA model showed 
the following diagnostic performance in predicting the 
immune phenotypes: (1) T cell fraction (enriched and defi-
cient), AUC = 0.986 (95% confidence interval (CI), 0.953–1) 
(p = 0.00005); (2) T cell subclass without Treg (T8 and T4* 
dominant), AUC = 0.783 (0.643–0.923) (p = 0.001); (3) 
M2-TAM fraction (M2-TAM high and low), AUC = 0.798 
(0.652–0.944) (p = 0.003); and (4) IDH genotype (IDH wt vs 
mut), AUC = 0.890 (0.801–0.979) (p = 0.00002). The ROC 
curves of the four radiomic signatures for immune pheno-
types are shown in Fig. 4b. The coefficients of variables of 
the first component of the radiomics signatures of immune 
phenotypes are illustrated for all selected features from the 
sPLS-DA model in the left column of Fig. 4c–f. The immune 
phenotypes and IDH genotype of all subjects were well pre-
dicted by the corresponding radiomics signature, as visual-
ized in the right column of Fig. 4c–f.

For T cell fraction prediction, among the top 10 features 
(5 features from ADC maps, 2 features from rCBV maps, 
and 3 features from T2-FLAIR images), 5 were GLSZM 
features, 2 were GLCM features, one was a GLRLM fea-
ture, one was an NGTDM feature, and the other was a shape 
feature. For T cell subclass fraction prediction, among the 
top 10 features (9 features from T1CE images and 1 feature 
from ADC maps), 3 were GLRLM features, 3 were GLCM 
features, 2 were GLDM features, one was a GLSZM feature, 
and the other was an NGTDM feature. For M2 macrophage 
fraction prediction, among the top 10 features (8 features 
from ADC maps, 1 feature from T1CE, and the other one 
feature from T2-FLAIR images), 4 were first-order fea-
tures, 2 were GLDM features, 2 were GLCM features, and 
the other two were shape features. For IDH genotype pre-
diction, among the top 10 features (4 features from rCBV 
maps, 1 feature from ADC maps, and 10 features from T1CE 
images), 5 features were shape features, 4 features were 
GLRLM features, and the other feature was a GLDM fea-
ture. For each radiomics signature for immune phenotypes 
and IDH genotype, the top 10 selected features of the first 
component are listed in Table 2.

Correlation analysis between cell counts 
and IDH‑projected radiomic signature scores

Among the different types of cell counts, the IDH-projected 
radiomics signature score was positively correlated with the 
following: M2-TAM (Spearman’s rho = 0.458, p = 0.0008); 
TAM (rho = 0.409, p = 0.003); M2-monocyte/macrophage 
(rho = 0.326, p = 0.019); and TIL (rho = 0.258, p = 0.048) 
(Table 3).

Table 1   Number of tumor-infiltrating immune cells per one gram of tumor core tissue

GBM glioblastoma, AA anaplastic astrocytoma, AO anaplastic oligodendroglioma, CI confidence interval, TAM Tumor-associated macrophage

Surface marker Cell type GBM AA AO

Median 95% CI Median 95% CI Median 95% CI

CD45 +  Hematopoietic cells 1024,977 101,278 362,000 645,721 335,870 162,195
CD14-CD3 +  T cell 262,696 63,817 151,000 191,113 142,606 47,199
CD4 +  CD4 + T cell 105,000 27,542 19,043 114,850 63,261 26,029
CD4 + FoxP3 + CD25 +  Regulatory CD4 + T cell 8972 2914 1,221 11,973 697 1910
CD4 + FoxP3-CD25- Non-regulatory CD4 + T cell 87,793 24,368 14,648 102,728 60,600 22,605
CD8 +  CD8 + T cell 126,846 32,655 74,800 56,041 70,767 18,273
CD14-CD3-CD19 +  B cell 9,975 6,595 21,500 9,120 12,700 8,243
CD14-CD3-CD56 +  NK cell 9,485 4,130 6,000 6,524 12,759 12,213
CD14-CD3-CD11c +  Dendritic cell 152,000 26,999 194,000 49,896 118,000 39,564
CD14 +  Monocyte/Macrophage 146,139 34,717 17,578 433,029 26,087 38,406
CD163 +  M2-monocyte/macrophage 46,872 16,592 11,600 364,412 7,510 20,227
CD68 +  TAM 10,296 2642 338 1,625 163 8369
CD68 + CD163 +  M2-TAM 5678 1424 145 342 89 4494
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Fig. 2   Quantification analysis 
of tumor-infiltrating T cells in 
high-grade gliomas and their 
prognostic impact. a Hierarchi-
cal clustering of the high-grade 
glioma tissue samples based on 
the numbers of major immune 
cell populations. Histological 
diagnosis and genetic signatures 
were matched with samples that 
exhibited no significant pre-
ponderance in classified T cell-
enriched and T cell-deficient 
groups. b Significant survival 
differences in T cell-enriched 
and T cell-deficient groups 
(p = 0.019). c The ratio of CD4+ 
cells (T4 cells) to CD8+ cells 
(T8 cells) among CD45+ cells 
was plotted, and samples out-
side the 95% confidence interval 
of the linear regression line 
were defined as T4 dominant 
and T8 dominant groups. d The 
T8 dominant group showed a 
significant survival advantage 
over the T4 dominant group 
(p = 0.023). e The ratio of 
CD4+ cells (T4* cells) exclud-
ing CD4+FoxP3+CD25+ cells 
(Treg cells) and CD8+ cells (T8 
cells) among CD45+ cells were 
plotted, and samples outside 
the 95% confidence interval of 
the linear regression line were 
defined as T4* dominant and 
T8 dominant groups. f The T8 
dominant group showed a more 
profoundly significant survival 
advantage over the T4* domi-
nant group (p = 0.006)
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Discussion

