
Vol.:(0123456789)1 3

Cancer Immunology, Immunotherapy (2021) 70:2835–2850 
https://doi.org/10.1007/s00262-021-02896-6

ORIGINAL ARTICLE

Identified lung adenocarcinoma metabolic phenotypes and their 
association with tumor immune microenvironment

Xian‑Ning Wu1 · Dan Su2 · Yi‑De Mei3 · Mei‑Qing Xu1 · Hao Zhang4 · Ze‑Yu Wang4 · Li‑Ling Li6,7 · Li Peng8 · 
Jun‑Yi Jiang9 · Jia‑Yi Yang10 · Dong‑Jie Li11,12 · Hui Cao13 · Zhi‑Wei Xia14 · Wen‑Jing Zeng16 · Quan Cheng4,15,16   · 
Nan Zhang5

Received: 1 August 2020 / Accepted: 18 February 2021 / Published online: 3 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Background  Lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), causes high mortality 
around the world. Previous studies have suggested that the metabolic pattern of tumor is associated with tumor response to 
immunotherapy and patient’s survival outcome. Yet, this relationship in LUAD is still unknown.
Methods  Therefore, in this study, we identified the immune landscape in different tumor subtypes classified by metabolism-
related genes expression with a large-scale dataset (tumor samples, n = 2181; normal samples, n = 419). We comprehensively 
correlated metabolism-related phenotypes with diverse clinicopathologic characteristics, genomic features, and immuno-
therapeutic efficacy in LUAD patients.
Results  And we confirmed tumors with activated lipid metabolism tend to have higher immunocytes infiltration and better 
response to checkpoint immunotherapy. This work highlights the connection between the metabolic pattern of tumor and 
tumor immune infiltration in LUAD. A scoring system based on metabolism-related gene expression is not only able to 
predict prognosis of patient with LUAD but also applied to pan-cancer. LUAD response to checkpoint immunotherapy can 
also be predicted by this scoring system.
Conclusions  This work revealed the significant connection between metabolic pattern of tumor and tumor immune infiltra-
tion, regulating LUAD patients’ response to immunotherapy.
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Abbreviations
AUC​	� Area under the curve
CNAs	� Copy number alternations
DEGs	� Differentially expressed genes
FDR	� False discovery rate
FPKM	� Fragments per kilobase million
GEO	� Gene expression omnibus
GEP	� Gene expression profile
GO	� Gene ontology
GSVA	� Gene set variation analysis
LUAD	� Lung adenocarcinoma
LUSC	� Lung squamous cell carcinoma
NSCLC	� Non-small cell lung cancer

ROC	� Receiver operating characteristic
TIDE	� Tumor immune dysfunction and exclusion
TME	� Tumor microenvironment
TPM	� Transcripts per kilobase million
t-SNE	� T-distributed stochastic neighbor embedding

Introduction

Lung cancer is the leading cause of cancer incidence 
and high mortality globally. Non-small cell lung can-
cer (NSCLC) accounts for 85% of all lung cancer, and 
5-year survival rate of patients with NSCLC is less than 
20% [1]. NSCLC is further subdivided into lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC) based on histologic features [2]. Although LUSC 
has demonstrated a positive correlation with smoking, its 
counterpart, LUAD, manifests a poor relationship with 
smoking and is usually discovered in non-smokers [1, 2]. 
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Checkpoint blockade immunotherapy has achieved success 
in NSCLC treating [3, 4]. However, tumor sensitivity to 
immunotherapy varies and is limited by multiple factors.

Although normal cells chiefly depend on oxidative 
phosphorylation for ATP generation, tumor cells prefer 
glycolysis even with adequate oxygen, a phenomenon 
called the Warburg effect [5]. The accumulation of lac-
tate, a product of glycolysis, in the extracellular matrix 
not only contributes to the acidic tumor microenviron-
ment (TME), but also affects immunocytes infiltration. 
Previous studies reported that acidic TME could affect T 
cell-mediated immunity and impair immunocytes function 
[6]. Besides, an immune checkpoint can promote the cross 
talk between tumor cells and immunocytes [7]. Multiple 
metabolic-related pathways, such as the PI3K/AKT/mTOR 
pathway and the JAK/STAT pathway, have also been asso-
ciated with immunotherapy resistance [8, 9]. Therefore, 
the metabolism of tumor cells affects TME and immune 
infiltration profile to alter immunotherapy efficiency.

