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Abstract
As the main immune checkpoint, PD-L1-PD-1 interaction plays a critical role in the dysregulation of effector T cells, which 
contributes to the failure of Chimeric Antigen Receptor T-cell (CAR-T) and other immunotherapies. Presently, most research 
focuses on the extracellular function of PD-L1. Membrane PD-L1 can interact with its receptor PD-1 and decrease T cell-
induced cancer immunity. However, the function of PD-L1 in cancer cells is still unclear. Recent studies have shown the 
separated clinical significance of PD-L1 expression in various cancer types, showing the complexity of PD-L1 in cancer cell 
regulation. As a novel regulatory pathway, the nuclear translocation of PD-L1 in cancer cells receives more attention. Results 
of these preclinical studies demonstrated that nuclear PD-L1 has an essential role in cancer development and other immune 
checkpoint molecules transcription. Herein, we summarized the mechanisms involved in PD-L1 nuclear transportation and 
identify the key regulatory factors in this process. Furthermore, we also summarize the function of nuclear PD-L1 in cancer 
immunity. These findings suggested the novel PD-L1 regulation in cancer development, which showed that nuclear PD-L1 
is a potential therapeutic target in future cancer therapy.
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immunotherapy

Abbreviations
AP-1	� Activator protein 1
BRCA​	� Breast cancer
CAR-T	� Chimeric antigen receptor T cell
COAD	� Colon cancer
CSN5	� COP9 signalosome complex subunit 5
EGF	� Epidermal growth factor
FDA	� Food and drug administration

GSDMC	� Gasdermin C
HCC	� Hepatocellular carcinoma
HIP1R.	� Huntingtin-interacting-protein-1-related
IRF1	� Interferon regulatory factor 1
IFN	� Interferons
IL	� Interleukin
KPNs	� Karyopherin
KRTs	� Keratins
LADC	� Lung adenocarcinoma
LSCC	� Lung squamous cell carcinoma
HNSCC	� Neck squamous cancer cells
NSCLC	� Non-small-cell lung cancer
NF-κB	� Nuclear factor kappa B
NFAT	� Nuclear factor of activated T-cells
NLSs	� Nuclear localization signals
OS	� Osteosarcoma
PD-L1	� Programmed cell death protein ligand 1
PRAD	� Prostate cancer
RCC​	� Renal cell carcinoma
STAT​	� Signal transducer and activator of transcription
SRTFs	� Stress-responsive transcription factors
TCR​	� T cell receptor

 *	 Huimin Tao 
	 2187040@zju.edu.cn

 *	 Wei Yu 
	 11818244@zju.edu.cn

1	 Clinical Laboratory Centre, 2nd Affiliated Hospital, School 
of Medicine, Zhejiang University, #88 Jie Fang Road, 
Hangzhou 310009, Zhejiang, People’s Republic of China

2	 Department of Orthopedics, 2nd Affiliated Hospital, School 
of Medicine, Zhejiang University, #88 Jie Fang Road, 
Hangzhou 310009, Zhejiang, People’s Republic of China

3	 Orthopedics Research Institute of Zhejiang 
University, No. 88, Jiefang Road, Hangzhou 310009, 
People’s Republic of China

http://orcid.org/0000-0001-8385-7488
http://crossmark.crossref.org/dialog/?doi=10.1007/s00262-022-03176-7&domain=pdf


2314	 Cancer Immunology, Immunotherapy (2022) 71:2313–2323

1 3

TRIM59	� Tripartite motif-containing 59
TNF-α	� Tumor necrosis factor alpha
VIM	� Vimentin

Background

The development in immunologic research increases the 
attention in cancer immunotherapy. The therapeutic effect 
of immunotherapy relies on the activation of the T cell-based 
immune system [1]. The exposed antigen expressed on the 
surface of tumor cells promotes the functional activation of 
T cells by binding with T cell receptor (TCR). However, the 
tumor immunologic recognition and cytotoxicity induced by 
TCR is adjusted by the interaction of several co-expressed 
receptors and their ligands, such as immune checkpoints. 
They can synergistically stimulate or suppress the func-
tion and viability of T cells and alternate the magnitude 
and duration of T-cell immune response [2]. The immune 
checkpoints are a series of suppressant pathways through 
the receptor-ligand binding between T cell and target cells, 
including PD-L1/PD-1, CTLA-4/B7, CD47/SIRP-α, and 
LAG-3/MHC-II, which perform as an essential supervi-
sor in physiologic immunity and prevent the occurrence of 
autoimmune diseases [3]. Unfortunately, the immune check-
point-mediated immunologic inhibition also contributes to 
the T cell exhaustion in anti-tumor immunity and results 
in the immune escape of cancer cells [4, 5]. Among the 
immune checkpoint, programmed cell death protein ligand 
1 (PD-L1) and its receptor become the center of attention by 

