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Abstract 

To obtain immunomodulatory peptides from isolated soy protein (ISP), pepsin was selected to prepare hydrolysates 
and 4-h treatment (Pepsin-ISPH4h) showed the highest yield and immunomodulatory activities. The Pepsin-ISPH4h 
was sequentially fractionated by 30, 10 and 1-kDa molecular weight cut-off (MWCO) membranes, in which 1-kDa 
MWCO permeate (1P) exhibited the most significant enhancement of phagocytosis activity without causing exces‑
sive inflammation as compared with Pepsin-ISPH4h. To further purify and enhance the immunomodulatory activity, 
1P was distinct by high-performance liquid chromatography equipped with a reverse-phase column and in vivo 
immunomodulatory activity of fractions was examined in mice. Fraction 1 (F1) significantly elevated phagocytosis 
activity of mice spleen macrophages and neutrophils. However, increase of phagocytosis activity did not result from 
the induction of macrophages M1 or M2 polarization. The immunomodulatory peptide sequence, EKPQQQSSRRGS, 
from F1 was identified by LC–MS/MS. Phagocytosis activity and macrophage M1 polarization were elevated by syn‑
thetic peptide treatment. Hence, our results indicated that isolated soy protein hydrolysates prepared by pepsin could 
provide a source of peptides with immunomodulatory effects.
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Introduction
Human immunity is influenced by many factors such 
as age, dietary habit, exercise, stress, and so on (Hamer 
et  al. 2012; Marques et  al. 2015). Busy life style causes 
imbalanced immune modulations in people of modern 
world; therefore, maintaining normal daily life style as 
well as supplementing immune modulators can rectify 
immune imbalance (Santiago-López et al. 2016; Yu et al. 
2018; Polak et al. 2021). The studies of protein enzymatic 
hydrolysates are initially focused on improving dietary 
and nutritional functions (Adler-Nissen 1986), for exam-
ple human gut intestinal systems absorb small peptides 
(dipeptide or tripeptide) better than free amino acids 
(Ziegler et al. 1990; Siemensma et al. 1993; Bueno-Gavilá 
et al. 2021; Zaky et al. 2022). Recently, immunomodula-
tory peptides showed beneficial effects on human health 
are prepared from food-based proteins such as chum 
salmon (Yang et  al. 2009), Alasaka pollock (Hou et  al. 
2012), rohu egg (Chalamaiah et  al. 2014, 2018), wheat 

germ globulin (Wu et  al. 2017), rice (Fang et  al. 2019), 
false starwort (Pseudostellaria heterophylla; Yang et  al. 
2020), duck egg ovalbumin (He et  al. 2021), and Stevia 
rebaudiana (Li et  al. 2021), implying that an increasing 
number of scientists are attracted and devoted into this 
research field.

The primary function of mammalian immune system 
is to prevent contagious illnesses by building up a com-
plicate firewall by cells and proteins (Bayne 2013), and 
can be divided into innate and adaptive immune systems 
(Iwasaki and Medzhitov 2015). Macrophages and neutro-
phils are endocytic defense cells of innate immune sys-
tem that can nonspecifically engulf external pathogens 
and trigger inflammation responses by releasing NO and 
cytokines (Gordon 2016). Proper inflammation response 
can help human body to defense invasions of pathogens; 
however, hyperinflammation may cause tissues damages 
(Ginderachter et  al. 2006). Cytokines, such as interleu-
kin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis 
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factor-α (TNF-α), are tiny proteins, modulating the 
growth and functions of immune cells (Kim et  al. 2008; 
Ahn et  al. 2015). Macrophage cells can further polarize 
into M1 and M2 types, in which M1 cells can produce 
high amount of pro-inflammatory cytokines and reactive 
oxygen species to promote inflammation, whereas M2 
cells secrete anti-inflammatory cytokine, IL-10, to repair 
damaged tissues (Murray et al. 2014).