Checkpoint blockade immunotherapy enhances T 
cell-mediated immunity by targeting immune regulators, 
including PD-1 and CTLA-4 [10]. This strategy sup-
presses tumor immune escape and promotes cytotoxic 
immunocytes to attack tumor cells [11, 12]. For example, 
a tumor with a lower infiltration ratio of CD8 + T cells, 
CH4 + T cells, NK cells and T regulatory cells exhib-
its worse response to checkpoint-based immunotherapy 
[12–14]. The role of immunocytes is highly related to 
tumor response to checkpoint blockade immunotherapy. 
Notably, previous research has reported a significant dif-
ference in immune infiltration landscape between various 
NSCLC subtypes [15]. Therefore, variation in immune 
infiltration may result in tumor resistance to checkpoint-
based immunotherapy.

In this study, we collected 2752 metabolism-related 
genes and explored their expression profile in a large-
scale dataset. Remarkably, based on metabolism-related 
gene expression in LUAD, we classified samples into two 
groups: Metcluster 1 and Metcluster 2. And these two 
groups are not only manifest with differences in immune 
profile but also able to predict patient’s survival outcomes. 
The biofunction between the two groups supported the 
difference in the enrichment of metabolic pathways and 
immunity-related pathways. Preferential expression of the 
checkpoint, immune ligands and antigen-presenting cells 
were also identified between the two groups, indicating 
that metabolism-related genes can alter tumor response to 
checkpoint blockade immunotherapy by affecting immune 
infiltration profile. Moreover, different expression genes of 
the two groups were filtered and clustered to validate for-
mer results. As predicted, similar difference was observed 
and a scoring system was built to assist in the evaluation 
of the patient’s survival outcome and tumor response to 

immunotherapy. Generally, this study confirms the asso-
ciation of tumor metabolic and tumor immune infiltration 
profiles, which encourages future research.

Materials and methods

LUAD datasets and preprocessing

Publicly available LUAD gene expression datasets were 
searched in multiple data repositories. Ten cohorts of sam-
ples from patients with LUAD (n = 2181) were included in 
this study: GSE13213, GSE14814, GSE30219, GSE31210, 
GSE37745, GSE50081, GSE68465, GSE72094, GSE81089 
and TCGA-LUAD. The microarray datasets were down-
loaded from the Gene Expression Omnibus (GEO; https:// 
www.ncbi.nlm.nih.gov/geo/). The raw data from the micro-
array datasets were generated by Affymetrix and Agilent. 
The RMA algorithm in the Affy software package was sub-
sequently applied to process the raw data from Affymetrix 
for quantile normalization and background correction. The 
raw data from Agilent were processed using the limma soft-
ware package in R. The Cancer Genome Atlas (TCGA) data-
sets were downloaded from UCSC Xena (https​://xenab​rowse​
r.net/). The normal tissue samples were downloaded from 
GTEx database (http://commo​nfund​.nih.gov/GTEx/). The 
RNA-sequencing (RNA-seq) data were downloaded from 
the TCGA data portal. The fragments per kilobase million 
(FPKM) values were then transformed into transcripts per 
kilobase million (TPM) values. All data were analyzed with 
the R software (version 3.6.1) and R Bioconductor packages.

Identification of LUAD subclasses

A published list of 2752 metabolism-relevant genes was 
achieved for subsequent clustering[16]. A filtering proce-
dure was conducted. First, 1714 common candidate genes 
among the included cohorts were selected for t-distributed 
stochastic neighbor embedding (t-SNE). In total, 559 candi-
date metabolic genes with P < 0.05 were finally selected for 
clustering. Subsequently, tumors with qualitatively diverse 
metabolic gene patterns were classified using kmdist [17], 
which identified metabolic-related patterns and grouped 
patients for further analysis. This method was also applied 
to the TCGA-LUAD cohort by using the same candidate 
genes. The optimal number of clusters and their stability 
and reliability in both the meta-cohort and TCGA cohort 
were determined using the ConsensusClusterPlus R package 
[18]. The t-SNE-based approach was then used to validate 
the subtype assignments using the mRNA expression data 
of the metabolic-related genes.

http://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
https://xenabrowser.net/
http://commonfund.nih.gov/GTEx/
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Estimation of immune infiltration

