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Abstract
Tumor microenvironment (TME) is a complex and dynamic evolving environment which facilitates tumor proliferation and 
progression. We aimed at investigating the characteristics of tumor microenvironment and its prognostic value in gliomas. 
Transcriptome data of 702 glioma samples from The Cancer Genome Atlas were included as training dataset, while 325 
samples from Chinese Glioma Genome Atlas database and 268 samples from GSE16011 database were used to validate. We 
found that the infiltration of stromal and immune cell varied in gliomas of different grades and pathological types, and was 
associated with poor prognosis. Based on the gene expression profile, we constructed a TME-related signature (TMERS), 
which was closely related to clinical features and genomic variation of gliomas. In TMERS-high group, specific gene muta-
tions and increased copy number alternations were observed. Kaplan–Meier survival and Cox regression analysis showed 
that TMERS was an independent prognostic indicator. Then we developed a nomogram prognostic model to predict 1-year, 
3-year and 5-year survival of patients. Functional analysis confirmed that TMERS could reflect the status of glioma micro-
environment, and immunological analysis showed that macrophages were significantly enriched in the TMERS-high group. 
We established a novel TME-related signature for predicting prognosis and provided new insights into immunotherapy.
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Introduction

Gliomas are the most common histological type of primary 
tumor of the central nervous system and originate from 
glial cells. Globally, the annual incidence of gliomas is 5–6 
per 100,000 people [1]. Compared to lower-grade gliomas 
(LGG, WHO grade II and III), glioblastomas (GBM, WHO 
Grade IV) have a poor prognosis with a median overall sur-
vival of 14.4 months, despite maximum resection of the 

tumor combined with chemo- and radiotherapy [1, 2]. Tumor 
recurrence and treatment resistance are the main dilemma in 
the treatment of gliomas. Therefore, in-depth analysis of the 
mechanism of gliomagenesis and exploring effective treat-
ments can better extend the survival of these patients.

Tumor microenvironment (TME) is a complex and 
dynamic evolving environment, which mainly includes vari-
ous types of immune cells, stromal cells and the cytokines 
released by the cells. Tumor cells secrete various cytokines 
to reshape the surrounding microenvironment, which in turn 
facilitates tumor proliferation and progression [3]. Com-
pared with malignant tumor cells, the genetic stability of 
normal cells in the TME determines the therapeutic stability 
of this target [4]. For example, the earliest immune-check-
point blockade (ICB) therapy (CLTA-4 and PD-1 antibodies) 
have demonstrated pronounced clinical benefits by activating 
T cells [5]. However, a significant proportion of patients do 
not respond to ICB therapy [6]. In GBM, the therapeutic 
effectiveness of ICB has been unpredictable and uncom-
mon, with only 8% of patients having a definite response 
[7, 8]. Therefore, a comprehensive understanding of TME 
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is beneficial to improve the current therapies targeting dys-
functional cells in the TME.

Our study integrated 1295 transcriptome data across 
whole grade gliomas and comprehensively estimated the 
glioma microenvironment, including immune and stromal 
components. We screened differentially expressed genes 
representing TME and developed a TME-related signature 
(TMERS), which was associated with clinical and genetic 
properties of gliomas. Then we verified TMERS as a poor 
prognostic indicator and a prognostic nomogram model 
based on TMERS was constructed. TMERS could reflect 
the status of glioma microenvironment, and macrophages 
were significantly enriched in the TMERS-high group. Our 
research might contribute to the understanding of glioma 
TME and help guide the development of TME-targeted 
therapy for gliomas.

Methods

Samples and data collection

Totally, 1295 glioma samples from three datasets were col-
lected: The Cancer Genome Atlas (TCGA), Chinese Glioma 
Genome Atlas (CGGA) and GSE16011. For TCGA training 
dataset (702 glioma samples), the RNA sequencing data, 
somatic mutation, copy-number alterations (CNAs) and clin-
icopathological information were downloaded online (http://​
cance​rgeno​me.​nih.​gov/). For CGGA validation dataset, we 
collected 325 RNA sequencing data generating with Illu-
mina HiSeq 2,000 sequencing system [9]. Corresponding 
clinical information was also collected and the pathological 
reports were confirmed by two experienced neuropatholo-
gists according to WHO guidelines in 2016. The detection 
method of IDH mutation has been described in our previ-
ous study [10, 11]. Overall survival (OS) was defined from 
surgery to death or last follow-up [12]. The CGGA dataset 
was approved by the Beijing Tiantan Hospital Capital Medi-
cal University Institutional Review Board (IRB KY2013-
017–01) and all patients signed an informed consent form 
[13]. Another validation dataset, GSE16011 (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​011), 
included RNA expression microarray data of 268 glioma 
patients and corresponding clinical information.