Soybean (Glycine max L.) protein is an important 
source with properties of high yield, low price, high 
nutritive value, and broad applications (Ricker et al. 2004; 
Coscueta et al. 2019; Akbarian et al. 2022). Peptides iden-
tified from soy protein hydrolysates have shown func-
tions of anti-oxidation (Ranamukhaarachchi et  al. 2013; 
Ashaolu 2020), stimulating lipolysis (Tsou et  al. 2012), 
anti-angiotensin I-converting enzyme activity (Rho et al. 
2009), and immunomodulatory effects (Egusa and Otani 
2009; Dia et  al. 2014; Zhang et  al. 2021). The goal of 
this study was to isolate and purify immunomodulatory 
peptides from pepsin-isolated soy protein hydrolysates 
(Pepsin-ISPH) using a combination of molecular weight 
cut-off module and reverse-phase high-performance 
liquid chromatography. Peptides were further identified 
by mass spectrometry and synthetic peptides were used 
for investigating its mechanisms of immunomodulation 
functions.

Materials and methods
Materials and chemical reagents
Isolated soy protein (ISP) and NEW Soy 88 were pur-
chased from Gemfont Co., Taipei, Taiwan. Pepsin from 
porcine gastric mucosa, sodium dodecyl sulfate (SDS), 
o-phthalaldehyde (OPA), Leu-Gly dipeptide, lipopoly-
saccharide (LPS), dimethyl sulfoxide (DMSO), sodium 
carbonate (NaHCO3), and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) were obtained 
from MilliporeSigma, Darmstadt, Germany. Dulbecco’s 
modified Eagle medium (DMEM) was purchased from 
Gibco, TX, USA. l-Glutamate and charcoal/dextran-
treated fetal bovine serum (FBS) were obtained from 
Biological Industries, CT, USA. Molecular weight cut-off 
(MWCO) membranes, ER 30 kDa, PW 10 kDa, and GE 
1 kDa, were obtained from Osmonics Inc., MN, USA. All 
chemical reagents used were American Chemistry Soci-
ety (ACS) grade or better.

Preparation of enzymatic hydrolysate, measurement 
of hydrolysis ratio, and determination of soluble nitrogen 
by Kjeldahl method
The 2.5% (w/v) ISP was dissolved in 0.2  M phosphate 
buffer (pH 2.0) and digested by pepsin (S:E ratio = 100:1) 
at 37 °C. Hydrolysates of isolated soy protein (ISPH) were 

collected at 0, 0.5, 1, 2, 4, and 6 h, then pepsin was inacti-
vated by boiling for 15 min followed by storing at − 20 °C 
until use.

The degree of hydrolysis (DH) was measured by OPA 
method using the dipeptide, Leu-Gly, as standard (Niel-
son et al. 2001). DH (%) was indicated as:

Hsample represents α-amino group concentration 
(mmol/mL); Htotal represents total peptide number of 
ISPH (7.8 mEq α-amino group/g).

The soluble nitrogen of hydrolysate was prepared by 
adding 20% (w/v) trichloroacetic acid, and its nitrogen 
content was estimated by Kjeldahl method according to 
Tsou et al. (2012). Yield (N mg/mL) was indicated as:

V1: titration volume of sample (mL); V2: titra-
tion volume of blank (mL); C: concentration of HCl 
(0.1 N × titer); 14: atomic mass of nitrogen.

Fractionation of hydrolysate by molecular weight cut‑off
Hydrolysate of 4-h pepsin-treated isolated soy pro-
tein (Pepsin-ISPH4h) was sequentially fractionated by 
a membrane MWCO module with 30 kDa, 10 kDa, and 
1 kDa to obtain retentates and permeates. One volume of 
Pepsin-ISPH4h was initially filtered by a 30-kDa MWCO 
membrane to acquire 1:9 ratio of retentates (30R) and 
permeates. The 30-kDa permeate was then filtered by a 
10-kDa MWCO membrane to acquire 1:9 ratio of reten-
tates (10R) and permeates. The 10-kDa permeate was 
then filtered by a 1-kDa MWCO membrane to acquire 
1:9 ratio of retentates (1R) and permeates (1P).