The International Immuno-oncology Biomarkers Working 
Group (IBWG) recently proposed standardized methodol-
ogy guidelines to assess tumor-infiltrating lymphocytes 
(TILs) in various solid tumors [26]. However, no standard-
ized assessment algorithms for TIL could be proposed for 
gliomas due to their specific architecture and histomorphol-
ogy [26]. In the present study, we performed flow cytomet-
ric analysis with lineage markers for the identification of 
various immune cell subsets infiltrating tumor tissues. Flow 
cytometric analysis is a gold standard method in the identifi-
cation and phenotyping of immune cell subsets in general. In 
the current study, based on the weight of tumor tissues and 
the numbers of dissociated single cells from tumor tissues, 
we calculated the absolute cell numbers of specific immune 
subsets, which were defined by flow cytometric analysis per 
gram of tumor tissues. By this approach, we found that there 
was a significant correlation between CD8+ T cell counts 
and overall patient survival, implying that this methodologic 
approach is reliable for calculating the absolute cell numbers 
of specific immune subsets and associating them with clini-
cal outcome.

We found that immune infiltrates are heterogeneous 
between tumor types and among patients. However, we were 
able to categorize patients by immune phenotype and cor-
relate these phenotypes with clinical outcome. The density 
of infiltrating lymphocytes has been reported to be associ-
ated with clinical outcome in many different tumor types, 
although the density was determined by immunohistochem-
istry, not by flow cytometric analysis [27]. In the case of 

HGG, a high density of CD8 + T cells has been reported 
to correlate with better overall survival [28, 29]. In con-
trast, the infiltration of CD4 + FoxP3 + CD25 + cells cor-
relates with decreased survival [30]. In the current study, 
even though overall survival was significantly better in the 
T cell-deficient group than in the T cell-enriched group, 
the T8 dominant group showed better overall survival than 
the T4 and T4* dominant groups. This result indicates that 
tumor-infiltrating CD8 + T cells have a significant role in 
antitumor immunity and that the prognostic value increases 
when considered with CD4 + FoxP3 + CD25 + cells in the 
HGG microenvironment.

TAMs are regarded as a macrophage subset differentiated 
specifically in the tumor microenvironment [31]. In brain 
tumors, TAMs are abundant and accumulate more with 
higher tumor grade [32, 33]. Functionally, TAMs in brain 
tumor microenvironments produce high levels of immuno-
suppressive cytokines, such as arginase, IL-10, and trans-
forming growth factor-β, and downregulate T-cell responses, 
showing that they are protumorigenic [6]. In glioma tissues, 
the cells producing IL-10 have been directly implicated as 
CD68-expressing monocytes and positive for M2 markers 
CD163 and CD204 [34]. In the current study, we analyzed 
M2-TAMs as well as TAMs using CD68 and CD163 mark-
ers. We found that M2-TAMs were significantly decreased 
in IDH-mutated glioma and tended to be associated with 
a poor prognosis of HGG patients. Even though relations 
among the density of M2-TAMs, IDH mutation status, and 
patient prognosis have been previously reported [35], we 
could suggest a reliable link between the cellular, genetic, 
and clinical implications in our study by analyzing a large 