Estimate

The ESTIMATE algorithm was used to predict tumor purity, 
tumor invasion stroma/immune cells [14]. Using RNA 
sequencing data, ESTIMATE outputs three scores: stro-
mal score, immune score and estimate score. Patients from 

TCGA dataset were divided into high or low score groups 
based on the median immune or stromal score. The differen-
tially expressed genes (DEGs, p < 0.001 and foldchange > 5 
or < 0.2) between two groups were defined as immune DEGs 
or stromal DEGs, respectively. Immune DEGs or stromal 
DEGs were eventually merged into TME-related genes.

Development of TME‑related signature (TMERS)

Cox regression analysis was used to screen out TME-
related genes associated with prognosis in TCGA dataset 
(p < 0.05). Least absolute shrinkage and selection opera-
tor (LASSO) regression algorithm [15] generated the 
Cox model with the minimum mean cross-validated error 
based on tenfold cross-validation. Our model included 
20 genes and the corresponding LASSO Cox coeffi-
cients. TME-related signature (TMERS) of each patient 
was calculated using a linear combination of signature 
gene expression weighted by their LASSO Cox coeffi-
cients: TMERS = (exprgene1 x coefficientgene1) + (exprgene2 
x coefficientgene2) + … + (exprgene20 x coefficientgene20). The 
coefficients from TCGA dataset were used to calculate 
TMERS for two validation datasets.

DAVID bioinformatics resources and Gene Set 
Enrichment Analysis (GSEA)

TMERS positively or negatively related genes (Pearson 
|R|> 0.6, p < 0.05) were input in DAVID functional annota-
tion tool [16], and Gene ontology (GO) terms were selected 
to identify enriched biological themes. Gene set enrichment 
analysis (GSEA) was performed with R Package “fgsea” 
and top 15 pathways were selected. The number of permuta-
tions was 10,000 and the enrichment was significant when 
|NES|> 1 and adjusted p-value < 0.05.

Single‑Cell RNA sequencing

We collected two samples of primary IDH-wildtype glio-
blastoma patients from Beijing Tiantan Hospital, Capital 
Medical University. Fresh glioma samples taken during the 
operation were immediately washed with phosphate-buff-
ered saline (PBS), completely dissociated and enzymatically 
digested with trypsin–EDTA solution. We passed the disso-
ciated cells through a cell strainer (BD), then suspended the 
cells in red blood cell lysis buffer (Solarbio) to lyse the red 
blood cells. After washing with PBS, the cell pellets were 
re-suspended for further analysis. According to the manu-
facture’s introduction, the cDNA libraries were constructed 
with Chromium Single Cell 3′ Library and Gel Bead kit v2 
(120,267, 10x Genomics). The libraries were sequenced on 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
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Illumina HiSeq platform and the raw data was preprocessed 
with Cell Ranger pipeline (v3.0.2, 10x Genomics), mapped 
to the hg19 reference genome. Cells in gene-cell matrices 
with fewer than 200 transcripts and genes with fewer than 
two counts in two cells were filtered and removed. The 
matrix was then normalized such that the number of unique 
molecular identifiers (UMIs) in each cell was equal to the 
median UMI count across the dataset and log-transformed. 
Gene-barcode matrices were analyzed with the R package 

“Seurat” [17]. Based on QC metrics in the standard preproc-
essing workflow for scRNA-seq data, we filtered cells that 
had unique feature counts over 2000 or less than 200, UMI 
counts over 7000 and > 5% mitochondrial counts. To reduce 
the gene expression matrix to its most important features, 
we used principal component analysis (PCA) to decrease 
the dimensionality of the dataset. To visualize data in 2-D 
space, we passed the PCA-reduced data into UMAP (uni-
form manifold approximation and projection), a non-linear 

Fig. 1   Evaluation of tumor microenvironmental status in gliomas 
with ESTIMATE algorithm. The stromal score, immune score and 
estimate score showed different distribution patterns in WHO grades 
(A), IDH mutation status (B), 1p/19q codeletion status (C), MGMT 

promoter methylation status (D) and molecular subtypes (E). The 
KM survival curve revealed that patients with high stromal score (F), 
immune score (G) or estimate score (H) lived significantly shorter 
than patients with low score (p < 0.0001, log-rank test)
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dimensional reduction method. We inferred and visualized 
copy number variation in cells with R packages “infercnv”.

