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Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment 
options. Notably, immunotherapy is a potential therapeutic approach for TNBC. This study performed single-cell RNA 
sequencing on TNBC and found highly expressed CXCL9 in M1 macrophages. An intercellular communication network 
was found between M1 macrophages and M2 macrophages, and M1 macrophages could differentiate into M2 macrophages 
over time. Meanwhile, CXCL9 expression started to decrease in association with cell differentiation from M1 macrophages 
to M2 macrophages. Additionally, the M1 macrophage had strong connections to the M2 macrophage in the MHC-II signal-
ing network. Through GSVA analysis, the MHC-II pathway activity of the M1 macrophages was significantly stronger than 
that of the M2 macrophages. Furthermore, CXCL9 was enriched in the MHC-II signaling pathway. CXCL9 was signifi-
cantly enriched in the JAK/STAT signaling pathway. Western blot revealed that CXCL9 overexpression promotes JAK1/
STAT2 expression in MDA-MB-231 cells. These findings indicate that CXCL9 is a potential clinical biomarker of prognosis 
and immunotherapy efficacy for TNBC patients. Also, it stimulates JAK/STAT activity, which in turn modifies the tumor 
microenvironment.
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Introduction

Triple-negative breast cancer (TNBC) is characterized by 
the absence of estrogen and progesterone receptors and 
poor or lack of expression of human epidermal growth fac-
tor-2 (HER-2) [1]. TNBC has a worse 5-year prognosis than 
other breast cancer subtypes due to its high recurrence rate. 
Currently, primary treatment options include chemother-
apy or radiotherapy, which yield unsatisfactory outcomes. 
The recent approval of PD-1/PD-L1 immunotherapy has 
improved the treatment of TNBC expressing PD-L1 in 1% 
of the tumor area [2].

PD-L1 modulates immune responses in cancer cells 
and provides a mechanism by which cancerous cells evade 
the immune system [3]. Several studies have investigated 
PD-L1 protein expression in many tumors. It has been 
found that PD-L1 protein may serve as a predictive bio-
marker for responses to anti-PD-1/PD-L1 immunotherapy 
[4, 5]. Previous studies have shown that PD-L1-positive 
tumors have a higher objective response rate for immuno-
therapy than PD-L1-negative tumors [6]. Another study 
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found that PD-L1 expression is higher in TNBC than in 
other breast cancer types [7]. This suggests that PD-1/
PD-L1 antibody treatment may be effective for TNBC 
patients. However, specific mechanisms driving the effect 
of PD-L1 on the efficacy of immunotherapy are unknown.

The tumor microenvironment (TME) modulates the 
response to immunotherapy in cancer patients. The TME 
primarily consists of tumor cells and tumor-infiltrating 
immune cells (TIICs). Tumor-associated macrophages 
(TAMs) are a major component of the TIICs and are clas-
sified into two subsets, i.e., M1 and M2 subtypes [8]. The 
M1 macrophages enhance tumor regression, whereas the 
M2 macrophages promote tumor progression. The polari-
zation of TAMs from the M2 to the M1 phenotype may 
enhance cancer immunotherapy. A high M1/M2 mac-
rophage ratio inhibits cancer susceptibility. In addition, 
disruption of the M1/M2 ratio may provide immunother-
apy benefits [9]. M1 macrophages express higher levels 
of PD-L1 than M2 macrophages, which may influence the 
efficacy of immunotherapy [10, 11]. However, the underly-
ing mechanisms remain unclear.

CXC motif chemokine ligand 9 (CXCL9) plays a role 
in immune responses. Recent studies have demonstrated 
that CXCL9 predicts favorable prognosis in patients with 
tumors and a good response to anti-PD-1 therapy [12, 13]. 
However, the precise role of CXCL9 and its association 
with current immune-related targets in TNBC remains not 
quite clear.

The results of this work suggest that CXCL9 is a poten-
tial diagnostic marker for TNBC, and CXCL9 relied on 
the PD-L1 expression status is highly expressed in TNBC. 
Moreover, the expression of CXCL9 was correlated with 
M1 macrophages in TNBC. In addition, CXCL9 could 
stimulate MHC-II activity by signaling through JAK/
STAT, which in turn modifies the tumor microenviron-
ment. These results showed that CXCL9 is a promising 
diagnostic biomarker and could predict response to immu-
notherapy in patients with TNBC.

Methods and materials

Cell culture

MDA-MB-231 triple-negative breast cancer cells were 
purchased from Procell (Procell Life Science & Technol-
ogy Co., Ltd., Wuhan, China). By STR identification, the 
cell line was authenticated. Cells were cultured in L15 
medium (Gibco, Thermo Fisher Scientific), supplemented 
with 10% fetal bovine serum (Sijiqing, Hangzhou, China), 
and then maintained at 37 °C without  CO2.

Plasmid transfection

The pENTER vector was used to construct the CXCL9 
overexpression plasmid and control the overexpression 
plasmid. The plasmids were constructed by WZ Bio-
sciences Inc. (Shandong, China). Subsequently, exponen-
tially growing untreated cells were cultured for 24 h before 
transfection. pENTER-CXCL9 was transiently transfected 
with MDA-MB-231 cells using Lipofectamine 3000 (Inv-
itrogen, USA). The cells were cultured for 48 h. Finally, 
proteins were extracted from these cells for Western blot 
analysis.