Fractionation of 1P fraction by reverse‑phase HPLC
Fraction 1P was further fractionated using a reverse-
phase high-performance liquid chromatography applied 
on an InertSustain® C18 column (10 × 250  mm, 5  μm, 
GL Sciences, Japan) with a linear gradient of acetonitrile 
from 0 to 45% in 45 min at a flow rate of 2 mL/min. The 
elution signals were monitored at 214 nm.

Culture of mouse macrophage cells
Mouse macrophage RAW264.7 cell line was obtained 
from Bioresource Collection and Research Center (BCRC 
60001), Hsinchu, Taiwan. Cells were grown in DMEM 
medium supplemented with 10% FBS, 1.6 g/L NaHCO3, 
and 2 mM l-glutamine, maintaining in a 5% CO2 incuba-
tor at 37  °C. Cells were subcultured every 48–72 h, and 
discarded after 50 generations.

DH(%) =
Hsample

Htotal
× 100%.

Yield
(

Nmg/mL
)

=
(V 1− V 2)× C × 14

Samplevolume(mL)
.
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Cell viability—MTT test
The cytotoxicity activity against RAW264.7 macrophage 
was investigated by MTT assay (Mosmann et  al. 1983; 
Tsou et al. 2012). Cells were cultured in a 96-well micro-
titer plate (1 × 105  cells/well) for 24 h followed by incu-
bating with various ISPH for 24  h. Cells were washed 
with phosphate buffer saline (PBS) and then incubated 
with MTT solution (0.5 mg/mL) at 37 °C for 4 h. Metha-
nol treatment was used as negative control. DMSO solu-
tion was applied to resuspend the MTT formazan for 
20 min. The absorbance was determined at 595 nm using 
a microtiter plate reader (BioTek, VT, USA). Cell viability 
(%) was indicated as:

ODsample: absorbance at 595  nm of sample; ODcontrol: 
absorbance at 595  nm of untreated sample as control; 
ODmethanol: absorbance at 595 nm of sample treated with 
methanol as negative control.

Determination of nitrogen oxide production
The NO production was measured by Griess assay (Ahn 
et  al. 2015). RAW264.7 macrophage cells were cultured 
in a 96-well microtiter plate (1 × 105 cells/well) for 24 h 
followed by incubated with 1  ppm LPS and/or various 
ISPH for 24  h. After treatment, 50  μL culture medium 
was mixed with 50 μL Griess reagent and then incubated 
in dark place for 10 min. The absorbance of the mixture 
was determined at 550 nm using a Microtiter plate reader 
(BioTek, VT, USA). The concentration of NO was cal-
culated using a standard curve generated from sodium 
nitrite dissolved in DMEM medium.

Phagocytosis assay
RAW264.7 macrophage cells were cultured in a 96-well 
microtiter plate (1 × 105  cells/well) for 24  h followed by 
incubated with various ISPH for 24  h. One  ppm LPS 
treatment was used as positive control. E. coli BL21 cells 
transformed with pEGFP plasmid was added in a 96-well 
microtiter plate (5 × 106  cells/well) and centrifuged at 
120g at 4  °C for 5  min to precipitate E. coli cells to be 
phagocytosed by macrophage for 2 h. Trypan blue regent 
(2 ×) was added in a 96-well microtiter plate and incu-
bated for 2 min. Trypan blue was removed and fluores-
cence signal was measured with excitation wavelength 
at 485 nm and emission wavelength at 538 nm. Relative 
phagocytosis was indicated as:

Cellviability(%) =
(ODsample −OD

methanol
)

(ODcontrol −ODmethanol)
× 100%.

Relativephagocytosis(%) =
ODsample

ODLPS
× 100%.