Statistical analysis

Statistical analyses were mainly conducted with R software 
(v4.0.0, https://​www.r-​proje​ct.​org/). Prognostic signifi-
cance was evaluated with Kaplan–Meier survival curve by 
two-sided log-rank test and differences in clinical features 
were assessed by Student’s t test or Chi-square test. R pack-
ages “survival” were used for univariate and multivariate 
Cox regression analysis. R package “timeROC” was used 
to draw the one-, three- and five-year ROC curve [18]. A 
combination of independent prognostic indicators was used 
to construct the nomogram model with R package “rms”. 
Other R packages used in the study included ComplexHeat-
map, gglpot2, pheatmap, Hmisc, corrgram and circlize. A p 
value < 0.05 was considered statistically significant.

Results

Tumor microenvironment (TME) characterization 
of gliomas

To investigate the tumor microenvironment (TME) of glio-
mas, ESTIMATE algorithm was performed to reflect the 
infiltration of stromal and immune cell. We included 702 
RNA sequencing data of gliomas from TCGA dataset and 
calculated stromal score, immune score and estimate score. 
In Fig. 1A, three scores increased significantly in higher-
grade glioma (p < 0.05). In addition, three scores were sig-
nificantly higher in glioma with IDH wild-type, 1p/19q non-
codeletion or MGMT promoter unmethylation (Fig. 1B–D, 
p < 0.05). In different molecular subtypes, three scores were 
significantly upregulated in classical and mesenchymal 
subtypes (Fig. 1E, p < 0.05). Furthermore, survival analy-
sis revealed that patients with high score lived significantly 

Fig. 2   Identification of TME-related signature. A Venn diagram 
showed the differentially expressed genes (DEGs) of immune score 
and stroma score. B In LASSO regression analysis, partial likelihood 
deviance plot showed cross-validation for tuning parameter screening. 

C 20 genes were screened and corresponding regression coefficients 
in LASSO regression. Heatmaps showed the clinical and pathological 
differences between low risk and high risk patients in TCGA dataset 
(D) and CGGA dataset (E)

https://www.r-project.org/
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shorter than patients with low score (Fig. 1F–H, p < 0.05). 
These results suggested that TME was associated with gli-
oma malignancy and poor prognosis.

Establishment of TMERS in gliomas

Considering the correlation between TME and glioma 
prognosis, we intended to construct a TME-related signa-
ture for prognosis prediction. In TCGA training dataset, 
we screened 340 stromal differentially expressed genes 
(DEGs) and 275 immune DEGs between high and low 
score gliomas (Fig. 2A, fold change > 5 or < 0.2, p < 0.001). 
Stromal and immune DEGs merged into 417 TME-related 
genes. Next, univariate Cox regression analysis further 
screened out 411 TME-related genes associated with over-
all survival (p < 0.05). Finally, the LASSO Cox regression 

algorithm was performed and 20 genes were selected with 
best prognostic value (Fig. 2B). A TME-related signature 
(TMERS) consisting of 20 genes was identified and the risk 
score was calculated using a linear combination of signa-
ture gene expression weighted by their regression coeffi-
cients (Fig. 2C). In CGGA and GSE16011 validation data-
set, TMERS of each patient was calculated with the same 
regression coefficients from TCGA dataset. Based on the 
median TMERS, patients were divided into TMERS-low 
and TMERS-high groups, and we compared the clinical and 
molecular differences between two groups in TCGA dataset 
(Fig. 2D and Table 1). TMERS-high patients were signifi-
cantly older than TMERS-low patients (p < 0.001) and more 
TMERS-high patients tend to be higher-grade (p < 0.001). 
Compared with TMERS-low patients at the molecular 
level, more patients were IDH wild-type, 1p/19q intact and 

Table 1   Correlation between TMERS and clinicopathological factors of glioma patients in the three datasets

Characteristics TCGA dataset CGGA dataset GSE16011 dataset

Low-risk 
group 
(n = 351)

High-risk 
group 
(n = 351)

P-Value Low-risk 
group 
(n = 162)

High-risk 
group 
(n = 163)

P-Value Low-risk 
group 
(n = 134)