Immunohistochemistry analysis

For IHC analysis, all of the pathology slides came from the 
Central Hospital Affiliated to Shandong First Medical Uni-
versity. The TNBC and adjacent tissue paraffin-embedded 
slides were deparaffinized and rehydrated using xylene and 
a graded series of ethanol (100%, 95%, 80%, 75%), and 
then washed with PBS three times for 5 min each time. 
Subsequently, EDTA antigen restore solution was used to 
repair antigens on slices in a microwave oven at the condi-
tion of high heat for 5 min, heat preservation for 10 min, 
and high heat for 5 min followed by natural cooling, and 
washed with PBS three times for 5 min each time. It was 
then immersed in 3%  H2O2 solution at room temperature 
to eliminate endogenous peroxidase activity. The slides 
were incubated in 5% BSA to block non-specific binding 
of antibody for 1 h and then incubated in a humidified 
chamber overnight at 4 °C with the primary antibodies 
anti-CXCL9 (1:100 dilution; Proteintech, China). This 
was followed by washing with PBS and incubation with a 
secondary antibody for 60 min at room temperature. The 
slices were washed with PBS after incubation. For a color 
reaction, slides were incubated with the DAB solution. 
Subsequently, the slides were then counterstained with 
hematoxylin, dehydrated with graded alcohol series, and 
covered-slipped with neutral balsam.

Western blotting

Total protein was extracted from the MDA-MB-231 cells 
using the RIPA buffer (Beyotime, China). Total proteins 
were separated in SDS-PAGE and then transferred onto 
PVDF membranes. After blocking with 5% non-fat milk 
for 2 h at room temperature, the membranes were incu-
bated overnight with the primary antibodies CXCL9 
(1:500, Proteintech, China), JAK1 (1:1000), and STAT2 
(1:1000) at 4  °C. Subsequently, the membranes were 
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incubated with the corresponding secondary antibodies 
and observed under enhanced chemiluminescence (ECL, 
Thermo Fisher Scientific).

Data acquisition and selection

The TNBC datasets, including GSE37751, GSE38959, 
GSE53752, GSE76250, and GSE115275, were normalized 
and merged using the R packages “limma” and “sva.” The 
data were derived from the GEO database and divided into 
training cohorts (GSE37751, GSE38959, GSE53752, and 
GSE76250) and validation cohort (GSE115275). To reduce 
batch effects between these datasets, the merged dataset was 
normalized using the ComBat function in the “sva” pack-
age. The GSE157284 dataset contained 82 TNBC samples, 
including 58 PD-L1-negative samples and 24 PD-L1-pos-
itive samples. |logFC|> 1 and an adjusted P value < 0.05 
were considered as thresholds. We collected single-cell 
RNA sequencing (scRNA-seq) data of TNBC samples 
(GSM4909281, GSM4909283, and GSM4909284) with a 
reading depth of 10 × genomics.

Functional analysis

Disease Ontology (DO) enrichment and GSEA were 
employed to predict the general effects of the DEGs. The 
analyses were conducted using the R package with “clus-
terProfiler” and “org.Hs.eg.db.” For the DO enrichment 
and GSEA analysis, an adjusted P value < 0.05 was used 
as the selection cutoff. To evaluate the biological functions 
of CXCL9, we employed the protocol prescribed in the 
CAMOIP (v1.1) [14].

Selection of diagnostic genes based on machine 
learning

In the training cohort, the LASSO regression [15] and SVM‐
RFE [16] algorithms were employed to select diagnostic 
genes and prevent overfitting in cases of many genes. Nota-
bly, five genes were selected using both algorithms.

Construction of WGCNA

The raw GSE157284 data were normalized and processed 
using the R software to identify genes associated with the 
PD-L1 expression profile in TNBC. The genes were ranked 
based on their SD values, and the top 25% of genes were 
used to perform WGCNA via the R package “WGCNA” 
and a β = 3 as the soft thresholding. The minimum number 
of genes in the module was set to 20, resulting in 5 mod-
ules. The correlation coefficient was calculated to measure 
the relationship between PD-L1 expression status and mod-
ule. A module with the first absolute correlation coefficient 

was considered a candidate associated with clinical traits. 
Finally, 51 genes significantly relevant to PD-L1 expression 
status in the yellow module were used for further analysis.

Analysis of immune cell infiltration

CIBERSORT package, a bioinformatics tool that analyzes 
immune cell infiltration [17], was applied to analyze the 
proportion of 22 immune cell types in the training set and 
GSE157284 dataset. The CIBERSORT algorithm was run 
on 1000 permutations, followed by quantile normaliza-
tion. We assessed the relationships among CXCL9, PD-L1 
expression status, and the proportion of various immune 
cells.

Processing of scRNA‑seq data

ScRNA-seq data were extracted from human TNBC. The 
data were organized and analyzed using the Seurat pack-
age in the R software. GSM4909281, GSM4909283, and 
GSM4909284 datasets were used for analysis. We excluded 
genes expressed in < 3 cells and cells expressing < 250 
unique gene counts. The top 2000 highly variable genes 
were selected using “vst” in Seurat. Furthermore, the uni-
form manifold approximation and projection (UMAP) algo-
rithm was used to minimize the dimensions of scRNA-seq 
data [18]. The cutoff values for identifying marker genes 
were adjusted to logFC = 0.5 and minpct = 0.3. Many cell 
clusters were annotated using the SingleR algorithm [19]. 
Subsequently, the CellMarker database was used for manual 
verification and correction [20].

Statistical analysis

The diagnostic accuracy of the genes was assessed based on 
the AUC. The AUC was graded as follows: 0.5 < AUC < 0.7, 
poor discrimination; 0.7 ≤ AUC < 0.8, acceptable discrimi-
nation; 0.8 ≤ AUC < 0.9, excellent discrimination; and 
AUC ≥ 0.9, outstanding discrimination [21]. Statistical 
analysis was conducted in the R software (Version 4.1.3).

Results

Identification and functional enrichment analysis 
of DEGs in the training set

The flowchart of the study is represented in Supplemen-
tary Fig. 1. A total of 367 DEGs were identified from the 
training datasets (GSE37751, GSE38959, GSE53752, and 
GSE76250). The DEGs included 141 upregulated and 226 
downregulated genes (Fig.  1a and Supplementary Tab. 
1). DO enrichment analysis showed that the DEGs were 
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enriched in hereditary breast–ovarian cancer (Fig. 1b). In 
the GSEA pathway analysis, the top 5 enriched terms, i.e., 
“drug-metabolism-cytochrome-P450,” “metabolism-of-
xenobiotics-by-cytochrome-P450,” “neuroactive-ligand-
receptor-interaction,” “retinol-metabolism,” and “tyrosine-
metabolism,” were remarkably expressed in the normal 
group (Fig. 1c). In contrast, the other 5 terms, i.e., “allograft-
rejection,” “antigen-processing-and-presentation,” “cell-
cycle,” “primary-immunodeficiency,” and “proteasome,” 
were robustly expressed in the TNBC group (Fig. 1d).