Determination of pro‑inflammatory cytokines in RAW246.7 
macrophage cells stimulated by LPS
The levels of interleukin-6 (IL-6) and interleukin-10 (IL-
10) were measured by mouse IL-6 and IL-10 Quantikine 
ELISA kits (R&D systems, MN, USA) following to the 
manufacturer’s instruction. RAW264.7 macrophage cells 
were cultured in a 96-well microtiter plate (1 × 105 cells/
well) for 24 h and culture media were stored at − 20 °C 
until use. Capture antibodies were coated onto 96-well 
microtiter plate at 4 °C overnight. After blocking, micro-
titer plate was washed three times and 100 μL/well stand-
ards or culture media were added and incubated at room 
temperature for 2  h. Microtiter plate was washed three 
times and then 100  μL/well detection antibodies were 
added and incubated at room temperature for 2 h. Micro-
titer plate was washed three times and then 100 μL/well 
streptavidin–HRP was added and incubated in dark for 
20 min. Plate was washed three times and then 100 μL/
well substrate solution was added and incubated in dark 
condition for 20 min. After incubation, 50 μL stop solu-
tion was added and the absorbance of the mixture was 
determined at 450  nm using a microtiter plate reader 
(BioTek, VT, USA). The concentrations of cytokinins 
were calculated using a standard curve generated from 
various concentrations of standards.

Mouse spleen cell endocytosis assay
Male C57BL/6J mouse (19 weeks) was injected intraperi-
toneally with 5 mg/kg samples, and killed three days after 
injection. Spleen was collected and placed in 5 mL YAC 
medium (RPMI 1640, 2.2  g/L NaHCO3, 2  mM l-glu-
tamine, 10% FBS) and then ground with 200 mesh sieve. 
Supernatant was removed by centrifugation at 300g, 4 °C, 
for 10 min. Pellet/cell was kept and resuspended in 5 mL 
0.1 × Hank’s balanced salt solution (HBSS) to disrupt red 
blood cells and then added 10 mL HBSS. Supernatant was 
removed by centrifugation at 300g, 4 °C, for 10 min, and 
pellet/cell was resuspended in YAC medium and adjusted 
to 2 × 107 cells/mL by a FACSCalibur™ Flow Cytometer 
(BD Bioscience, NJ, USA). Spleen lymphocyte cells were 
cultured in a 96-well microtiter plate (1 × 105 cells/well) 
and BioParticles® FITC–Escherichia coli (2.5 × 106 cells/
well) was added and incubated at 37  °C for 2  h. After 
removing supernatant, lymphocyte cells were mixed with 
100 μL trypan blue and fluorescence signal was measured 
by FACSCalibur™ Flow Cytometer (BD Bioscience, NJ, 
USA). Positive fluorescence level was indicated as:

positivefluorescencelevel =M1+M2× 10

+M3× 100

+M4 × 1000.
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M1: percentage cell within 101 fluorescence signal; M2: 
percentage cell within 102 fluorescence signal; M3: per-
centage cell within 103 fluorescence signal; M4: percent-
age cell within 104 fluorescence signal.

Differentiation of M1 and M2 macrophages
Mouse spleen lymphocyte cells were harvested as men-
tioned previously. Surface biomarkers, PE-anti-mouse 
CD68, PE/Cy5-anti-mouse CD197, and FITC-anti-mouse 
CD206 antibodies, were obtained from Biolegend, CA, 
USA. Nine  μL fluorescence conjugated antibodies were 
mixed with 50 μL cell suspensions and incubated at 4 °C 
in dark for 30 min. Cells were washed and resuspended 
in 200  μL analysis buffer (RPMI 1640, 5% FBS, 2  mM 
l-glutamate, and 2 × Dulbecco’s phosphate buffer saline). 
Two differentiated cells, M1 (CD68+/CD197+) and M2 
(CD68+/CD206+) were analyzed using a FACSCalibur™ 
Flow Cytometer (BD Bioscience, NJ, USA).