High-risk 
group 
(n = 134)

P-Value

Age
Mean(range) 41 (17–74) 54 (21–89)  < 0.001 39 (10–75) 47 (8–81)  < 0.001 46 (15–81) 56 (14–79)  < 0.001
Gender
Female 126 129 n.s 65 57 n.s 46 42 n.s
Male 176 178 97 106 88 92
NA 49 44 0 0 0 0
Grade
II 175 41  < 0.001 92 13  < 0.001 21 3  < 0.001
III 127 114 39 37 64 21
IV 0 152 31 113 49 110
NA 49 44 0 0 0 0
IDH status
Mutant 336 92  < 0.001 141 35  < 0.001 57 23  < 0.001
Wildtype 5 229 21 128 51 85
NA 10 30 0 0 26 26
1p/19q status
Codel 150 19  < 0.001 62 5  < 0.001 39 7  < 0.001
Non-codel 193 302 97 153 33 55
NA 8 30 3 5 62 72
MGMT promoter
Methylated 317 160  < 0.001 90 68  < 0.05 NA NA
Unmethylated 26 136 62 87 NA NA
NA 8 55 10 8 NA NA
TCGA subtype
Proneural 190 48  < 0.001 85 17  < 0.001 87 8  < 0.001
Neural 74 37 65 16 17 9
Classical 0 86 11 63 22 36
Mesenchymal 0 95 1 67 8 81
NA 87 85 0 0 0 0
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MGMT promoter unmethylated in TMERS-high patients 
(p < 0.001). Meanwhile, more classical and mesenchymal 
subtypes were enriched in TMERS-high groups (p < 0.001). 
In CGGA and GSE16011 validation dataset, we observed 
consistent differences between TMERS-high and TMERS-
low groups (Fig. 2E, Figure S1 and Table 1).

Associations of TMERS with pathological features 
in gliomas

Due to heterogeneity of different pathological types of 
glioma, TMERS was analyzed according to WHO grade 
and molecular pathology (Fig. 3A). Compared with WHO 
grade II and grade III glioma, TMERS was the highest 
in grade IV glioma (p < 2.22e–16). Moreover, TMERS 
was significantly higher in patients with IDH wild-type, 

1p/19q non-codeletion or MGMT promoter unmethyla-
tion (p < 2.22e–16). Among molecular subclasses of glio-
mas defined by TCGA network, TMERS was dramatically 
upregulated in mesenchymal subtype (p < 0.05). In two 
validation datasets, the distribution of TMERS was consist-
ent with the above results (Fig. 3B and Figure S2A). Then 
receiver operating characteristic (ROC) curves were used 
to evaluate the diagnostic ability of TMERS to distinguish 
true states of pathological features in gliomas (Fig. 3C, D). 
Our TMERS showed excellent predictive ability in glioma 
grade (AUC 0.949 or 0.831 in TCGA or CGGA), IDH muta-
tion status (AUC 0.986 or 0.915), 1p/19q co-deletion status 
(AUC 0.803 or 0.859), MGMT promoter methylation sta-
tus (AUC 0.809 or 0.609) and mesenchymal subtype (AUC 
0.915 or 0.937), which was better than age and gender. And 
in GSE16011 dataset, we observed similar results (Figure 

Fig. 3   Associations between TMERS and pathological features. In 
TCGA dataset (A) and CGGA dataset (B), patients were grouped by 
WHO grade, IDH mutation status, 1p/19q codeletion status, MGMT 

promoter methylation status, TCGA molecular subtype. In TCGA 
dataset (C) and CGGA dataset (D), the ROC curve evaluated the pre-
dictive value of TMERS in pathological features
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S2B). In brief, these findings emphasized that TMERS was 
closely associated with glioma malignancy and served as a 
biomarker for pathological features.

TMERS was associated with different genomic 
variations

To better understand the molecular mechanisms of glioma 
microenvironment, we analyzed the difference in genomic 
alterations between TMERS-high and TMERS-low groups 
of TCGA dataset (Fig. 4). Mutations in IDH1, ATRX, TP53, 
CIC and FUBP1 were significantly enriched in TMERS-
low group (p < 0.05, Chi-square test). Meanwhile, higher-
frequency of mutations in EGFR, PTEN, NF1, PDGFRA, 
RB1 and NOTCH1 were found in TMERS-high group. GIS-
TIC2.0 analysis showed distinct copy number alterations 
(CNA) between TMERS-high and TMERS-low groups. 
The most commonly deleted regions like CDKN2A/B, 
MLLT3, PTEN or amplified regions like EGFR, CDK4, 
PDGFRA, MDM2 were enriched in TMERS-high group 
(Fig. 4, p < 0.05, Chi-square test). These results suggested 

that gliomas with high TMERS tended to have more frequent 
genomic variations.