Single-sample GSEA (ssGSEA) algorithm was used to 
quantify the proportion of the immune cell in the LUAD 
samples [19]. The gene sets include 782 genes for predict-
ing the abundance of 28 TIICs in individual tissue samples 
(http://softw​are.broad​insti​tute.org/gsea/msigd​b/index​.jsp). 
ssGSEA was applied since it could allow for sensitive and 
specific discrimination of 28 human infiltration immune cell 
phenotypes [20]. The following 28 types of immune cells 
were obtained: activated B cells (Ba), activated CD4 + T 
cells (CD4 + Ta), activated CD8 + T cells (CD8 + Ta), acti-
vated dendritic cells (DCa), CD56bright natural killer cells 
(CD56 + NK), CD56dim natural killer cells (CD56- NK), 
central memory CD4 + T cells (CD4 + Tcm), central memory 
CD8 + T cells (CD8 + Tcm), effector memory CD4 + T cells 
(CD4 + Tem), effector memory CD8 + T cells (CD8 + Tem), 
eosinophils, gamma delta T cells (γδT), immature B cells 
(Bi), immature dendritic cells (DCi), mast cells, myeloid-
derived suppressor cells (MDSC), memory B cells (Bm), 
monocytes, natural killer cells (NK), natural killer T cells 
(NK T), neutrophils, plasmacytoid dendritic cells (DCp), 
macrophages, regulatory T cells (Tregs), follicular helper 
T cells (Tfh), type-1 T helper cells (Th1), type-17 T helper 
cells (Th17) and type-2 T helper cells (Th2). The relative 
expression of the 28 TIICs in each sample was determined.

Identification of metabolic‑related differentially 
expressed genes (DEGs)

To identify genes associated with metabolic-related patterns, 
patients were grouped into two distinct metabolic clusters 
based on the diverse expression of metabolism-relevant 
genes. The limma package in R was used to determine 
DEGs associated with the two metabolic-related patterns 
[21]. Adjusted P < 0.01 was set as the significance criteria 
used to determine the DEGs among the metabolic subtypes.

Generation of metabolic gene signatures 
and dimension reduction

The DEGs among Metclusters were standardized in all the 
samples in the TCGA-LUAD cohort. Univariate Cox regres-
sion analysis was used to identify representative DEGs. An 
unsupervised clustering method [22] was used to classify 
patients into two gene clusters for further analysis. The clus-
terProfiler R package [23] was used to annotate the genes 
pattern. The consensus clustering algorithm [18] was per-
formed to define the gene clusters. The Chi-square contin-
gency test was used to determine the correlation between 
the metabolic clusters and gene clusters. Next, we applied 
an L1-penalized (Lasso) regression to further identify the 
DEGs with independent prognostic value [24]. Based on 

the highest lambda value that was selected through 1000 
cross-validations in the Lasso method (’11 min’ lambda), we 
obtained a set of prognostic genes and their Lasso regression 
coefficients.

Risk score =  − 0.0188* SFTPB (gene expres-
s ion  l eve l )  +  (−  0 .0034*  CYP4B1)  +  0 .0258* 
C D K N 3  +  ( −  0 . 0 1 2 8 *  C L E C 3 B )  +  0 . 0 3 0 5 * 
ABCC2 + 0.1003* DLGAP5 + 0.0295* HPGD + 0.0258* 
S E R P I N B 5  +  ( −  0 . 0 9 2 3 *  M S 4 A 1 )  +  0 . 0 4 0 0 * 
MUC1 + 0.0654* KYNU + 0.0003* CST6 + 0.0211* 
CPS1 + 0.0092* IGF2BP3 + NTS* 0.0071.

Pathway enrichment analysis

All gene sets were downloaded from the MSigDB database 
[25]. Gene set variation analysis (GSVA) was performed on 
the metabolic gene signatures, gene clusters and metabolic 
score using the clusterProfiler R package [26]. Pathways 
enriched in metabolic-related gene clusters were identi-
fied in Gene Ontology (GO) enrichment analysis with the 
false discovery rate (FDR) < 0.05 and a strict cutoff value 
of P < 0.01.

Genomic alteration analysis

RNA-seq data in regard to somatic copy number alternations 
(CNAs) and somatic mutations were downloaded from the 
TCGA database. GSITIC analysis was performed to deter-
mine the specific genomic event enrichment. CNAs and the 
threshold copy number (CN) at alteration peaks associated 
with metabolic score were from GISTIC 2.0 analysis (https​
://gatkf​orums​.broad​insti​tute.org). The first 25% and the last 
25% of samples were adopted to perform GISTIC analysis.