Identification of anti‑inflammatory peptide by LC–MS/MS 
and peptide synthesis
Amino acid sequence identification of anti-inflammation 
peptide was analyzed by UPLC (UltiMate 3000, Ther-
moFisher, MA, USA) followed by quadruple tandem 
ion trap mass spectrometer (Q-TOF/MS/MS; Bruker 
micrOTOF-Q III, Bruker Daltonic, Germany) equipped 
with an electrospray ionization source in Center of Preci-
sion Instrument, Tunghai University, Taichung, Taiwan. 
Immunomodulatory peptides isolated from pepsin–soy-
bean hydrolysate were chemically synthesized by Yao 
Hong Biotechnology Inc., New Taipei City, Taiwan. Pep-
tides, 5  mg/kg and 25  mg/kg, were used in endocytosis 
assay and macrophage phenotype assay, respectively.

Statistical analysis
Results were expressed as mean ± standard deviation 
(SD) and analyzed using Statistical Analysis System 
(SAS/STAT​® software, NC, USA). Mean with different 
letters were labeled as significantly different (p < 0.05) by 
Duncan’s multiple range test.

Results and discussion
Effect of pepsin hydrolysis of ISP on phagocytosis, 
NO formation, and cell viability in RAW264.7 macrophage 
cells
Degree of enzymatic hydrolysis has been shown to influ-
ence functions of peptides (Jamdar et al. 2010; Liu et al. 
2010; Tsou et  al. 2012). To investigate immunomodula-
tory effects of soy protein hydrolysate, hydrolysates (Pep-
sin-ISPH) were obtained with the degree of hydrolysis 
(DH, %) of 4.8%, 6.5%, 6.6%, 7.1%, and 8.9% together with 

yield of 0.64, 0.95, 1.2, 1.42, and 1.56  mg nitrogen per 
mL, respectively (Fig.  1A). The DH of Pepsin-ISPH was 
positively correlated to yield in peptic hydrolysis time; 
the result was similar to previous studies (Jamdar et  al. 
2010; Liu et  al. 2010; Tsou et  al. 2012; Toopcham et  al. 
2017). In terms of phagocytosis activity, Pepsin-ISPH 
from 0.5 to 4  h, were 1.3-fold higher than that of LPS-
treated RAW264.7 macrophage cells, whereas Pepsin-
ISPH6h only showed slightly 1.1-fold increase (Fig.  1B). 
NO formation (Fig. 1C) and cell viability (Fig. 1D) were 
monitored in LPS and Pepsin-ISPH-treated RAW264.7 
macrophage cells. NO was significantly produced in 
LPS-treated RAW264.7 macrophage cells (Dia et  al. 
2014; Ahn et al. 2015; Li et al. 2021); however, significant 
effects were not observed in pepsin hydrolysates-treated 
RAW264.7 macrophage cells (Fig.  1C). According to 
MTT assay on cell viability (Fig. 1D), Pepsin-ISPH in the 
ranges from 10 to 4000 ppm was not toxic to RAW264.7 
macrophage cells (Fang et al. 2019; Lee et al. 2021). Next, 
hydrolysate of isolated soy protein digested with pepsin 
for 4 h (Pepsin-ISPH4h) was used to further fractionation 
to enrich the ability of immunomodulation.