Prognostic value of TMERS in gliomas

In consideration of correlation between TMERS and clin-
ical and genetic features, we further assessed the prog-
nostic value of TMERS. TMERS-high patients lived sig-
nificantly shorter than TMERS-low patients in all three 
glioma datasets (Fig. 5, p < 0.0001). We then validated 
the prognostic value of TMERS in WHO grade II glio-
mas (p < 0.05), grade III gliomas (p < 0.05) and grade IV 
GBMs (p < 0.05). According to 2016 CNS tumor clas-
sification guidelines, gliomas were classified into five 
subtypes based on histopathology and IDH mutation and 
1p/19q codeletion status. Overall survival of TMERS-
high patients was significantly shorter than TMERS-low 
patients in LGG-IDHmut-codel (p < 0.05), LGG-IDHwt 
(p < 0.05) and GBM-IDHwt (p < 0.05, Figure S3). How-
ever, in LGG-IDHmut-non-codel and GBM-IDHmut, 

Fig. 4   Genomic variation analysis based on TMERS grouping. Differential somatic mutations and copy number alternations analyses between 
TMERS-low and TMERS-high group. Chi-square test, *p < 0.05
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there was no significant difference in survival between 
the two groups. In addition, univariate and multivariate 
Cox regression analysis showed TMERS as an independ-
ent prognostic indicator by adjusting for clinicopathologi-
cal variables (age, gender, grade, IDH mutation, 1p/19q 
codeletion and MGMT promoter methylation, Table 2).

An individualized prognostic model based 
on TMERS

With the “timeROC” algorithm, 1-year, 3-year and 5-year 
ROC curves were used to evaluate the predictive efficacy 
of TMERS. The 1-year, 3-year and 5-year AUC of TMERS 
were 0.8940, 0.9128 and 0.8693, respectively, superior to 
age (0.8402, 0.8385 and 0.8107) and grade (0.8046, 0.8591 
and 0.8545) (Fig. 6A). And in two validation datasets, the 
predictive efficacy of TMERS was also superior to that of 
age and grade (Fig. 6B and Figure S4). Next, we developed 
a nomogram prognostic model with independent prognostic 
indicators (age and TMERS) (Fig. 6C). The C-indices of 
our model were 0.872, 0.766 and 0.738 for TCGA, CGGA 

and GSE16011 datasets, respectively. The calibration curve 
also showed the satisfactory ability of nomogram model to 
predict 1-year, 3-year and 5-year survival in three datasets 
(Fig. 6D).

TMERS related biological functions 
and microenvironment analysis

To reveal biological characteristics of TMERS, DAVID 
functional annotation tool was performed. First, genes 
related to TMERS (1528 positively and 882 negatively 
related genes, Pearson |R|> 0.6, p < 0.05) were screened 
with Pearson correlation analysis in TCGA dataset. In Gene 
Ontology analysis, positively related genes were enriched 
in the biological processes of “immune response”, “Extra-
cellular matrix organization”, “Inflammatory response”, 
“Leukocyte migration”, “Angiogenesis” and so on (Fig. 7A). 
And negatively related genes were enriched in the biological 
processes of normal neural function, such as “Neuron pro-
jection development”, “Neuromuscular process controlling 
balance”, “Memory”, “Covalent chromatin modification”, 

Fig. 5   Clinical prognostic value of TMERS. Kaplan–Meier survival analysis were performed in gliomas and different grades. A TCGA dataset, 
B CGGA dataset, C GSE16011 dataset
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and “Chemical synaptic transmission”. Meanwhile, 
GSEA analysis showed that pathways including “KEGG_
cytokine_cytokine_receptor_interaction” (NES = 3.20, 
padj = 1.2e − 02), “GO_leukocyte_activation” (NES = 2.35, 
padj = 1.2e − 02) and “GO_immune_system_process” 
(NES = 2.12, padj = 1.2e − 02) were enriched in TMERS-
high group (Fig. 7B).