Prediction of immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm was performed to infer individual responses to 
immunotherapy, e.g., anti-PD-1 therapy [27, 28]. The sub-
map analysis was applied to show the difference in response 
to anti-PD-1 and CTAL-4 therapy. For the urothelial cancer 
dataset (IMvigor, n = 298), the data package was downloaded 
from http://resea​rch-pub.gene.com/IMvig​or210​CoreB​iolog​
ies. The R package arrayQualityMetrics was used for qual-
ity control, and the trimmed mean of M-values was used 
for normalization of count data [21]. T cell-inflamed gene 
expression profile (GEP) was defined through the expression 
of the 18 genes [29].

Statistical analysis

The Shapiro–Wilk normality test was used to test the 
normality of the variables [26]. For normally distributed 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://gatkforums.broadinstitute.org
https://gatkforums.broadinstitute.org
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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variables, unpaired Student’s t-test was used to compare the 
differences between the two groups. The Wilcoxon test was 
used to compare non-normally distributed variables. For 
multiple groups, one-way analysis of variance (ANOVA) 
was used as a parametric method to compare mean values, 
while Kruskal–Wallis tests were used as a nonparametric 
method.

Pearson correlation and distance correlation analyses 
were used to calculate the correlation coefficients. Con-
tingency tables were analyzed using the Chi-square con-
tingency test. The overall survival and Metscore were 
calculated using the R package survival and cutoff values 
determined. Based on the dichotomized Metscore, patients 
were grouped into high or low Metscore in each dataset, 
while reducing the computational batch effect using the R 
package sva. Data were mainly visualized using the R pack-
age ggplot2. In the differential expressed gene analysis, we 
used the Benjamini–Hochberg method that converts the 
P values to FDRs to identify significant genes [30]. The 
receiver operating characteristic package (pROC) [31] was 
utilized to generate ROC curves and calculate the area under 
the curve (AUC). OncoPrint was used to delineate the muta-
tion landscape of TCGA via the maftools R package [32]. 
Lasso regression analysis was used to identify prognostic 
genes. The Kaplan–Meier method was applied to generate 
and visualize survival curves for the subgroups. The statis-
tical significance of differences in each dataset was deter-
mined by the log-rank test. The univariate and multivariate 
Cox proportional hazards regression models were utilized to 
calculate the hazard ratios in the univariate and multivari-
ate analyses and determine independent prognostic factors 
employing the R package survival. All survivorship curves 
were generated via R package survminer. All heatmaps were 
generated based on pheatmap. All statistical analyses were 
performed in R (https​://www.r-proje​ct.org/versi​on.3.6.1). 
All the tests were two-sided, and P < 0.05 were considered 
statistically significant.

Results

Kmdist identifies two subclasses in LUAD

Figure S1A shows a flowchart developed to systemati-
cally describe our study. In total, 559 candidate metabolic 
genes were identified for clustering. The batch effect of the 
included cohorts before and after sva reduction is shown 
in Figs. S1B and S1C, respectively. The clustering stabil-
ity was assessed using the ConsensusClusterPlus pack-
age in the meta-cohorts based on the 559 genes for the 
optimal cluster number (Supplementary Fig. S1D). This 
supported two robust subtypes of LUAD in meta-cohorts. 

Kmdist of the 2181 tumors with corresponding metabolic 
gene expression profiles in meta-cohorts was performed 
(Fig. 1a and Supplementary Table S1). We also performed 
t-SNE to validate the subclasses’ assignments and found 
that the 559 metabolic genes separated tumor and nor-
mal tissues (Fig. 1b and Supplementary Table S2). Two 
identified metabolic phenotypes showed significant differ-
ences in the OS in meta-cohorts (log-rank test, P < 0.001; 
Fig. 1c). Clustering stability was also assessed using the 
ConsensusClusterPlus package in the TCGA for the opti-
mal cluster number (Supplementary Fig. S1E), which sup-
ported two robust subtypes of LUAD in TCGA. The two 
metabolic clusters were termed as Metclusters. Kmdist of 
the 500 tumors with corresponding metabolic gene expres-
sion profiles in the TCGA was performed (Fig. S2A). Two 
identified metabolic phenotypes also showed significant 
differences in the OS in TCGA (log-rank test, P < 0.001; 
Fig. S2B).