Fig. 3   Quantification analysis of tumor-infiltrating macrophages 
in relation to isocitrate dehydrogenase (IDH) mutational status in 
high-grade gliomas. a The numbers of CD14+CD68+ cells (tis-
sue macrophages) were significantly decreased in IDH-mutant glio-
mas (median: 519 cells/g, range: 0–11,832) compared with those of 
IDH wild-type gliomas (median: 10,393 cells/g, range: 72–65,690, 
p < 0.001). b The numbers of CD14+CD68+ CD163+ cells (M2 
macrophages) were significantly decreased in IDH-mutant glio-

mas (median: 219 cells/g, range: 0–8276) compared with those of 
IDH wild-type gliomas (median: 3,770 cells/g, range: 80–21,854, 
p < 0.001). C. The ratio of CD14+CD68+ CD163+ cells (M2 mac-
rophages) and CD14+ cells (monocytes) among CD45+ cells were 
plotted, and samples above the 95% confidence interval of the lin-
ear regression line were defined as the M2 macrophage-high group. 
d Overall survival of the M2 macrophage-high group and of the 
remaining patients
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Fig. 4   a Heatmap of radiom-
ics features using hierarchical 
clustering with a dendrogram: 
rows indicate subjects (n = 51), 
and columns indicate mul-
timodal radiomics features 
(d = 428). b Receiver operating 
characteristic (ROC) curves 
of radiomics signatures for 
immune phenotypes: T cell 
fraction (enriched vs deficient 
group) (red), area under the 
curve (AUC) = 0.986 (95% con-
fidence interval (CI), 0.953–1) 
(p = 0.00005); T cell subclass 
fraction (T8 vs T4* dominant 
group) (green), AUC = 0.783 
(0.643–0.923) (p = 0.001); M2 
macrophage fraction (M2 high 
vs low group), AUC = 0.798 
(0.652–0.944) (p = 0.003) 
(blue); and IDH genotype (IDH 
wt vs mut group), AUC = 0.890 
(0.801–0.979) (p = 0.00002) 
(orange). c–f. Coefficients of 
variables of the first component 
of the radiomics signatures (left 
column) and prediction results 
for immune phenotypes (right 
column) of the T cell fraction 
(c), T cell subclass fraction (d), 
M2-TAM fraction (e), and IDH 
genotype (f). In the left column, 
the horizontal axis indicates the 
coefficients of the variables, and 
the vertical axis indicates the 
name of the variables. In the 
right column, the horizontal and 
vertical axes indicate the first 
and second components of the 
radiomics signatures, respec-
tively. Note that crosses ( +) and 
surrounding ellipses indicate the 
centers of the group of subjects. 
ROC receiver operating char-
acteristic, AUC​ area under the 
curve, expl. var. explained vari-
ance of each component, TAM 
tumor-associated macrophage
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Table 2   Top 10 selected features of first component of radiomic signatures for immune phenotypes and IDH genotype

ET features from T1-weighted contrast-enhanced images, ED features from T2-FLAIR, adc features from ADC maps, cbv features from rCBV 
maps, ndtdm neighbouring gray tone difference matrix, glcm gray level co-occurrence matrix, gldm gray level dependence matrix, glszm gray 
level size zone matrix, glrlm gray level run length matrix, shape shape features, TAM tumor-associated macrophage
† p values of coefficients were given for information purpose only, and should be interpreted with caution, because they were computed using 
bootstrapping, which leads to unreliable estimation compared to the case of low-dimensional linear regression
a Selected features are listed in descending order of absolute values of coefficients of the first component of radiomic signatures
*Indicates statistical significance (p < 0.05)

Immune phenotype Features with top 10 coefficientsa Coefficients p value†

T cell fraction (enriched vs deficient group) adc_ngtdm_Strength − 0.563 0.0012*
ED_glcm_Imc1 0.341 0.0068*
cbv_glszm_HighGrayLevelZoneEmphasis 0.316 0.0056*
cbv_glszm_LowGrayLevelZoneEmphasis − 0.316 0.0001*
adc_glszm_SizeZoneNonUniformityNormalized − 0.247 0.0053*
ED_glrlm_RunEntropy − 0.246 0.9999
adc_glszm_GrayLevelVariance − 0.232 0.9999
adc_glszm_SmallAreaEmphasis − 0.197 0.9999
ED_shape_Sphericity − 0.189 0.9999
adc_glcm_MCC − 0.187 0.9999

T cell subclass fraction (T8 vs T4* dominant group) adc_glszm_GrayLevelVariance − 0.499 0.0041*
ET_gldm_DependenceVariance − 0.456 0.033*
ET_glcm_Idn − 0.422 0.22
ET_glrlm_RunPercentage 0.239 0.032*
ET_ngtdm_Contrast 0.233 0.89
ET_glrlm_RunLengthNonUniformityNormalized 0.227 0.043*
ET_glrlm_ShortRunEmphasis 0.194 0.50
ET_glcm_Idmn − 0.194 0.048*
ET_gldm_LargeDependenceEmphasis − 0.179 0.52
ET_glcm_Correlation − 0.147 0.44