In order to understand the relationship between TMERS 
and inflammatory response, we analyzed seven inflamma-
tory metagenes using the method described previously [19, 
20]. As shown in Fig. 7C, TMERS was positively correlated 
with HCK, LCK, MHC-I, MHC-II, interferon and STAT1, 
while it showed a negative correlation with IgG in all three 
datasets. These findings indicated an enhanced inflamma-
tory response involving macrophages, T lymphocytes and 
antigen-presenting cells, but not B lymphocyte responses in 
TMERS-high patients. Meanwhile, TMERS was involved 
in immune response, and we included immune checkpoints 

and immune cells for further study. As shown in Fig. 7D, 
immune checkpoints (LAG3, CTLA4, PD-L1, PD1, B7-H3, 
IDO1, CD80, TIM-3) were positively correlated with 
TMERS in three datasets, indicating immunosuppressive 
status in TMERS-high patients. To assess abundances of 
immune cell, we imputed mRNA expression data in CIB-
ERSORT analytical tool and observed a positive correlation 
between TMERS and macrophage abundance (Fig. 7E). In 
order to better verify the macrophage abundance, single-
cell RNA sequencing (scRNA-seq) was performed on two 
IDH-wildtype glioblastomas (SC1 was TMERS-low and 
SC2 was TMERS-high). All cells were clustered into four 
groups, including macrophages, tumor cells, lymphocytes 
and oligodendrocytes (Fig. 7F). The InferCNV algorithm 
showed significant chromosomal copy number variation in 
“malignant” cells, confirming our subgroup classification of 
cells (Fig. 7G). Separately, the proportion of macrophages in 
SC1 was significantly lower than that in SC2 (p < 2.2e-16, 

Table 2   Variables related to OS in gliomas: univariate and multivariate analysis

TCGA​ Univariate Cox Regression Multivariate Cox Regression

HR 95%CI p Value HR 95%CI p Value

Age (≥ 45 vs. < 45) 5.142 3.571–7.403  < 2e–16* 2.461 1.472–4.115 0.0006*
Gender (male vs. female) 1.001 0.743–1.347 0.997
Grade (GBM vs. LGG) 9.576 6.835–13.420  < 2e–16* 1.392 0.860–2.252 0.178
IDH (wild vs. mutant type) 11.070 7.772–15.770  < 2e–16* 0.992 0.460–2.139 0.984
1p/19q (non-codel vs. codel) 4.541 2.671–7.719 2.28e–08* 1.420 0.741–2.724 0.291
MGMT promoter (unmethylated vs. 

methylated)
3.207 2.312–4.447 2.88e–12* 1.199 0.818–1.756 0.352

TMERS (high vs.low) 3.629 3.083–4.273  < 2e–16* 2.714 1.873–3.933 1.32e–07*

CGGA​ Univariate Cox Regression Multivariate Cox Regression

HR 95%CI p Value HR 95%CI p Value

Age (≥ 45 vs. < 45) 2.006 1.532–2.627 4.2e–07* 1.304 0.968–1.757 0.080
Gender (male vs. female) 0.998 0.759–1.312 0.988
Grade (GBM vs. LGG) 4.919 3.670–6.593  < 2e–16* 2.519 1.801–3.522 6.64e–08*
IDH (wild vs. mutant type) 2.866 2.171–3.782 1.05e–13* 0.669 0.442–1.013 0.058
1p/19q (non-codel vs. codel) 5.877 3.602–9.588 1.33e–12* 3.252 1.924–5.496 1.06e–05*
MGMT promoter (unmethylated vs. 

methylated)
1.195 0.911–1.566 0.199

TMERS (high vs.low) 8.733 5.951–12.810  < 2e–16* 4.036 2.258–7.215 2.51e–06*

GSE16011 Univariate Cox Regression Multivariate Cox Regression

HR 95%CI p Value HR 95%CI p Value

Age (≥ 45 vs. < 45) 2.377 1.790–3.157 2.16e–09* 2.224 1.387–3.568 0.0009*
Gender (male vs. female) 1.066 0.811–1.401 0.647
Grade (GBM vs. LGG) 3.131 2.353–4.166 4.92e–15* 1.105 0.634–1.927 0.725
IDH (wild vs. mutant type) 1.930 1.423–2.618 2.34e–05* 1.615 0.993–2.626 0.053
1p/19q (non-codel vs. codel) 2.445 1.645–3.633 9.68e–06* 1.559 0.931–2.611 0.091
TMERS (high vs.low) 10.234 6.401–16.360  < 2e–16* 4.833 1.697–13.770 0.003*
HR, hazard ratio; CI, confidence interval; *Significant
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Fig. 7H, I). In addition to the difference in proportions, we 
further compared the differences in the phenotype of mac-
rophages. We found that the expression of anti-inflamma-
tory factors in the macrophages of SC2 was significantly 
increased, while the expression of pro-inflammatory factors 
in the macrophages of SC2 was significantly lower than that 
in SC1 (p < 0.05, Figure S5). These results revealed that 
macrophages in gliomas with high TMERS may promote 
tumor growth by restraining inflammation.