researchers. The antibodies against PD-1/PD-L1 therapy is 
Food and Drug Administration (FDA) approved and promise 
as an exciting therapeutic effect in cancer immunotherapy 
[6–8]. However, the dominating investigation of PD-L1 
focused on the membrane PD-L1 (mPD-L1). Recent stud-
ies proved that besides membrane expression, PD-L1 also 
has nuclear expression in cancer and normal cells, and the 
translocation of nuclear PD-L1 (nPD-L1) is involved in the 
immunologic variation of cancer cells [9–11]. In this review, 
we mainly summarized the nPD-L1 and the mechanism of 
nPD-L1 nuclear transportation (Table 1). Meanwhile, the 
functional differences between mPD-L1 and nPD-L1 are 
also discussed to clarify the PD-L1 regulation in tumor 
development and immunity, which may contribute to the 
therapeutic difference in the PD-L1/PD-1 targeted therapy.

The PD‑1/PD‑L1 Axis in cancer immunity

PD-L1, also called B7-H1 or CD274, has been regarded as 
a vital immune regulator in anti-cancer immunity, which 
can be recognized by PD-1 in T and NK cells and cause 
the exhaustion of these immune cells [12, 13]. Mediated by 
inflammation and different cytokines and growth factors, the 
expression of PD-L1 is regulated by two separated pathways, 
including transcription and post-transcription pathways. The 
ChIP-seq analysis indicated that the binding of NF-κB1/p65 
in the PD-L1 enhancer region is increased by paclitaxel-
induced reactive oxygen species and further upregulate the 
expression of PD-L1 in tumor-associated macrophages [14]. 

Table 1   The overview of concerning nPD-L1 in various cancer researches

TNBC Triple-Negative Breast Cancer, NSCLC Non-Small Cell Lung Cancer, BRCA​ Breast Cancer, PRAD Prostate Adenocarcinoma, CC Colo-
rectal cancer, COAD Colon Adenocarcinoma, OS Osteosarcoma, LADC Lung Adenocarcinoma, LSCC Lung Squamous Cell Carcinoma, RCC​ 
Renal Cell Carcinoma, HCC Hepatocellular Carcinoma, HNSCC Neck Squamous Cell Carcinoma, ESCC Esophageal Squamous Cell Carcinoma

Cancer type Condition Binding site Transcription Function Ref.

TNBC Loss of Sororin SMC1/SMC3/
SA2/SCC1/
PDS5B/WAPL

– Sister chromatid cohesion [89]

NSCLC – KPNB1/SP1 Gas6 Cell proliferation [54]
BRCA​ Deacetylation HIP1R/KPNA2/

Vimentin
BIRC3/TRAF1/
RELB/HLA-A/
HLA-B/PD-L2/
VISTA/PD-L1/
PD-L2

Immune response enhancement [9]

TNBC Hypoxia p-STAT3 GSDMC Pyroptosis and necrosis [10]
BRCA​ Doxorubicin p-AKT (prediction) – Anti-apoptosis [44]
PRAD/BRCA/COAD/OS Circulating tumor cells Vimentin (prediction) – Overall-survival decreasion [19]
LADC/LSCC/RCC/HCC – - – Nuclear immunoreactivity [46]
HNSCC – AKT-1 – Radioresistant [80]
ESCC – – – Invasion promotion [45]
PRAD Primary radiotherapy – – Higher Gleason score and cT stage [91]
CC BRAF-mutated CRC cells – – Promoting cell proliferation [90]
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On the other hand, IL-27 can activate the JAK1 and JAK2 
and promote the phosphorylation of STAT1 after binding 
with IL-27Rα and IL-6Rβ. The phosphorylation of STAT1 
leads to the nucleus transportation and enhances the PD-L1 
transcription [15]. Meanwhile, Lin’s researches suggested 
that the ERK-induced C/EBPβ phosphorylation causes 
Bcl-2-associated athanogene-1 transcription and PD-L1 
expression, which promotes the development of non-small 
cell lung cancer (NSCLC) [16]. These results showed the 
importance of NF-κB, ERK, and STAT pathway in PD-L1 
transcriptional expression.