Screening of diagnostic genes in the training set

To further identify genes with diagnostic potential in TNBC, 
the 367 DEGs were analyzed by LASSO and SVM analyses 
(Fig. 2a and 2b). The LASSO and SVM regression analy-
ses demonstrated that 5 DEGs, i.e., ADAMTS5, TACC3, 
HOXA4, ABCA5, and CXCL9, were potential diagnostic 

genes (Fig. 2c). Moreover, these 5 genes were significantly 
and differentially expressed between the tumor group and 
normal group. TACC3 and CXCL9 genes were upregulated 
in the TNBC group, whereas other genes were suppressed 
(Fig. 2d-2h). ROC curve showed the diagnostic performance 
of ADAMTS5, TACC3, HOXA4, ABCA5, and CXCL9 in 
TNBC with AUC values of 0.918, 0.908, 0.886, 0.876, and 
0.833, respectively (Fig. 3).

Re‑validation of the diagnostic genes 
in the validation set

To assess the diagnostic value of the 5 genes, the 
GSE115275 was used as a validation set. Our analysis 
showed similar results to the training set. TACC3 and 
CXCL9 were upregulated in the TNBC group, whereas the 

Fig. 1  Identification and functional enrichment analysis of the DEGs in the training set. a Heatmap of the top 50 DEGs in the training set. The 
DO b and GSEA c-d analyses of the DEGs
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other three genes were downregulated (Fig. 4a-4e). The 
ROC curves for ADAMTS5, TACC3, HOXA4, ABCA5, and 
CXCL9 showed AUC values of 1.000, 1.000, 0.889, 0.944, 
and 1.000, respectively (Fig. 4f-4j).

WGCNA analysis

Data from the GSE157284 dataset were preprocessed using 
R, and 21,654 genes were used to perform the WGCNA. A 
total of 5,414 genes were used for cluster analysis using 
the WGCNA package; β = 3 was set as the soft threshold 

Fig. 2  Identification of the diagnostic genes in the training set. a and 
b The LASSO and SVM methods used to select diagnostic genes in 
the training set; c the Venn diagram showing the intersecting genes 

of the LASSO and SVM regression; d-h a comparison of 5 key genes 
between the normal and tumor groups

Fig. 3  ROC curves of the a ADAMTS5, b TACC3, c HOXA4, d ABCA5, and e CXCL9 in the training dataset
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power (Fig. 5a and 5b). We constructed the cluster den-
drogram based on the selected threshold. We identified 
five color modules (Fig. 5c). A total of 509 genes were in 
the blue module, 4,112 genes in the turquoise module, 210 
genes in the brown module, 51 genes in the yellow, and 
1 gene in the grey module. Finally, genes in the 5 color 

modules were used to explore the relationship between 
the modules and traits (PD-L1 expression status). Com-
pared with other modules, the yellow module exhibited 
the highest correlation with the PD-L1 expression status 
(Fig. 5d and Supplementary Tab. 2), demonstrating that 

Fig. 4  Re-validation of the diagnostic genes in the validation set (GSE115275). a-e Expression of the 5 diagnostic genes between the normal and 
TNBC in the validation dataset; f-j ROC curves showing genes with diagnostic value in the validation set
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genes in the yellow module play significant roles in the 
PD-1/PD-L1 immunotherapy of TNBC patients.

Identification of key diagnostic genes 
and functional enrichment analysis

Our analysis showed 10 DEGs (GBP5, IDO1, LYZ, NLRC5, 
STAT1, CXCL9, IFI44L, LOC102723479, CXCL10, and 
CCL8) in GSE157284 (PD-L1 positive versus PD-L1 nega-
tive, Fig. 6a). The WGCNA-yellow module, LASSO, and 
SVM were intersected with the 10 DEGs. Comprehen-
sive analysis of the four datasets only identified CXCL9 
(Fig. 6b). Meanwhile, TNBC tissues expressed stronger 
CXCL9 than para-cancerous breast tissues based on immu-
nohistochemistry (Fig. 6c and d). Kaplan–Meier survival 

curves were constructed to examine the relationship between 
the expression level of CXCL9 and the overall survival of 
breast cancer patients. The results revealed that the CXCL9 
high-expression group had a better prognosis (log-rank 
P = 0.006, HR = 0.77, Fig. 6e). In contrast with all breast 
cancer, the effect was striking in the TNBC subgroup (log-
rank P = 1.3e-07, HR = 0.34, Fig. 6f).

Distribution of TIICs in TNBC with PD‑L1 positive 
or PD‑L1 negative

The CIBERSORT algorithm was used to evaluate differ-
ential immune infiltration of 22 subpopulations of immune 
cells between the PD-L1-positive and PD-L1-negative 
TNBC. As a consequence, the proportion of immune 