M2-TAM fraction (M2-TAM high vs low group) adc_gldm_DependenceVariance 0.362 0.017*

adc_firstorder_MeanAbsoluteDeviation 0.338 0.40
ET_shape_LeastAxisLength 0.299 0.09
adc_firstorder_RobustMeanAbsoluteDeviation 0.286 0.64
adc_firstorder_InterquartileRange 0.282 0.25
ED_shape_Maximum3DDiameter 0.280 0.033*
adc_firstorder_Variance 0.261 0.079
adc_gldm_GrayLevelVariance 0.260 0.64
adc_glcm_ClusterTendency 0.230 0.81
adc_glcm_InverseVariance − 0.230 0.46

IDH genotype (IDH mut vs wt group) cbv_shape_Sphericity 0.595 0.044*
adc_shape_Sphericity 0.595 0.32
cbv_glrlm_ShortRunLowGrayLevelEmphasis − 0.268 0.69
ET_glrlm_RunLengthNonUniformity − 0.243 0.21
ET_shape_SurfaceArea − 0.203 0.06
ET_shape_VoxelVolume − 0.181 0.01*
ET_shape_MeshVolume − 0.179 0.10
cbv_glrlm_ShortRunEmphasis − 0.167 0.50
ET_gldm_DependenceNonUniformity − 0.158 0.09
cbv_glrlm_RunEntropy 0.047 0.049*
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sample size. More specifically, the IDH-predicted radiom-
ics signature score showed a significant correlation with 
M2-TAM cell counts (rho = 0.45, p = 0.0008) in the current 
study. However, a direct relation needs to be demonstrated 
for a precise prognostic evaluation and therapeutic approach.

We developed and evaluated radiomics signatures of 
immune phenotypes using sPLS-DA, showing good diagnos-
tic performance in this study. The result of the present study 
reproduced that of the study by Sun et al. [36], however, 
with ‘real’ cell counts of immune cells, not the ‘assumed’ 
immune phenotype using estimated cell counts. Moreover, 
we analyzed not only CD8 + cells but also 13 distinct types 
of immune cells. Regardless of immune phenotype, the 
majority of the top 10 features were from ADC maps, which 
are important for predicting the immune phenotypes: spe-
cifically, T cell fraction (enriched vs deficient group), T cell 
subclass fraction (T8 vs T4* dominant group), and M2-TAM 
fraction (M2-TAM high vs low group). Considering that 
ADC values represent cellularity and that there should be 
differences in cellularity between the two groups for each 
immune phenotype, we can carefully interpret this result as 
indicating that ADC maps might reflect the tumor immune 
environment, considering that the tumor cell density would 
also account for low ADC values to a similar degree, which 
warrants further investigation. For radiomics signatures built 
to predict the IDH genotype, sphericity [37, 38] and vol-
ume [17] features have been reported to be relevant features, 
which are also shown to be two of the significant features 
in our results: sphericity and voxel volume from shape fea-
tures (Table 2). Surprisingly, this result is consistent with 
the conventional MRI findings of IDH-mut tumors: IDH-
mut astrocytomas tend to have well-defined margins and be 
less infiltrative with reduced enhancement due to their lower 

invasiveness IDH-wt astrocytomas [18], which is explained 
by the positive coefficient of sphericity (0.595), meaning that 
increased sphericity contributes to the prediction of IDH-
mut, and by the negative coefficient (− 0.181) of the voxel 
volume of the enhancing tumor, meaning that an increased 
voxel volume of an enhancing tumor contributes to the pre-
diction of IDH-wt (Table 2).

Meanwhile, the good diagnostic performance of the 
developed radiomics signatures of immune phenotypes 
seem to be correlated with IDH status. The IDH genotype 
leads to a distinguished tumor microenvironment including 
distinctive cytokines, resulting in different immune pheno-
types [12]. Furthermore, the IDH genotype has recently been 
shown to be correlated to radiologic phenotypes [39] and 
thus can be predicted using radiomics or features obtained 
from multimodal MRI, including perfusion MRI [17, 18]. 
Therefore, some radiomic features correlated with IDH sta-
tus would also be correlated to specific immune phenotypes, 
which can explain the good diagnostic performance of the 
developed radiomics signatures. For example, M2-TAM 
count was correlated with IDH-projected radiomics signa-
ture scores. Despite the useful diagnostic impact of radi-
omics in our studies, the inherent limitation of radiomics 
methodology need to be considered.

Conclusion

By acquiring data on the absolute number of immune cells 
infiltrated in tumor tissue, we aspired to understand the 
immune microenvironment of HGG more precisely. We also 
confirmed that the immune microenvironment of HGG is 
heterogeneous among patients and that certain immune phe-
notypes are related to prognosis. For better clinical implica-
tions, we can predict the immune phenotypes noninvasively 
using tumor radiomics signatures. A comprehensive under-
standing of the relationship between the immune microenvi-
ronment and the clinical impact and radiomics signatures of 
HGG is expected to help not only predict prognosis but also 
apply immune-related treatments in the future.
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