The function of PD-L1 also requires post-transcription 
regulation, including Ubiquitination, N-Glycosylation, 
Phosphorylation, Palmitoylation, and so on. Post-transla-
tional modifications of PD-L1 can alternate the structure 
of PD-L1 and adjust the PD-L1 stability inside the cancer 
cells and prevent the proteasome-induced degradation [17]. 
Meanwhile, the intracellular localization of PD-L1 also 
requires post-translational modifications, such as in ER, 
Golgi, nucleus, and cytoplasm [18, 19]. However, the spe-
cific effect of its subcellular localization remains unknown.

After engagement with PD-1 on T cells, PD-L1 induces 
the conformation change of PD-1 and promotes the phospho-
rylation of SHP-2 in the cytoplasmic tail of PD-1 [20, 21]. 
The PD-1-induced SHP-2 decreases the TCR signal path-
way by LCK-induced ZAP70 phosphorylation and cause 
T cell dysfunction [22]. On the other hand, the interaction 
between PD-L1/PD-1 decreases the activation of PI3K/AKT 
and causes a series of cellular biological alternations, pro-
moting p21Cip/p27Kip-induced proliferation inhibition and 
FOXO1-induced apoptosis [23]. Meanwhile, PD-L1/PD-1 
pathway also interferes with the therapeutic effect of active 
immunotherapy such as chimeric antigen receptor (CAR)-T 
therapy and enhances the anti-tumor activity and safety pro-
file [24]. Clinical researches have emerged that PD-1 gene 
disrupted CAR-T cells therapies have an attractive result by 
monoclonal antibody or CRISPR/Cas9 strategy [25, 26]. 
Thus, the PD-L1/PD-1 targeted therapy received a great deal 
of attention from cancer immunologic therapies.

Although multiple kinds of research have suggested the 
unfavorable prognosis in cancer with high expression of 
PD-L1 [27, 28], a part of the studies showed the different 
results of PD-L1 in some cancer types. Sideras and his col-
leagues found that the expression of PD-L1 indicated the 
higher survival probability in hepatocellular carcinoma 
(HCC), which can be the superior predictors of HCC mor-
tality together with Galectin-9 and low CD8 + TIL [29]. 
Similarly, in advanced gastric cancer, the patients with bet-
ter prognostic had a high grade of PD-L1 and a high density 
of CD8 + T cells[30]. Also, some other clinical prognosis 
data showed that high expression of PD-L1 is related to 
the favorable prognosis in certain cancer types, includ-
ing NSCLC, HCC, BRCA, OS et.al, which challenge the 

conventional opinion of PD-L1. Parts of relevant research 
have summarized in Table 2 [29–43]. These results sug-
gested that PD-L1 has a disparate regulatory mechanism in 
cancer cell immunity and development.

The nPD‑L1 in cancer cell

The nPD-L1 was first illustrated in 2010 in breast can-
cer cells. Ghebeh and his colleagues [44] found that the 
expression of nPD-L1 plays a role as the anti-apoptosis 
molecule. The depletion of PD-L1 significantly reduced 
the chemotherapy-induced cytotoxicity. In their research, 
the dose-dependent treatment of doxorubicin in breast can-
cer repressed the expression of mPD-L1 and increased the 
PD-L1 nuclear expression induced by phosphorylation of 
nuclear AKT, which suggested the chemotherapy-induced 
PD-L1 nuclear transportation. They also found that doxo-
rubicin-induced nPD-L1 existed in heart tissues, indicating 
the non-tissue specific expression pattern of nPD-L1. As the 
poor prognostic biomarker, nPD-L1 also exists in invasive 
esophageal cancer [45]. Besides these findings, Parra and 
his colleagues [46] investigated the PD-L1 expression in 
malignant and nonmalignant cells and discovered that the 
nPD-L1 occurs in some other samples of lung adenocarci-
noma (LADC), lung squamous cell carcinoma (LSCC), renal 
cell carcinoma (RCC), and hepatocellular carcinoma (HCC). 
Meanwhile, the immunofluorescence research also clarified 
the nPD-L1 expression in circulating tumor cells isolated 
from prostate cancer (PRAD), breast cancer (BRCA), colon 
cancer (COAD), and osteosarcoma (OS) patients [19]. These 
findings suggested that the nuclear transportation of PD-L1 
is ubiquitous and has a critical regulatory function in cancer 
development.