Fig. 5  WGCNA showing the module genes. a and b The fit soft thresholding power of the WGCNA was 3; c hierarchical clustering tree showing 
co-expression modules; d yellow module exhibited the greatest correlation with PD-L1 expression status (P = 5 ×  10–6, R = 0.48)
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Fig. 6  Overlapping genes and enrichment analysis. a Red dots indi-
cate high expression of the DEGs in the GSE157284 volcano plot; 
b a Venn diagram showing overlapping genes between the PD-L1 
expression status-DEGs, WGCNA-yellow genes, LASSO, and SVM; 
c and d expression of CXCL9 in TNBC para-cancerous and TNBC 
cancerous tissues determined with immunohistochemistry staining; 

e log-rank test with Kaplan–Meier survival curves was performed to 
compare overall survival (OS) between breast cancer patients with 
high and low CXCL9 expression; f log-rank test with Kaplan–Meier 
survival curves was performed to compare overall survival (OS) 
between TNBC patients with high and low CXCL9 expression groups
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cells significantly varied between and within groups 
(Fig.  7a). Compared with the PD-L1-negative TNBC, 
PD-L1-positive samples showed a higher proportion of 
M1 macrophages (P = 0.045, Fig. 7b). Figure 7c shows 
that CXCL9 was positively correlated with the M1 mac-
rophages (R = 0.77, P<0.001) and negatively correlated 
with the M2 macrophages (R = -0.28, P<0.001). The 
results showed that there was the strongest correlation 

between the CXCL9 expression and macrophage infiltra-
tion in TNBC.

ScRNA‑seq profiling of the TNBC

scRNA-seq data were analyzed to characterize cell subsets in 
TNBC. After quality control (Supplementary Fig. 2), 4,636 
cell samples were identified from the scRNA-seq data. The 

Fig. 7  Identification of different cell clusters in TNBC by single-cell 
sequencing analysis. a Distribution of immune cell-type fractions in 
the PD‐L1 expression status in TNBC; b the proportions of 22 TIICs 
in the PD-L1-positive (red) and PD-L1-negative (blue) TNBC; c 
correlation between the expression of CXCL9 and the infiltration of 
immune cells from TNBC; d comparison of batch effects between the 

groups; e PCA data showing the 50 PCs with a P value < 0.05; f the 
16 cell clusters classified using the UMAP algorithm; g the 16 cell 
clusters annotated into major types using SingleR and CellMarker; 
h and i UMAP and violin plots showing high expression of CXCL9 
gene in M1 macrophages
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cells were mapped into two dimensions based on PC_1 
and PC_2 components. The principal component analysis 
(PCA) revealed that the three correct independent subpopu-
lations had optimal clustering efficiency (Fig. 7d). A total 
of 50 principal components (PCs) were selected for sub-
sequent analysis (Fig. 7e). Thereafter, cells were classified 
into 16 different clusters using UMAP algorithm (Fig. 7f); 
log2 FC > 0.5, pct 1 ≥ 0.5, and pct 2 < 0.5 were considered 
the cutoff criteria for further screening to identify relevant 
marker genes. Ultimately, 3,069 marker genes (1,980 unique 
genes) were identified for further annotation. SingleR and 
CellMarker tools were used to annotate the clusters based 
on their expression patterns. Clusters 0, 3, and 5, with 1,733 
cells, were annotated as T cells; clusters 1, 4, 10, and 13, 
which contained 1,180 cells, were annotated as epithelial 
cells; cluster 2, which had 506 cells, was annotated as M1 
macrophages; cluster 6, containing 347 cells, was annotated 
as M2 macrophages; cluster 7, containing 273 cells, was 
annotated as fibroblasts; cluster 8, with 245 cells, was anno-
tated as plasma cells; cluster 9, containing 159 cells, was 
annotated as NK cells; cluster 11, containing 60 cells, was 
annotated as CMP; cluster 12, containing 58 cells, was anno-
tated as B cells; cluster 14, containing 44 cells, was anno-
tated as endothelial cells; cluster 15, containing 31 cells, was 
annotated as tissue stem cells (Fig. 7g). Finally, we exam-
ined the expression of CXCL9 in 16 different cell types. As 
illustrated in Fig. 7h-i, CXCL9 was highly expressed in M1 
macrophages (cluster 2).

Afterward, cluster analysis was carried out including all 
cell populations (0–15 cluster). As shown in Fig. 8a,  strong 
and significant correlation was found between cluster 2 (M1 
macrophages) and cluster 6 (M2 macrophages). Further, the 
cell–cell interaction weights between M1 macrophages and 
other cell types showed tight relationships by CellChat, and 
the strongest cell interaction was found between M1 and M2 
macrophages among different kinds of cells (Fig. 8b). There-
after, we used pseudotime analysis to generate trajectory 
plots. As shown in Fig. 8c-d, M1 macrophages were more 
upstream compared to the location of M2 macrophages, 
and two cell populations revealed a partial overlap in the 
differentiation trajectory. These findings demonstrated that 
M1 macrophages differentiate into M2 macrophages over 
time. Moreover, CXCL9 expression was significant in the 
M1 macrophages and experienced a downfall from M1 mac-
rophages to M2 macrophages (Fig. 8e). In addition, M1 mac-
rophage had strong connections to M2 macrophage in the 
MHC-II signaling network (Fig. 8f). Through GSVA analy-
sis, MHC-II pathway activity of the M1 macrophages was 
stronger than that of the M2 macrophages (Fig. 8g). Further-
more, we performed the GSEA to assess the CXCL9-related 
pathways. As shown in Fig. 8h, CXCL9 was significantly 
enriched in the MHC-II signaling pathway (NES = 2.219, 
adjusted p = 1.66e-09). Against this background, we suggest 

that as a marker gene of M1 macrophages, CXCL9 acts via 
the MHC-II signaling pathway and promotes immunother-
apy in breast cancer. Moreover, studies have shown that 
JAK/STAT signaling pathway-related factors improve MHC 
class II immunoreactivity. Also, CXCL9 was significantly 
enriched in the JAK/STAT signaling pathway (NES = 2.023, 
adjusted p = 1.85e-07, Fig. 8i). Therefore, CXCL9 expres-
sion was upregulated using pENTER-CXCL9 transfection 
into MDA-MB-231 cells to validate the results. As shown 
in Fig. 8j, CXCL9 (CXCL9-OE) overexpression promotes 
JAK1/STAT2 expression in MDA-MB-231 cells.