Transcriptome feature of the LUAD subclasses

We further explored the association between the identified 
metabolic subclasses and the metabolic-related pathways. 
Kmdist of the 2181 tumors in meta-cohorts was performed 
based on the 40 identified metabolic-related pathways 
(Fig. 2a and Supplementary Table S3). The t-SNE analy-
sis also showed that the 40 identified metabolic-related 
pathways separated tumor and normal tissues (Fig. 2b). 
Kmdist of the 500 tumors in TCGA was also performed 
based on the 40 identified metabolic-related pathways 
(Figs. S2C and Supplementary Table S3). In meta-cohorts 
and TCGA, Kmdist of the 2181 tumors was further per-
formed based on the 28 immune infiltrating cells (Figs. 2c 
and S3A, respectively). Figures 2d and S3B reveal that 
the two metabolic clusters showed significant differences 
in immune cell infiltration patterns in meta-cohorts and 
TCGA, respectively. Furthermore, 20 immune-related 
signaling pathways and tumorigenic-related pathways in 
GO enrichment analysis (Supplementary Table S4) were 
identified in meta-cohorts and TCGA (Fig. 3a and S3C, 
respectively). We also investigated the correlation between 
the two metabolic clusters and known signatures in both 
meta-cohorts and TCGA (Figs. 3b and S4A, respectively). 
Intrinsic immune escape is attributed to the expression of 
the immune checkpoint molecules, which are classified 
into several groups including antigen-presenting cells, co-
stimulators, co-inhibitors, receptors, ligands, cell adhe-
sions, etc. [33, 34]. Our results revealed that LUAD in 
metabolic cluster 1 expressed more immune checkpoint 
molecules to facilitate escape from immune killing in 
meta-cohorts and TCGA (Fig. 3c and S4B, respectively).

https://www.r-project.org/version.3.6.1
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Generation of metabolic gene signatures 
and functional annotation

To further investigate the potential biological characteristics 
of each metabolic cluster, 220 DEGs were acquired (Sup-
plementary Table S5) and used to classify the patients into 
genomic subtypes. To select the optimal cluster number, 
clustering stability was assessed using the ConsensusClus-
terPlus package was used (Supplementary Fig. S4C), which 
supported two gene clusters of LUAD in TCGA, termed 
gene cluster 1 and gene cluster 2 (Fig. S5A). The clustering 
results of the two genomic subtypes were significantly con-
sistent with the clustering results of the metabolic phenotype 
groups (S6A, χ2 contingency tests, P < 1.2 × 10−67). NMF 
method was used to compare with Metclusters and gene 
clusters, which showed good consistency (S5B, S5C, P.fisher 
tests, P < 3.7 × 10−49, P < 1.52 × 10−108, respectively). The 
survival analysis of the two patient clusters indicated that 
gene cluster 1 correlated with better survival (Fig. S5D). 
Kmdist of the 500 tumors in TCGA was further performed 

based on the 40 identified metabolic-related pathways (Figs. 
S5E, Supplementary Table S6). Figure S6B reveals that the 
two gene clusters had significant differences in known sig-
natures in TCGA. The two gene clusters also showed sig-
nificant differences in immune cell infiltration patterns in 
TCGA (Fig. S6C). LUAD in gene cluster 1 expressed more 
immune checkpoint molecules to help escape from immune 
killing in TCGA (Fig. S6D). The GO enrichment analysis 
(Supplementary Table S7) showed that gene cluster 1 was 
involved in immune-related pathways (Fig. S5F), while gene 
cluster 2 was involved in DNA regulation-related pathways 
(Fig. S5G).

Generation of Metscore and its transcriptome traits 
as well as clinical characteristics

Lasso regression was adopted to analyze the data (Fig. 4a, 
b). After multiplying gene expression with Lasso coeffi-
cient, 15 prognostic genes were achieved: SFTPB, CYP4B1, 
CDKN3, CLEC3B, ABCC2, DLGAP5, HPGD, SERPINB5, 

Fig. 1   Metabolic genes involved 
in LUAD meta-cohorts. a Unsu-
pervised clustering of metabolic 
genes for 2181 patients in 
meta-cohorts. b t-distributed 
stochastic neighbor embed-
ding (t-SNE) analysis based 
on metabolic genes clearly sepa-
rated tumor and normal tissue. c 
Kaplan–Meier curves showing 
the association between Met-
clusters and OS of 2181 patients 
in meta-cohorts (log-rank test, 
P < 0.001)
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Fig. 2   Characteristics of Metclusters in meta-cohorts. a Unsupervised 
clustering of metabolic related pathways for 2181 patients in meta-
cohorts. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. b 
t-distributed stochastic neighbor embedding (t-SNE) analysis based 
on metabolic related pathways clearly separated tumor and normal 
tissue. c Unsupervised clustering of immune infiltrating cells for 2181 
patients in meta-cohorts. d The fraction of immune cells in two meta-