Effect of pepsin‑ISPH separated by different MWCO 
membranes on phagocytosis, NO formation, and cell 
viability in RAW264.7 macrophage cells
Pepsin-ISPH4h was sequentially fractionated using a 
membrane MWCO module with three different molecu-
lar weights, 30 kDa, 10 kDa, and 1 kDa, to acquire three 
retentates and one permeate fractions, namely 30R, 10R, 
1R, and 1P (Fig.  2A), for further enhancing its immu-
nomodulatory activity (Tsou et al. 2012). Next, the effects 
of phagocytosis of mouse macrophage cells were exam-
ined (Fig. 2B). The phagocytosis ability of the 4000 ppm 
1P-treated RAW264.7 macrophage cells was slightly 
higher than that of LPS-treated control cells, suggesting 
that peptides in the 1P fraction can boost the function 
of RAW264.7 macrophage cells. To examine the dos-
age effects on NO formation, RAW264.7 macrophage 
cells were treated with 2000 ppm (Fig. 2C) or 4000 ppm 
(Fig.  2D) hydrolysate, and LPS treatment was used as 
positive control. Likewise, NO was significantly produced 
in LPS-treated RAW264.7 macrophage cells (Fig.  2C, 
D). NO formation by 1P treatment was increased in a 
dosage-dependent manner (Fig.  2C, D), indicating that 
peptide(s) in 1P fraction can induce NO formation in 
RAW264.7 macrophage cells. Previous studies had shown 
that proper NO formation can help immune system and 
macrophages to destroy tumor cells as well as invasive 
pathogens (Zheng et  al. 2014; Fang et  al. 2019; Li et  al. 
2021); moreover, NO formation in over 2000 ppm dosage 
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of the 1P fraction-treated macrophages were not corre-
lated to negative inflammation reaction (Fig.  2C). As a 
result, the 1P fraction was used for further fractionation 
to enrich the ability of immunomodulation effects.

Effect of 1‑kDa permeate (1P) on phagocytosis, 
NO formation, cell viability, and pro‑inflammatory 
cytokines production in RAW264.7 macrophage cells
To investigate the immunomodulation function of the 
1-kDa permeate (1P), phagocytosis activity (Fig.  3A), 
cell viability (Fig. 3B) and NO formation in the absence 
(Fig. 3C) or presence (Fig. 3D) of LPS were used to esti-
mate the optimum working concentration of the 1P 

fraction. In Fig. 3A, the maximum phagocytosis activity 
was monitored in the 4000  ppm 1P-treated RAW264.7 
macrophage cells. Except 4000  ppm 1P treatment, cell 
viabilities were not influenced by 1P treatments from 10 
to 2000 ppm (Fig. 3B). Furthermore, 4000 ppm 1P treat-
ment led to remarkable NO formations with or without 
LPS (Fig. 3C, D).

Interleukin-6 (IL-6) and interleukin-10 (IL-10) are 
major pro-inflammatory cytokines production in mac-
rophage cells (Ahn et al. 2015; Toopcham et al. 2017; Lee 
et al. 2021; Li et al. 2021). During inflammation response, 
cells can release a large amount of IL-6 to promote the 
formation of NO as well as to activate phagocytosis of 

Fig. 1  Preparation of pepsin-isolated soy protein hydrolysate (Pepsin-ISPH). A effect of different hydrolysis time of isolated soy protein hydrolysate 
by pepsin on degree of hydrolysis (●) and yield (○) in terms of TCA soluble nitrogen. B effect of 4000 ppm Pepsin-ISPH with different hydrolysis 
time on relative phagocytosis (%) in mouse RAW246.7 macrophages. C effect of 4000 ppm Pepsin-ISPH with different hydrolysis time on relative 
phagocytosis (%) in mouse RAW246.7 macrophages. D dosage effect of Pepsin-ISPH4h on cell viability (%) in mouse RAW246.7 macrophages. LPS 
(1 ppm) was used as positive control. Bars represent mean ± standard deviation (SD; n = 3). Mean with different letters are significantly different 
(p < 0.05) by Duncan’s multiple range test
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macrophage cells (Minato and Abe 2013; Li et al. 2021), 
whereas IL-10 exhibits anti-inflammatory ability to 
reduce NO formation as well as to decrease inflamma-
tory cytokinins secretions (Asadullah et  al. 2003; Lee 
et  al. 2021). To study the effect of the 1P fraction on 
cytokine production, RAW264.7 macrophage cells were 
treated with various dosages of the 1P fraction, and LPS 
treatment was used as positive control. The formation of 
IL-6 was intercorrelated to the increased concentrations 
of the 1P fraction (Fig. 4A); however, the amount of IL-10 
was constantly induced by 1P treatments which was inde-
pendent on its dosages (Fig. 4A). In addition, IL-6/IL-10 
ratio was compared in LPS-treated cells and the maxi-
mum ratio was monitored in the 2000  ppm 1P-treated 

macrophage cells (Fig.  4B). The higher IL-6/IL-10 ratio 
indicated that cells were prone to inflammatory response 
(Song et al. 2016; Sapan et al. 2017; Koyama et al. 2021). 
As a result, 1P treatment cannot trigger severe inflamma-
tion response and was had no inhibitory effect on LPS-
induced inflammatory effects. Also, similar results were 
reported in shark derived protein hydrolysate (Mallet 
et al. 2014) and rice proteins (Wen et al. 2021).