Discussion

TNBC is a subtype of breast cancer with a poor survival 
rate [22]. Recently, the emergence of PD-1/PD-L1 immuno-
therapy has revolutionized the treatment of TNBC patients. 
Although immunotherapy has been proven to be effective in 
TNBC with PD-L1-positive patients, some of the patients 
are still insensitive to anti-PD-1/PD-L1 immunotherapy [2]. 
It is therefore essential to define the mechanisms underlying 
immunotherapy efficacy and identify more reliable biomark-
ers for early diagnosis and treatment of TNBC patients.

Machine learning tools, including SVM and LASSO 
regression, have been extensively used to screen diagnos-
tic-related markers. We intersected and integrated the two 
algorithms and identified 5 DEGs (ADAMTS5, TACC3, 
HOXA4, ABCA5, and CXCL9). Among them, TACC3 and 
CXCL9 were significantly upregulated in the tumor group. 
ROC analyses for the identified DEGs showed the training 
and validation groups. Our results suggest that the DEGs 
had significant predictive capacity. (AUC values were in the 
range of 0.8–1.)

One previous study reported that PD-L1 is a marker that 
evaluates response to tumor immunotherapy, specifically in 
TNBC patients [23]. The objective response rates of PD-1/
PD-L1 inhibitors in TNBC were 20% in high PD-L1-ex-
pressed ( +) tumors but less than 5% in lowly expressed or 
negative PD-L1(-) tumors [24]. We first performed WGCNA 
to identify the pivotal genes related to PD-L1 expression 
status in TNBC. We identified 51 genes in the yellow mod-
ule that were robustly correlated with the PD-L1 expression 
status (P = 5 × 10–6, R = 0.48). We obtained 10 differentially 
expressed PD-L1 expression status-related genes, which 
were upregulated in PD-L1-positive samples compared to 
the PD-L1-negative samples. Further, the WGCNA-yellow 
module, LASSO, and SVM-RFE intersected with the 10 
DEGs, and only CXCL9 gene was identified from the four 
datasets.

With recent technological advances, research has evolved 
from tumor cells to tumor immune microenvironments, 
improving the understanding of immunotherapy. Notably, 
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TIICs promote tumor immune microenvironment [25]. 
Tumor tissues are infiltrated by a heterogeneous collection 
of TIICs, including T cells, B cells, or macrophages; the type 
and density of TIICs within the tumor significantly influence 
the sensitivity to immunotherapy [26, 27]. TAMs are the 
major immune cells in the tumor stroma in orchestrating 

cancer-related inflammation [28]. TAMs are divided into 
M1 and M2 subtypes, with diametrically opposite sensitiv-
ity to current immunotherapy [29]. M1 macrophages inhibit 
tumor growth and improve immunotherapeutic outcomes in 
patients, whereas M2 macrophages drive tumor enhance-
ment and immune suppression [30]. We compared immune 

Fig. 8  Cell cluster trajectory and CellChat analysis. a Heatmap of 
different cell clusters interaction correlation; b the cellular inter-
action weights of interactions between M1 macrophages and M2 
macrophages; c the differentiation pseudotime trajectory of M1 
macrophages and M2 macrophages; d pseudotime was colored in a 
gradient from dark blue to light blue; e the expression intensity of 
CXCL9 along the pseudotime axis; f the MHC-II signaling pathway 
network was significantly detected between the interactions of M1 

macrophage and M2 macrophage; g differences in pathway activities 
scored by GSVA between all types of cell types; h and i GSEA analy-
sis revealed a significant enrichment of MHC-II (hsa 04,514) and 
JAK/STAT  signaling pathways. NES, normalized enrichment score; 
j CXCL9 was upregulated in the pENTER-CXCL9 group. JAK1 and 
STAT2 expressions were higher in the pENTER-CXCL9 group than in 
the control group
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infiltration between PD-L1-negative and PD-L1-positive 
TNBC in 22 subpopulations of immune cells by the CIB-
ERSORT algorithm. In contrast with the PD-L1-negative 
TNBC, PD-L1-positive samples had a significantly higher 
proportion of M1 Macrophages. These findings indicated 
that high expression of PD-L1 may enhance the efficacy of 
immunotherapy by increasing the infiltration of M1 mac-
rophages in TNBC. CIBERSORT analysis showed that 
CXCL9 was positively associated with M1 macrophages 
but negatively associated with M2 macrophages. The sin-
gle-cell RNA sequencing results showed that CXCL9 was 
highly expressed in M1 macrophages. M1 macrophages 
could differentiate into M2 macrophages over time. Mean-
while, CXCL9 expression started to decrease in associa-
tion with cell differentiation from M1 macrophages to M2 
macrophages. In the MHC-II signaling network, the M1 
macrophage had strong connections to the M2 macrophage. 
Through GSVA analysis, the MHC-II pathway activity of the 
M1 macrophages was stronger than the M2 macrophages. 
Furthermore, CXCL9 was enriched in the MHC-II signaling 
pathway. Based on the GSEA analysis, CXCL9 was found 
to be significantly enriched in the MHC-II signaling path-
way (NES = 2.219, adjusted p = 1.66e-09). We suggest that 
as a marker gene of M1 macrophages, CXCL9 acts via the 
MHC-II signaling pathway and facilitates immunotherapy 
in breast cancer.

Janus kinase–signal transducer and activator of transcrip-
tion (JAK/STAT) signaling participates in nearly all immune 
regulatory processes, including those implicated in tumor-
driven immune escape [31]. Previous studies showed that 
the JAK/STAT pathway regulates macrophage polarization 
[32, 33]. IFN-γ is a potent macrophage-activating factor 
that primarily activates STAT and induces polarization of 
M1 macrophages via the IFN-γ/JAK/STAT pathway [34]. 
Furthermore, studies indicate that JAK/STAT signaling 
pathway-related factors improve the MHC class II immu-
noreactivity [35–37]. Our GSEA analysis revealed that 
CXCL9 is significantly enriched in the JAK/STAT pathway 
(NES = 2.023, adjusted p = 1.85e-07). Eventually, Western 
blot assay revealed that CXCL9 overexpression promotes 
JAK1/STAT2 expression in MDA-MB-231 cells. The results 
suggested that the CXCL9 could affect the tumor immune 
microenvironment through PI3K/AKT signaling pathway.