bolic clusters. The scattered dots represent immune cell expression 
values in each group. The thick line represents the median value. The 
upper and lower parts of the boxes are the 25th and 75th percentiles 
(interquartile range), respectively. The whiskers encompass 1.5 times 
the interquartile range. Difference between two metabolic clusters 
was compared using the Kruskal–Wallis test. *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001
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MS4A1, MUC1, KYNU, CST6, CPS1, IGF2BP3 and NTS 
(Fig. 4c and Supplementary Table S8). To select the opti-
mal cluster number, clustering stability was assessed using 
the ConsensusClusterPlus package based on the 15 genes 

(Supplementary Fig. 4d), which supported two lasso gene 
clusters of LUAD in TCGA, termed Lasso gene cluster 1 
and Lasso gene cluster 2. The clustering results of the two 
lasso gene subtypes were significantly consistent with the 

Fig. 3   Functional annotation of immune related Metclusters in meta-
cohorts. a GSVA of metabolic clusters based on meta-cohorts in GO. 
b Different known signatures were used to distinguish Metclusters 

in meta-cohorts. c The expression pattern of seven types of immune 
checkpoints in Metclusters in meta-cohorts. The scattered dots repre-
sent immune checkpoints expression values in each group
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clustering results of the genomic subtypes (Fig. 4E, χ2 
contingency tests, P < 4.92 × 10−54). The t-SNE analysis 
also showed that the 15 prognostic genes clearly separated 
tumor and normal tissues (Fig. 5a). The ROC curve fur-
ther confirmed that the 15 prognostic genes were sensitive 
markers for separating tumor and normal tissues (Fig. 5b). 
The metabolic score, termed as Metscore, was calculated 

for patients with the 15 prognostic genes and a cutoff value 
between the high- and low-metabolic-score groups was set 
at the median value (Supplementary Table S9). The survival 
analysis indicated that patients with high Metscore corre-
lated with better survival (Fig. 5c). Metabolic cluster 2 had 
a higher Metscore in both meta-cohorts and TCGA (Fig. 5d 
and f, respectively). The ROC curve further confirmed that 

Fig. 4   Generation of Lasso regression genes. a Coefficient value of 
DEGs. b Partial likelihood deviance of DEGs. c Coefficient value of 
15 prognostic genes. d The consensus clustering algorithm defining 
Lasso-gene clusters. Consensus clustering cumulative distribution 
function (CDF) for k = 2–10 in TCGA. Consensus matrixes of TCGA 
for each k (k = 2–4), displaying the clustering stability using 1000 
iterations of hierarchical clustering. e Contingency table estimat-

ing the consistency between gene clusters and lasso-gene clusters. f 
Sankey plot illustrating the interconnection among metabolic clusters, 
metabolic gene clusters, metabolic lasso-gene clusters, Metscore, and 
patient survival. g The correlation between Metscore and known sig-
natures. H. Metscore groups were distinguished by different known 
signatures
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the Metscore was a sensitive marker for metabolic clusters 
(Fig. 5e and g, respectively). The interconnection among the 
metabolic clusters, metabolic gene clusters, metabolic lasso 
gene clusters, Metscore and patient survival is illustrated 

in the Sankey plot (Fig. 4f). Kmdist of the 500 tumors in 
TCGA was further performed based on the 40 identified 
metabolic-related pathways (Fig. 5h, and Supplementary 
Table S10). The correlation of the Metscore with 40 known 

Fig. 5   Construction of a Metscore. a t-distributed stochastic neigh-
bor embedding (t-SNE) analysis based on Lasso genes clearly sepa-
rated tumor and normal tissue. b ROC curve measuring the sensitiv-
ity of lasso genes in separating tumor and normal tissue. The area 
under the ROC curve was 0.819. c Kaplan–Meier curves showing 
the association between Metscore and OS of 500 patients in TCGA 
(log-rank test, P < 0.001). d Expression pattern of Metclusters in 
Metscore in meta-cohorts. e ROC curve measuring the consistency 