Interestingly, the research from Polioudaki [47] found that 
the nuclear location of PD-L1 may result from the error of 
experimental operation. The immunostaining using stand-
ard conditions of fixation and permeabilization showed 
the nuclear-location of PD-L1 in MDA-MB-231 cell lines 
while the mild detergent and rigorous fixation conditions 
maintain the membrane localization of PD-L1, similar to the 
immunostaining pattern of CD24. Further research achieved 
no significant PD-L1 translocation with 24 h-treatment of 
doxorubicin, which is opposite to the data from Ghebeh. 
However, these results are still unverified in the following 
research. Nowadays, FDA has approved the application 
of three PD-L1 assessments, including PD-L1 IHC 22C3 
PharmDx kit (Dako North America), the PD-L1 28–8 
PharmDx kit (Dako North America), and the PD-L1 SP142 
Ventana test (Ventana Medical Systems Inc). These PD-L1 
test platforms have a high affinity with different PD-L1 
domains [48]. So, cross-validation by diverse test platforms 
is necessary for the investigation of nPD-L1 expression in 
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cancer cells. In this regard, we should consider the authen-
ticity in the research of nPD-L1, and the experimental meth-
ods of PD-L1 detection require further improvement.

Initiation of nPD‑L1

As the special regulation in cancer cells compared to the 
mPD-L1 function, the initiation of nPD-L1 requires a spe-
cific cancer microenvironment. Hou and his colleagues 
investigated different nPD-L1 initiation conditions includ-
ing PD-L1 antibody, small molecule drugs, cytokines, 
autophagy, and cell stress, and found that hypoxia is the most 
effective initiation factor of nPD-L1 in a hypoxia-inducible 
factor-1α (HIF-1α)- independent manner [10]. Gao and 
his colleagues [9] also found that the HDAC2-dependent 
PD-L1 deacetylation initiates its internalization, which can 
be reversed by p300/CBP-dependent PD-L1 acetylation. 
However, the acetylation-dependent nPD-L1 transportation 
remains unclear. Acetyl-CoA, one of the key products in 
aerobic metabolism, is essential in the p300/CBP-dependent 
PD-L1 acetylation. Hypoxia can suppress the activation of 
Acetyl-CoA Synthetase and cause the decline of Acetyl-
CoA [49], which may play a crucial role in the process of 
PD-L1 acetylation and nuclear transportation. Meanwhile, 
the research found that Epidermal Growth Factor (EGF) 

enhances the Lysine acetylation of PD-L1, which can be 
detected by Acetyl lysine binding beads [50]. In this process, 
EGF promotes the p300 phosphorylation at the Ser1834 site 
induced by PI3K/AKT signaling pathway after binding with 
EGFR[51]. These results indicate that the absence of EGF 
can promote the nuclear transportation of PD-L1.

The mechanisms of nPD‑L1 transportation

The PD-L1 nuclear transportation is a complicated process 
and requires accurate adjustment. Until now, a few factors 
elucidated to participate in nPD-L1 regulation, including 
Karyopherin protein family (nuclear transportation recog-
nizer), Vimentin (nPD-L1 carrier), and STAT3 and AKT 
pathway (co-transcription factor). We will discuss them in 
the following sections.

Karyopherin protein family

Karyopherin (KPNs) family protein, also called Impor-
tin, is a series of nuclear import proteins, which controls 
the nucleocytoplasmic transport progress by forming the 

Table 2   The overview of the research indicating the favorable prognosis in PD-L1 high expression cancer

OS Overall survival, PFS Progression free survival; loco-regional failure-free survival (LRFFS), DSS Disease specific survival, IHC Immunohis-
tochemistry, RNA-Seq RNA Sequencing, RT-qPCR Real-time quantitative PCR

Cancer type Item Subtype condition Detection methods Ref.