Conclusion

This study found that CXCL9 was highly expressed in 
TNBC tissues and is a promising diagnostic and survival 
prognostic marker. In addition, CXCL9 could stimulate 
MHC-II activity by signaling through JAK/STAT, which in 
turn modifies the tumor microenvironment. Therefore, the 

present findings are expected to improve the diagnosis and 
prediction of responses to immunotherapy in TNBC.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 022- 03343-w.

Author Contributions LW and SS conceived the study and drafted the 
manuscript. FQ performed the immunohistochemistry analysis. MS, 
XL, and QS critically revised the manuscript. LC performed statistical 
analysis. YZ and GS performed technical support. All authors com-
mented on previous versions of the manuscript. All authors read and 
approved the final manuscript.

Funding This work was supported by the Scientific Research 
Foundation for the Introduced Talents of Jinan Central Hospital 
(YJRC2021011, YJRC2022003), Shandong Provincial Natural Sci-
ence Foundation (ZR2021MH019), Internationally Standardized 
Tumor Immunotherapy and Key Technology Platform Construction for 
Clinical Trials of Drug-Induced Heart Injury (2020ZX09201025), and 
Shandong Provincial Natural Science Foundation (ZR2022QH245).

Data Availability statement The datasets generated during and/or ana-
lyzed during the current study are available from the corresponding 
author on reasonable request.

Declarations 

Coflict of interests The authors have no relevant financial or non-finan-
cial interests to disclose.

Ethics approval This study was performed in line with the principles 
of the Declaration of Helsinki. The study was approved by the Ethics 
Committee of Central Hospital Affiliated to Shandong First Medical 
University.

References

 1. Malhotra MK, Emens LA (2020) The evolving management of 
metastatic triple negative breast cancer. Semin Oncol 47:229–237. 
https:// doi. org/ 10. 1053/j. semin oncol. 2020. 05. 005

 2. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata 
H, Diéras V, Henschel V, Molinero L, Chui SY, Maiya V, Husain 
A, Winer EP, Loi S, Emens LA (2020) Atezolizumab plus nab-
paclitaxel as first-line treatment for unresectable, locally advanced 
or metastatic triple-negative breast cancer (IMpassion130): 
updated efficacy results from a randomised, double-blind, pla-
cebo-controlled, phase 3 trial. Lancet Oncol 21:44–59. https:// 
doi. org/ 10. 1016/ S1470- 2045(19) 30689-8

 3. Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of 
PD-L1 as cancer therapeutics. J Hematol Oncol 12:92. https:// doi. 
org/ 10. 1186/ s13045- 019- 0779-5

 4. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Har-
rison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF, 
Margolin KA, Plimack ER, Lambert AM, Waxman IM, Hammers 
HJ (2015) Nivolumab for metastatic renal cell carcinoma: results 
of a randomized phase II Trial. J Clin Oncol 33:1430–1437. 
https:// doi. org/ 10. 1200/ JCO. 2014. 59. 0703

 5. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier 
L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, 
Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, 
Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, 
Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Shar-
key B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab 

https://doi.org/10.1007/s00262-022-03343-w
https://doi.org/10.1053/j.seminoncol.2020.05.005
https://doi.org/10.1016/S1470-2045(19)30689-8
https://doi.org/10.1016/S1470-2045(19)30689-8
https://doi.org/10.1186/s13045-019-0779-5
https://doi.org/10.1186/s13045-019-0779-5
https://doi.org/10.1200/JCO.2014.59.0703


1491Cancer Immunology, Immunotherapy (2023) 72:1479–1492 

1 3

in previously untreated melanoma without BRAF mutation. N 
Engl J Med 372:320–330. https:// doi. org/ 10. 1056/ NEJMo a1412 
082

 6. Mahoney KM, Atkins MB (2014) Prognostic and predictive mark-
ers for the new immunotherapies. Oncology (Williston Park) 
28(Suppl 3):39–48

 7. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, 
Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat 
A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem 
JJ, Alatrash G (2014) PD-L1 expression in triple-negative breast 
cancer. Cancer Immunol Res 2:361–370. https:// doi. org/ 10. 1158/ 
2326- 6066. CIR- 13- 0127

 8. Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Mac-
rophage-based approaches for cancer immunotherapy. Cancer Res 
81:1201–1208. https:// doi. org/ 10. 1158/ 0008- 5472. CAN- 20- 2990

 9. Issa NT, Stathias V, Schürer S, Dakshanamurthy S (2021) 
Machine and deep learning approaches for cancer drug repurpos-
ing. Semin Cancer Biol 68:132–142. https:// doi. org/ 10. 1016/j. 
semca ncer. 2019. 12. 011

 10. Oldenhove G, Boucquey E, Taquin A, Acolty V, Bonetti L, Ryf-
fel B, Le Bert M, Englebert K, Boon L, Moser M (2018) PD-1 Is 
involved in the Dysregulation of Type 2 Innate Lymphoid cells 
in a murine model of obesity. Cell Rep 25:2053-2060.e4. https:// 
doi. org/ 10. 1016/j. celrep. 2018. 10. 091

 11. Sun NY, Chen YL, Wu WY, Lin HW, Chiang YC, Chang CF, Tai 
YJ, Hsu HC, Chen CA, Sun WZ, Cheng WF (2019) Blockade of 
PD-L1 enhances cancer immunotherapy by regulating dendritic 
cell maturation and macrophage polarization. Cancers (Basel). 
https:// doi. org/ 10. 3390/ cance rs110 91400