Discussion

TME is a crucial component of tumor. Recently, with 
the realization of the essential role of TME in the evolu-
tion of tumor, the previous tumor cell-centered treatment 
has gradually turned to the treatment of complex tumor 
systems. Some well-known targets in TME, such as PD-1 
and CTLA-4, inhibit the activation of T cells in TME. Cur-
rently, antibodies targeting PD-1 or CTLA-4 have shown 
significant tumor-suppressive effects in some solid tumors, 
such as advanced melanoma [21, 22], non-small-cell lung 
cancer [23, 24], and so on. However, the efficacy of PD-1 
or CTLA-4 blockade therapy was limited in gliomas [7, 8], 
and the current immunotherapy strategies for gliomas need 
to be improved urgently. Our study has integrated 1295 RNA 
sequencing data of whole grade gliomas and evaluated the 
characteristics of the glioma tumor microenvironment. 
Then we developed a TME-related signature (TMERS), 
which was significantly up-regulated in higher grade glio-
mas, IDH wild-type gliomas, 1p/19q intact gliomas, MGMT 
promoter unmethylated gliomas and mesenchymal subtype. 
These results revealed that TMERS was closely related to 
malignant progression of glioma.

Then based on TMERS grouping, we analyzed the 
genomic variation of gliomas. Mutations in IDH1, ATRX, 
TP53, CIC and FUBP1 were significantly enriched in 
TMERS-low group. IDH mutations are present in more 
than 80% of lower-grade gliomas and secondary glioblas-
tomas [25]. IDH mutation is an early and stable mutation 
event [26], which plays an important role in maintaining 
the growth of glioma cells [27]. Mutations in ATRX and 
TP53 were reported to drive gliomas towards astrocytoma 
phenotype [28], while mutations in CIC and FUBP1 were 
driver events for oligodendrogliomas [29]. In TMERS-high 
group, higher-frequency of mutations in EGFR, PTEN, NF1, 

PDGFRA, RB1 and NOTCH1 was found. EGFR, PTEN, 
NF1 and PDGFRA mainly affected the RTK-RAS-PI3K 
pathway, which controlled the most basic cellular functions 
including cell cycle, proliferation, differentiation, migration, 
and survival [30]. Alterations in RTK-RAS-PI3K pathways 
were common in glioma malignant progression [31]. The 
protein encoded by RB1 gene could negatively regulate cell 
cycle and mutation in RB1 induced the occurrence of vari-
ous cancers [32]. NOTCH1 gene belonged to the NOTCH 
family, which was involved in the Notch signaling pathway. 
Notch signaling pathway was associated with cancer cell 
survival and drug resistance [33]. In addition to the sig-
nificant association between gene mutations and TMERS, 
more copy number alterations were found in TMERS-high 
group, including the most commonly deleted regions like 
CDKN2A/B, MLLT3, PTEN or amplified regions like 
EGFR, CDK4, PDGFRA, MDM2. Therefore, genomic 
variation might be the root cause of the TME differences 
in gliomas.

We further evaluated the prognostic value of TMERS by 
Kaplan–Meier survival curve and Cox regression analysis. 
Compared with the traditional indicators (age and grade), 
the ROC curve showed that TMERS had a better prediction 
effect on 1-year, 3-year and 5-year overall survival. Based 
on the superior prognosis and predictive value of TMERS, 
we combined TMERS with age to construct a nomogram 
model for survival prediction, implying the clinical practice 
value of TMERS.