Effect of 1P fractions, F1–F3, on phagocytosis 
and polarization in RAW264.7 macrophage cells
Fraction 1P exhibited the immunomodulatory abil-
ity to promote cell phagocytosis was further separated 
by reverse-phase HPLC into three fractions (Fig.  5A). 

Fig. 2  Fractionation of Pepsin-ISPH by molecular weight cut-off (MWCO) membrane. A fraction chart. B effect of 4000 ppm Pepsin-ISPH and its 
retentates/permeate on relative phagocytosis (%) in mouse macrophage RAW246.7 cells. Dosage effect of Pepsin-ISPH and its retentates/permeate, 
2000 ppm (C) and 4000 ppm (D) on NO concentration in mouse macrophage RAW246.7 cells. LPS (1 ppm) was used as positive control. Bars 
represent mean ± standard deviation (SD; n = 3). Mean with different letters are significantly different (p < 0.05) by Duncan’s multiple range test
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Based on its retention time, Fraction 1 (F1), Fraction 2 
(F2), and Fraction 3 (F3) were in between 6 and 14 min, 
14–21  min, and 21–35  min, respectively (Fig.  5A). For 
endocytosis activity assay, macrophage (Fig. 5B) and neu-
trophil cells (Fig. 5C) were harvested from mice spleens 
and then incubated with transgenic recombinant green 
fluorescence protein (GFP) produced E. coli cells (Gille 
et  al. 2006). The fluorescent level was represented as 
the endocytosis activity (Jiang et al. 2007). As shown in 
Fig.  5C, F1 fraction significantly increased endocytosis 
activity in macrophage cells, whereas F2 and F3 fractions 
exhibited no influences as control. In addition, F1 treat-
ment also enhanced endocytosis activity of neutrophil 

cells (Fig. 5D). Next, Pepsin-ISPH4h, 1P, and F1–F3 were 
injected intraperitoneally into mice and then spleen lym-
phocyte cells were harvested and differentiated cells, 
M1 (Fig. 5D) and M2 (Fig. 5E), were analyzed by a flow 
cytometer (Kim et  al. 2019). Macrophage M1 cells pro-
duces NO or reactive oxygen intermediates to defense 
bacteria or viruses infection; M2 cells secrete certain 
cytokines, IL-4 or IL-10, mediating damaged tissues 
repair (Murray et al. 2014; Rőszer 2015; Kim et al. 2019). 
Macrophages M1 and M2 polarization were not affected 
by all pepsin hydrolysates treatments (Fig. 5D, E). Taken 
together, F1 fraction can increase phagocytosis activities 

Fig. 3  Determination of anti-inflammatory activity of Pepsin-ISPH4h-1P fraction. Dosage effect of Pepsin-ISPH4h-1P on relative phagocytosis (%, 
A), cell viability (%, B), and NO formation in the absence (C) or presence (D) of 1 ppm LPS in mouse macrophage RAW246.7 cells. Bars represent 
mean ± standard deviation (SD; n = 3). Mean with different letters are significantly different (p < 0.05) by Duncan’s multiple range test
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in both mice spleen macrophage and neutrophil cells, but 
it cannot induce macrophages M1 or M2 polarization.