 12. Han X, Wang Y, Sun J, Tan T, Cai X, Lin P, Tan Y, Zheng B, 
Wang B, Wang J, Xu L, Yu Z, Xu Q, Wu X, Gu Y (2019) Role of 
CXCR3 signaling in response to anti-PD-1 therapy. EBioMedicine 
48:169–177. https:// doi. org/ 10. 1016/j. ebiom. 2019. 08. 067

 13. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni 
S, McSkane M, Baba H, Lenz HJ (2018) CXCL9, CXCL10, 
CXCL11/CXCR3 axis for immune activation-A target for novel 
cancer therapy. Cancer Treat Rev 63:40–47. https:// doi. org/ 10. 
1016/j. ctrv. 2017. 11. 007

 14. Lin A, Qi C, Wei T, Li M, Cheng Q, Liu Z, Luo P, Zhang J (2022) 
CAMOIP: a web server for comprehensive analysis on multi-
omics of immunotherapy in pan-cancer. Brief Bioinform. https:// 
doi. org/ 10. 1093/ bib/ bbac1 29

 15. Tibshirani R (1997) The lasso method for variable selection in the 
Cox model. Stat Med 16:385–395

 16. Sanz H, Valim C, Vegas E, Oller JM, Reverter F (2018) SVM-
RFE: selection and visualization of the most relevant features 
through non-linear kernels. BMC Bioinformatics 19:432. https:// 
doi. org/ 10. 1186/ s12859- 018- 2451-4

 17. Wu K, Zhang X, Li F, Xiao D, Hou Y, Zhu S, Liu D, Ye X, Ye 
M, Yang J, Shao L, Pan H, Lu N, Yu Y, Liu L, Li J, Huang L, 
Tang H, Deng Q, Zheng Y, Peng L, Liu G, Gu X, He P, Gu Y, Lin 
W, He H, Xie G, Liang H, An N, Wang H, Teixeira M, Vieira J, 
Liang W, Zhao X, Peng Z, Mu F, Zhang X, Xu X, Yang H, Kris-
tiansen K, Wang J, Zhong N, Wang J, Pan-Hammarström Q, He 
J (2015) Frequent alterations in cytoskeleton remodelling genes 
in primary and metastatic lung adenocarcinomas. Nat Commun 
6:10131. https:// doi. org/ 10. 1038/ ncomm s10131

 18. Becht E, McInnes L, Healy J, Dutertre CA, Kwok I, Ng LG, Gin-
houx F, Newell EW (2018) Dimensionality reduction for visual-
izing single-cell data using UMAP. Nat Biotechnol. https:// doi. 
org/ 10. 1038/ nbt. 4314

 19. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, 
Naikawadi RP, Wolters PJ, Abate AR, Butte AJ, Bhattacharya 
M (2019) Reference-based analysis of lung single-cell sequenc-
ing reveals a transitional profibrotic macrophage. Nat Immunol 
20:163–172. https:// doi. org/ 10. 1038/ s41590- 018- 0276-y

 20. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu L, 
Liao G, Yan M, Ping Y, Li F, Shi A, Bai J, Zhao T, Li X, Xiao 
Y (2019) Cell Marker: a manually curated resource of cell mark-
ers in human and mouse. Nucleic Acids Res 47:D721–D728. 
https:// doi. org/ 10. 1093/ nar/ gky900

 21. Linden A (2006) Measuring diagnostic and predictive accuracy 
in disease management: an introduction to receiver operating 
characteristic (ROC) analysis. J Eval Clin Pract 12:132–139. 
https:// doi. org/ 10. 1111/j. 1365- 2753. 2005. 00598.x

 22. Paroni G, Zanetti A, Barzago MM, Kurosaki M, Guarrera L, 
Fratelli M, Troiani M, Ubezio P, Bolis M, Vallerga A, Bian-
cardi F, Terao M, Garattini E (2020) Retinoic acid sensitivity 
of triple-negative breast cancer cells characterized by constitu-
tive activation of the notch1 pathway: the role of rarβ. Cancers 
(Basel). https:// doi. org/ 10. 3390/ cance rs121 03027

 23. Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, Torres-
Martínez S, García González C, García GJÁ, Iranzo González-
Cruz V, Camps Herrero C (2022) Programmed death-ligand 1 
(PD-L1) as immunotherapy biomarker in breast cancer. Cancers 
(Basel). https:// doi. org/ 10. 3390/ cance rs140 20307

 24. Choi J, Lee HJ, Yoon S, Ryu HM, Lee E, Jo Y, Seo S, Kim D, 
Lee CH, Kim W, Ha JY, Kim SY, Gong G, Jung KH, Park SR, 
Kim SW, Park KS, Lee DH (2020) Blockade of CCL2 expres-
sion overcomes intrinsic PD-1/PD-L1 inhibitor-resistance in 
transglutaminase 2-induced PD-L1 positive triple negative 
breast cancer. Am J Cancer Res 10:2878–2894

 25. Kuan Hu, Zhijie Xu, Yao L, Yan Y, Zhou L, Li J (2021) Inte-
grated analysis of expression, prognostic value and immune 
infiltration of GSDMs in hepatocellular carcinoma. Aging 
13(21):24117–24135. https:// doi. org/ 10. 18632/ aging. 203669

 26. Liu R, Hu R, Zeng Y, Zhang W, Zhou HH (2020) Tumour 
immune cell infiltration and survival after platinum-based 
chemotherapy in high-grade serous ovarian cancer subtypes: 
A gene expression-based computational study. EBioMedicine 
51:102602. https:// doi. org/ 10. 1016/j. ebiom. 2019. 102602

 27. Kang Y, Huang J, Liu Y, Zhang N, Cheng Q, Zhang Y (2021) 
Integrated analysis of immune infiltration features for cervical 
carcinoma and their associated immunotherapeutic responses. 
Front Cell Dev Biol 9:573497. https:// doi. org/ 10. 3389/ fcell. 
2021. 573497