Colorectal cancer OS Mismatch repair proficient IHC [31]
Nasopharyngeal carcinoma OS/PFS – IHC [32]
Endometrial carcinoma OS – IHC [33]
Non-Metastatic Nasopharyngeal carcinoma LRFFS Intensity-modulated

radiation therapy
IHC [34]

Bladder squamous cell carcinoma OS/DSS Radical
cystectomy

IHC [35]

Non-Small Cell Lung Cancer PFS Immunotherapy IHC [36]
Advanced lung adenocarcinoma PFS Pemetrexed maintenance therapy IHC [37]
HER2‐positive invasive breast cancer OS – IHC [38]
Skin cutaneous melanoma &
Clear cell renal cell carcinoma

OS/PFS – RNA-Seq [39]

Hepatocellular carcinoma DSS – IHC [29]
High-grade
serous carcinoma

PFS – IHC [40]

Esophageal squamous cell carcinoma OS/PFS – IHC [41]
Advanced gastric cancer OS – IHC [30]
Osteosarcoma OS – RT-qPCR [42]
Non-Small Cell Lung Cancer OS Adjuvant therapy

Squamous cell
pT2-4 (tumor size)
Positive lymph node status

IHC [43]
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heterodimer of importin α and β subunits [52]. During 
the nuclear-transportation process, the protein-contain-
ing nuclear localization signals (NLSs) are identified by 
importin α and then orientated to the nuclear pore com-
plex with the assistance of importin β [53]. The studies 
have suggested that KPNs engage in the regulation of the 
nuclear translocation of PD-L1. The mass spectrometry 
assay in Du’s research demonstrated that PD-L1 has the 
highest binding capacity with the β1 subunits of Karyo-
pherin (KPNB1). The abrogation of KPNB1 causes the 
downregulation of nPD-L1 in NSCLC. The KPNB1-
induced PD-L1 nuclear transportation enhances the acti-
vation of Sp1 and promotes the transcription of Gas6 
as well as Mertk pathway [54]. Gao and his colleagues 
[9] also found that the deacetylation of PD-L1 leads to 
the bond with importin-α1 (KPNA1), which carries the 
PD-L1 through nuclear pore complexes into the nucleus. 
These two studies showed that the nuclear transportation 
of PD-L1 requires the synergetic interaction of importin 
α and β.

However, the research in human head and neck squa-
mous cancer cells (HNSCC) revealed that the suppres-
sion of KPNB1 inhibited the expression of PD-L1 on the 
surface of cancer cells induced by radiotherapy [55]. This 
result is opposite to the phenomenon of mPD-L1 decrease 
in condition of KPNs-induced mPD-L1 internalization. 
The reduction of PD-L1 induced by KPNB1 knock-down 
may result from the interaction between KPNB1 and inter-
ferons (IFNs)-related pathway. The Interferon Regulatory 
Factor 1 (IRF1) contains the NLS structure, which can 
be recognized and carried into nuclear by KPNA2 after 
being activated by IFNs [56, 57]. The depletion of KPNB1 
reduced the nuclear location and transcription activation of 
IRF1, consequently diminishing the IRF1-related PD-L1 
expression [58]. Furthermore, the employment of KPNB1 
inhibitor, importazole, diffuses the nuclear localization 
of IRF1 and causes the downregulation of PD-L1 after 
irradiation therapy, confirming the pivotal role of IRF1 in 
KPNB1-induced IRF1 and PD-L1 nuclear transportation 
[59]. Second, the KPNs are also responsible for the acti-
vation of stress-responsive transcription factors (SRTFs), 
including Nuclear Factor Kappa B (NF-κB), Activator 
Protein 1 (AP-1), Nuclear Factor of Activated T-cells 
(NFAT), and Signal Transducer and Activator of Tran-
scription 1 alpha (STAT-1α), and dominate the cytokines 
and chemokines-mediated proinflammatory response [60]. 
Lim and his colleagues have illustrated that the expres-
sion of PD-L1 is related to the macrophage-secreted 
inflammatory cytokines induced by Tumor Necrosis Fac-
tor alpha (TNF-α) [61]. These findings reveal that the 
KPNs-induced SRTFs pathway promotes the expression 
of PD-L1. The role of KPNs in nPD-L1 and mPD-L1 will 
be also discussed in the next section.