Next, biological function analysis suggested that TMERS 
could effectively reflect the status of glioma tumor microen-
vironment, including immune and inflammatory response, 
extracellular matrix, angiogenesis and cytokines. We then 
included seven inflammatory metagenes and observed 
that TMERS was primarily associated with the enhanced 
inflammatory response involving macrophages, T lympho-
cytes and antigen-presenting cells, but not B lymphocytes. 
To better understand the relationship between TMERS and 
immune response, common immune checkpoint genes were 
selected. Correlation analysis showed a positive correlation 
between TMERS and immune checkpoints, indicating that 
TMERS reflected immunosuppression in gliomas. Immune 
cells were involved in the regulation of tumor immune 
response, and our study showed that macrophages medi-
ated immune response were involved TMERS-high group 
of glioma patients. The majority of non-tumor cells in the 
microenvironment are macrophages, which support tumor 
survival and invasion. At present, the interaction between 
glioma cells and macrophages has been extensively studied. 
Peiwen Chen et al. found that LOX secreted by glioma cells 
functioned as a potential macrophage chemoattractant, while 
SPP1 secreted by macrophages could support the survival 
of glioma cells and stimulate angiogenesis. Inhibition of 
LOX expression significantly down-regulated macrophage 

Fig. 6   A clinical survival prediction model based on TMERS in 
gliomas. In TCGA dataset (A) and CGGA dataset (B), the timeROC 
curve evaluated the predictive value of TMERS, age and grade in 
1-year, 3-year and 5-year overall survival. (C) A nomogram model 
integrating TMERS and age in TCGA dataset. (D) Calibration curves 
for the nomogram model predicting 1-year (red), 3-year (blue) and 
5-year (black) survival in three datasets

◂



964	 Cancer Immunology, Immunotherapy (2022) 71:953–966

1 3

infiltration and glioma progression [34]. Salvatore J Coniglio 
et al. revealed that CSF-1 secreted by glioma cell lines 
stimulated microglia infiltration, while EGF secreted by 
microglia stimulated glioma cell migration. Blocking the 
CSF-1R signaling pathway reduced microglial infiltration 
and glioma invasion [35]. Symbiotic interactions between 
glioma cells and macrophages offer new opportunities for 
targeted therapy.

In recent years, research focusing on the tumor microen-
vironment has become more and more intense, and TME-
related signatures, including immune-related signatures, have 
emerged by a large margin. Qiu et al. constructed a prognos-
tic microenvironment-related immune signature via ESTI-
MATE for glioma, but the prediction accuracy of this model 
(AUCs > 0.6) needs to be improved [36]. Zhang et al. built 
a immune-related gene signature that was effective in risk 
stratification in primary lower-grade gliomas, but did poorly 

Fig. 7   Functional annotation and immunological analysis of TMERS. 
A Biological processes analysis of genes positively or negatively 
associated with TMERS using DAVID functional annotation tool. B 
Gene set enrichment analysis (GSEA) revealed the top 15 pathways 
which were enriched in TMERS-high group. C Correlation analysis 
of TMERS and inflammatory activities in three datasets. D Correla-
tion analysis of TMERS and immune checkpoints in three datasets. E 
Correlation analysis of TMERS and macrophage proportions by CIB-
ERSORT in three datasets. F Two single-cell RNA-sequencing sam-

ples (SC1 was TMERS-low and SC2 was TMERS-high) were inte-
grated, and all cells were labeled as four clusters: macrophages (red), 
tumor cells (green), lymphocytes (blue), oligodendrocytes (purple). G 
The InferCNV heatmap showed single cell chromosome copy num-
ber amplification (red) or deletion (blue). The upper part was refer-
ence normal cells, the lower part was malignant cells. H SC1 (left) 
and SC2 (right) in the UMAP plot. I The proportion of macrophages 
in SC1 was significantly lower than that in SC2 (p < 2.2e-16, chi-
squared test)
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in predicting survival in recurrent lower-grade gliomas [37]. 
In a recent study by Xia et al., immune-related lncRNAs were 
screened and eleven immune-related lncRNAs were adopted 
to construct the prognostic signature [38]. These studies have 
reflected the close correlation between tumor microenviron-
ment (including immune components) and tumor development 
and clinical prognosis. In-depth study of the tumor microenvi-
ronment is conducive to the discovery of prognostic markers 
and the development of novel therapeutic targets.

Conclusions

In conclusion, we evaluated the characteristics of the glioma 
microenvironment and identified a TME-related signature 
(TMERS) that could predict the prognosis of glioma patients 
and reflect the status of glioma microenvironment. More pro-
spective studies, including validation in immunized popula-
tions, could further explore the potential value of TMERS. 
TMERS may help us understand the glioma microenvironment 
and develop immunotherapy strategies for gliomas.
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