between Metscore and Metclusters in meta-cohorts. f Expression 
pattern of Metclusters in Metscore in TCGA. g ROC curve measur-
ing the consistency between Metscore and Metclusters in TCGA. 
h Unsupervised clustering of metabolic related pathways for 500 
patients in TCGA database. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001. i Correlation between Metscore and 40 known meta-
bolic signatures
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metabolic signatures is shown in Fig. 5l. The two Metscore 
groups showed significant differences in known signatures 
in TCGA (Fig. 4h). The correlation between the Metscore 
and known signatures is shown in Fig. 4g. The two Metscore 
groups also showed significant differences in the immune 
cell infiltration patterns in TCGA (Fig. S7A). The correla-
tion between the Metscore and immune cell infiltration pat-
terns is shown in Fig. S7B. Furthermore, 20 immune-related 
signaling pathways and tumorigenic-related pathways in the 
GO enrichment analysis (Supplementary Table S11) were 
identified in TCGA with regard to Metscore (Fig. S7C).

Metscore is associated with unique patterns 
of genomic alterations

To determine the association between Metscore and LUAD 
genomic profiles, CNA and somatic mutation analysis were 
performed in the TCGA dataset. In the high-Metscore sam-
ples, frequently amplified genomic regions containing onco-
genic driver genes and immune regulatory genes, including 
NRAS (1p13.27), DUP3Q29 (3q29), LYZ (5p11), HLA-
DQA1 (6p21.32), CHEK2P2 (15q11.1), STAT3 (17q21.2) 
and KLK3 (19q13.33), were associated with COL11A1 
(1p21.1), MCL1 (1q21.2), UGT2B7 (4q13.2), ANGPT2 
(8p23.1), PTEN (10q23.31), TNFRSF13B (17p11.2), 
TNNI3 (19q13.42) and GSTT1 (22q11.23) deletion peaks 
(Fig. 6a). Furthermore, analysis of somatic mutation pro-
files indicated a high frequency of mutations in TP53 (60%), 
TTN (52%), MUC16 (44%), CSMD3 (43%), RYR2 (43%), 
USH2A (37%), LRP1B (35%), ZFHX4 (35%) and SPTA1 
(31%) in the high Metscore, while TTN (38%), TTN (35%), 
MUC16 (29%) and CSMD (31%) showed higher-frequency 
mutations in the low Metscore cluster (Fig. 6b).

Metscore predicts therapeutic benefits

The prognostic value of the Metscore in the TCGA-LUAD 
cohort was assessed. Metscore was a risk factor in multiple 
cancers (Fig. 7a). The expression difference of Metscore 
in several clinical factors, including tumor stage, smok-
ing, gender, cancer status and patient age, is shown in Sup-
plementary Fig. S10A. Metscore and tumor stage served 
as hazardous prognostic markers based on the univariate 
analysis in TCGA (Fig. 7b), while Metscore, tumor stage 
and smoking served as hazardous markers based on mul-
tivariate analysis in TCGA (Fig. 7c). Survival analysis of 

Metscore in the 10 included cohorts was determined. A high 
Metscore exhibited worse survival in all datasets (Fig. S8). 
Further, Metscore predicted worse survival in all included 
LUAD samples (Fig. 7d). Metscore was also verified in an 
external LUAD cohort, GSE87340, which Metscore signifi-
cantly stratified LUAD patients and served as a hazardous 
marker (Fig. 7e). In the pan-cancer analysis, high Metscore 
was found to be correlated with poor survival in BLCA, 
BRCA, READ, SKCM, HNSC, KIRC, LGG, LIHC and 
THCA (Fig. S9). The potential response to immunotherapy 
in TCGA based on the TIDE algorithm was evaluated. The 
results showed that patients with low Metscore had a better 
response to immunotherapy compared to those with high 
Metscore (Fig. 7f). Subsequently, the response to anti-PD-1 
and anti-CTLA-4 therapy was analyzed. The results showed 
that the low-Metscore group had a better response to anti-
PD-1 immunotherapy (Fig. 7g). In the urothelial cancer data-
set, patients with high Metscore had significantly shorter OS 
than those with lower Metscore in the IMvigor210 cohort 
(Fig. 7h). Given the critical role of cancer-related fibroblasts 
(CAFs) in immune escape, the correlation between CAF and 
Metscore was explored, and high Metscore had higher level 
of CAF (Fig. 7l). Previous studies have demonstrated that 
T cell-inflamed GEP can induce IFN-γ-related response 
genes, cytotoxic activity (CYT), chemokine expression and 
adaptive immune resistance, which are also associated with 
the response to anti-PD-1 therapy [29]. We analyzed the 
potential correlation between Metscore and GEP. The results 
demonstrated that Metscore was significantly associated 
with GEP (Fig. 7j). Metcluster 1, gene cluster 1 and high 
Metscore all indicated high expression of GEP (Fig. 7k). 
Aneuploidy, also known as somatic copy number altera-
tions (SCNAs), has been proposed to drive tumorigenesis 
in multiple cancers [35]. In this study, a high Metscore was 
associated with lower arm SCNA level, chromosome SCNA 
level and focal SCNA level (Fig. S10B).