Identification of anti‑inflammatory peptides by LC–MS/
MS from F1 fraction and investigation of synthetic peptide 
on phagocytosis and polarization of macrophage
Previous studies had shown that peptides with positive 
charged amino acids are intercorrelated with immu-
nomodulatory functions (Mercier et al. 2004; Kong et al. 
2008; Jacquot et  al. 2010; Hou et  al. 2012; Hemshekhar 
et  al. 2019). In this study, liquid chromatography with 
tandem mass spectrometry (LC–MS–MS) was used for 
peptide identification (Dia et  al. 2014; Fang et  al. 2019; 
Li et al. 2021; Wen et al. 2021). Two peptides with posi-
tively charged amino acids, EKPQQQSSRRGS (Fig.  6A) 
and VVQGKGAIGFAFP, were identified from F1 fraction 
by LC–MS–MS analysis. Accordingly, synthetic peptide 
1 (SP1, EKPQQQSSRRGS) and synthetic peptide 2 (SP2, 
VVQGKGAIGFAFP) were used to examine its in  vivo 
immunomodulatory effects in mice (Wen et  al. 2021). 
Both synthetic peptides treatments showed no effect on 
M1 macrophage polarization (data not shown). In mac-
rophage endocytosis analysis, the stimulating effect of 

the SP1 peptide was better than that of the F1 and SP2 
(Fig.  6B). In macrophage polarization analysis, SP1 
showed induction effect on M1 macrophage polarization, 
whereas F1 and SP2 had no effect on that (Fig.  6C). As 
a result, positive immunomodulatory activities were con-
firmed in synthetic peptide.

Conclusions
In this study, pepsin-treated isolated soy protein hydro-
lysates exhibited immunomodulatory effects such as 
enhancing phagocytosis activity and not causing exces-
sive inflammatory response. Putative peptides from iso-
lated soy protein hydrolysate by peptic hydrolysis were 
purified using MWCO and reverse-phase chromatog-
raphy technique. Two peptides were identified by mass 
spectrometry. Further studies revealed that the synthetic 
peptide, EKPQQQSSRRGS, can increase phagocytosis 
activity in mice spleen macrophage cells as well as can 
induce macrophages M1 polarization. Taken together, 
this study can serve as a fundamental basis for the prepa-
ration of immunomodulatory peptides from isolated soy 
proteins.

Fig. 4  Determination of pro-inflammatory cytokines in LPS–Pepsin-ISP4h-1P-costimulated RAW264.7 macrophage cells. A dosage effect of 
Pepsin-ISPH4h-1P with 1 ppm LPS co-stimulation on IL-6 (gray column) and IL-10 (white column) productions. B dosage effect of Pepsin-ISPH4h-1P 
with 1 ppm LPS co-stimulation on IL-6/IL-10 ratio. Bars represent mean ± standard deviation (SD; n = 3). Mean with different letters are significantly 
different (p < 0.05) by Duncan’s multiple range test
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Fig. 5  Determation of anti-inflammatory activity of Pepsin-ISPH4h-1P fractions. A Pepsin-ISPH-4 h-1P was fractionated into F1–F3 using a 
reverse-phase high-performance liquid chromatography. Effects of Pepsin-ISPH4h, Pepsin-ISP4h-1P, and F1–F3 fractions on positive fluorescent level 
in macrophages (B), neutrophil (C), M1 (D) or M2 (E) phenotype polarization in mouse spleen in vivo. Bars represent mean ± standard deviation (SD; 
n = 3). Mean with different letters are significantly different (p < 0.05) by Duncan’s multiple range test
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Fig. 6  Peptide identified from Pepsin-ISPH4h-1P F1 fraction. A the mass spectrum of a peptide, EKPQQQSSRRGS, identified by LC–MS–MS. Effects of 
the synthetic peptides, EKPQQQSSRRGS (SP1) and VVQGKGAIGFAFP (SP2), on positive fluorescent level in macrophages (B), and M1 (C) phenotype 
polarization in mouse spleen in vivo. Bars represent mean ± standard deviation (SD; n = 3). Mean with different letters are significantly different 
(p < 0.05) by Duncan’s multiple range test
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