 28. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P 
(2017) Tumour-associated macrophages as treatment targets in 
oncology. Nat Rev Clin Oncol 14:399–416. https:// doi. org/ 10. 
1038/ nrcli nonc. 2016. 217

 29. Gül N, van Egmond M (2015) Antibody-dependent phagocyto-
sis of tumor cells by macrophages: a potent effector mechanism 
of monoclonal antibody therapy of cancer. Cancer Res 75:5008–
5013. https:// doi. org/ 10. 1158/ 0008- 5472. CAN- 15- 1330

 30. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt 
S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, 
Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, 
Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, 
van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage 
activation and polarization: nomenclature and experimental 
guidelines. Immunity 41:14–20. https:// doi. org/ 10. 1016/j. 
immuni. 2014. 06. 008

 31. Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT Signal-
ing: A Double-Edged Sword of Immune Regulation and Can-
cer Progression. Cancers (Basel). https:// doi. org/ 10. 3390/ cance 
rs111 22002

 32. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, 
Wang W, Hardeland R, Ren W (2019) Melatonin in macrophage 
biology: Current understanding and future perspectives. J Pineal 
Res 66:e12547. https:// doi. org/ 10. 1111/ jpi. 12547

https://doi.org/10.1056/NEJMoa1412082
https://doi.org/10.1056/NEJMoa1412082
https://doi.org/10.1158/2326-6066.CIR-13-0127
https://doi.org/10.1158/2326-6066.CIR-13-0127
https://doi.org/10.1158/0008-5472.CAN-20-2990
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1016/j.celrep.2018.10.091
https://doi.org/10.1016/j.celrep.2018.10.091
https://doi.org/10.3390/cancers11091400
https://doi.org/10.1016/j.ebiom.2019.08.067
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1093/bib/bbac129
https://doi.org/10.1093/bib/bbac129
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1038/ncomms10131
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1093/nar/gky900
https://doi.org/10.1111/j.1365-2753.2005.00598.x
https://doi.org/10.3390/cancers12103027
https://doi.org/10.3390/cancers14020307
https://doi.org/10.18632/aging.203669
https://doi.org/10.1016/j.ebiom.2019.102602
https://doi.org/10.3389/fcell.2021.573497
https://doi.org/10.3389/fcell.2021.573497
https://doi.org/10.1038/nrclinonc.2016.217
https://doi.org/10.1038/nrclinonc.2016.217
https://doi.org/10.1158/0008-5472.CAN-15-1330
https://doi.org/10.1016/j.immuni.2014.06.008
https://doi.org/10.1016/j.immuni.2014.06.008
https://doi.org/10.3390/cancers11122002
https://doi.org/10.3390/cancers11122002
https://doi.org/10.1111/jpi.12547


1492 Cancer Immunology, Immunotherapy (2023) 72:1479–1492

1 3

 33. Murray PJ (2007) The JAK-STAT signaling pathway: input and 
output integration. J Immunol 178(5):2623–2629. https:// doi. org/ 
10. 4049/ jimmu nol. 178.5. 2623

 34. Hu X, Chen J, Wang L, Ivashkiv LB (2007) Crosstalk among 
Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in 
macrophage activation. J Leukoc Biol 82:237–243. https:// doi. org/ 
10. 1189/ jlb. 12067 63

 35. Pattenden SG, Klose R, Karaskov E, Bremner R (2002) Inter-
feron-gamma-induced chromatin remodeling at the CIITA locus 
is BRG1 dependent. EMBO J 21:1978–1986. https:// doi. org/ 10. 
1093/ emboj/ 21.8. 1978

 36. Tarafdar A, Hopcroft LE, Gallipoli P, Pellicano F, Cassels J, 
Hair A, Korfi K, Jørgensen HG, Vetrie D, Holyoake TL, Michie 
AM (2017) CML cells actively evade host immune surveil-
lance through cytokine-mediated downregulation of MHC-
II expression. Blood 129:199–208. https:// doi. org/ 10. 1182/ 
blood- 2016- 09- 742049

 37. Stickel N, Hanke K, Marschner D, Prinz G, Köhler M, Melchinger 
W, Pfeifer D, Schmitt-Graeff A, Brummer T, Heine A, Brossart 
P, Wolf D, von Bubnoff N, Finke J, Duyster J, Ferrara J, Salzer 
U, Zeiser R (2017) MicroRNA-146a reduces MHC-II expression 
via targeting JAK/STAT signaling in dendritic cells after stem cell 
transplantation. Leukemia 31:2732–2741. https:// doi. org/ 10. 1038/ 
leu. 2017. 137

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.4049/jimmunol.178.5.2623
https://doi.org/10.4049/jimmunol.178.5.2623
https://doi.org/10.1189/jlb.1206763
https://doi.org/10.1189/jlb.1206763
https://doi.org/10.1093/emboj/21.8.1978
https://doi.org/10.1093/emboj/21.8.1978
https://doi.org/10.1182/blood-2016-09-742049
https://doi.org/10.1182/blood-2016-09-742049
https://doi.org/10.1038/leu.2017.137
https://doi.org/10.1038/leu.2017.137

	CXCL9 influences the tumor immune microenvironment by stimulating JAKSTAT pathway in triple-negative breast cancer
	Abstract
	Introduction
	Methods and materials
	Cell culture
	Plasmid transfection
	Immunohistochemistry analysis
	Western blotting
	Data acquisition and selection
	Functional analysis
	Selection of diagnostic genes based on machine learning
	Construction of WGCNA
	Analysis of immune cell infiltration
	Processing of scRNA-seq data
	Statistical analysis

	Results
	Identification and functional enrichment analysis of DEGs in the training set
	Screening of diagnostic genes in the training set
	Re-validation of the diagnostic genes in the validation set
	WGCNA analysis
	Identification of key diagnostic genes and functional enrichment analysis
	Distribution of TIICs in TNBC with PD-L1 positive or PD-L1 negative
	ScRNA-seq profiling of the TNBC

	Discussion
	Conclusion
	Anchor 26
	References