Discussion

In this work, we classified patients into two groups: Met-
cluster 1and Metcluster 2, based on metabolism-related gene 
expression to study the relationship between tumor meta-
bolic pattern and tumor microenvironment. Differential acti-
vated metabolism-related pathways were identified between 
the two clusters. For example, lipid metabolism-related path-
ways were enriched in Metcluster 1 (the low-risk group), 
while glucose and amino acid metabolism were activated in 
Metcluster 2 (the high-risk group). Critically, immunocytes 
infiltration of the cytotoxic immunocytes (including regu-
latory T cells, NK cells, CD8 + T cells and macrophage), 
and antigen, immune ligand and immune receptor expres-
sion were higher in Metcluster 1 compared to Metcluster 2. 

Fig. 6   Distinct genomic profiles associated with Metscore. a GIS-
TIC 2.0 amplifications and deletions in LUAD with high Metscore 
and low Metscore. Chromosomal locations of peaks corresponding 
to the significantly recurring focal amplification (red) and deletions 
(blue). b Differential somatic mutations in LUAD with low and high 
Metscores
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Thus, to further explore the relationship between the cluster 
model and tumor immune landscape, we qualify the cluster 
model by constructing a scoring system, Metscore.

Previous studies confirmed that the components of tumor 
microenvironment contribute to tumor resistance to immu-
notherapy [8, 36, 37]. For instance, the infiltration ratio of 
immunocytes such as T cells, regulatory T cells and NK cells 
has been proved to modulate tumor sensitivity to immuno-
therapy [38, 39]. Cancer-associated fibroblasts express PD-1 
and PD-L1 to suppress immunocytes’ function [40]. The 
density of the extracellular matrix affects tumor response 
to immunotherapy by influencing T cells infiltration [41]. 
Importantly, we discovered that high-Metscore samples 
showed more disordered TME than low-Metscore samples.

TME has been proved to affect tumor response to immu-
notherapy by defining tumor as ‘hot’ or ‘cold’ based on the 
components of TME [42, 43]. ‘Hot’ tumor (more sensitive 
to immunotherapy) shows signs of inflammation and is infil-
trated with immunocytes, while a ‘cold’ tumor is barely infil-
trated with immunocytes and lacks immune response [44]. 
In this work, samples from low-Metscore group are more 
sensitive to anti-PD-1 immunotherapy compared to the high-
Metscore group, and tumor with a low Metscore is more 
likely to be classified as a ‘hot’ tumor. Therefore, repro-
gramming a ‘cold’ tumor by modulating immune system 
activation can improve tumor response to immunotherapy.

Recently, metabolic patterns of tumor cells have been 
gradually recognized as critical regulators of TME, which 
might affect tumor response to immunotherapy [9, 45]. 
Increased glycolysis-related molecules in tumor cells 
impair T cells function and proliferation [46, 47]. Tumor 
cells induced T cells function suppression by increasing 
tryptophan absorption [48]. In melanoma, activated lipid 

metabolism increased tumor sensitivity to immunotherapy 
by upregulating antigen expression [49]. In this work, dif-
ferent metabolic patterns of tumor cells between high- and 
low-Metscore samples are also identified further supporting 
the association between tumor metabolic pattern and tumor 
immune landscape.

Compared with the previously established metabolic 
related prognostic models [50, 51], more abundant LUAD 
samples were used for the construction of Metscores to 
ensure its reliability. However, the validation cohort should 
be constructed by additional samples to confirm this reli-
ability. In this work, high-Metscore group showed worse 
survival outcomes, but its prognostic value still needs 
to compare with biomarkers like EGFR or KRAS. The 
Metscore model is associated with the activation of glucose 
and amino acid metabolism-related pathways and higher T 
cell-inflamed gene expression implying this scoring system 
may be beneficial in guiding LUAD immunotherapy. Never-
theless, the association between different metabolic pattern 
and immunocytes’ function also required deeper exploration. 
The model’s efficiency in evaluating lung cancer immuno-
therapy should also be confirmed in future clinical trial.
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