STAT3 pathway

In response to the stimulation of cytokines including IFNs, 
EGF, Interleukin (IL)-6, Transducer and Activator of Tran-
scription 3 (STAT3) facilitates the formation of heterodi-
mers by kinases-induced phosphorylation, which moves 
into the nuclear and transduces the signal from receptor to 
nuclear [62–64]. Hou and his colleagues found that the Y705 
phosphorylation of STAT3 enhances the nuclear aggrega-
tion of PD-L1 and regulates the transcription of gasdermin 
C (GSDMC) [10]. Coincidentally, it is reported that KPNs 
participate in the nuclear transportation of STAT3. The knock-
down of KPNA2 impaired the expression of STAT3 in nuclear 
in pancreatic ductal adenocarcinoma cells [65]. The Ma’s data 
elucidated that KPNA5 and KPNA7 have a similar function in 
binding with STAT3, rather than KPNA1 or KPNA3. These 
results suggested the complicacy in PD-L1 and STAT3 trans-
portation [66]. On the other hand, the nuclear relocation of 
STAT3 induced by EGFR also requires the interaction between 
KPNA5 and phosphorylated Tripartite Motif-containing 59 
(TRIM59), a ubiquitin ligase, in glioblastoma, suggested the 
TRIM59 in PD-L1 transportation [67]. In this regard, we 
hypothesize that the complex of PD-L1 translocator consists 
of KPNs, STAT3, and TRIM59 in the PD-L1 regulation in 
nuclear.

Interestingly, the activation of STAT3 is also involved in 
the IFNs-induced transcription diversity of PD-L1 and reduces 
of immunotherapy effect in multiple cancer types [68–70]. 
Xiang and his colleagues also elucidated that the dexametha-
sone inhibits the nuclear translocation of GR/STAT3 complex 
and suppresses the expression PD-L1, decreasing the cancer 
cell immune evasion [71]. Meanwhile, together with p65, 
the activation of STAT3 promotes the transcription of COP9 
signalosome complex subunit 5 (CSN5), which functions as 
the deubiquitin enzyme and reduces ubiquitination-induced 
PD-L1 degradation [70]. So, it is easy for us to get the hypoth-
esis that the nPD-L1-induced STAT3 activation can in turn 
feedback the transcription of PD-L1 and increase the mPD-
L1-induced immune escape. The hypothesis indicates the close 
relationship between nPD-L1 and mPD-L1, which has been 
elucidated in Gao’s research [9]. The expression of KPNs and 
STAT3 engage in the acceleration of the membrane-nuclear-
membrane expression loop of PD-L1, which plays an essential 
role in the rotation of cell death and tumor immunity in cancer 
cells.

AKT pathway

The activation of AKT is related to cell viability, apopto-
sis, and proliferation, which manipulates the development 
of various cancer types and can be the therapeutic target in 
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cancer treatment [72, 73]. The research has emerged that 
AKT plays a crucial role in PD-L1 regulation. The investiga-
tion showed that phosphorylation of AKT promotes immune 
escape by driving the expression of PD-L1 [74, 75]. Mean-
while, the stimulation from c-MET amplification, the HGF, 
and EGFR-T790M mutation caused the activation of PI3K 
and sequentially improved the phosphorylation of AKT, 
increasing the transcription of PD-L1 [76]. These results 
revealed the crucial role of an inside-out regulator in PD-L1 
expression.

On the other side, AKT also controls the outside-in trans-
portation of PD-L1. The phosphorylation of AKT increased 
after the treatment of doxorubicin, along with the enhance-
ment of nPD-L1 expression in breast cancer cells [44]. 
112-480aa fragment of AKT is the fundamental structure 
that can recognize 128-237aa fragment of PD-L1 with the 
stimulation of starvation and facilitates glioma cell invasion 
[77]. However, the specific mechanism of AKT in PD-L1 
nuclear transportation is still unclear. Jeong’s research pro-
vided an explanation that phosphorylation of AKT promotes 
nuclear translocation by enhancing the binding and trans-
portation ability of importin α, which facilitates the PD-L1 
nuclear translocation [78]. On the other hand, The AKT 
and its phosphorylation contribute to the phosphorylation 
of STAT3, suggesting the sequential activation from AKT 
to STAT3 in nPD-L1 transportation [79]. Moreove, Schulz 
and his colleagues [80] proved that PD-L1 can directly bind 
with AKT-1, especially in the radio-resistant neck squamous 
cancer cells. The irradiation enhanced the binding capacity 
between PD-L1 and AKT-1 with the time extension. Dif-
ferent from the previous result, the higher binding affinity 
between AKT and PD-L1 reveals the lower nuclear enrich-
ment of nPD-L1 in radio-resistant neck squamous cancer 
cells. Their results indicated that the AKT has various func-
tion in nPD-L1 expression in different cells, which requires 
further research.

Vimentin

Encoding a type III intermediate filament protein, Vimen-
tin (VIM) intermediate filaments (VIFs) network is widely 
distributed from the nucleus surface to the plasma mem-
brane [81]. VIM acts as one of the crucial components 
of the cytoskeleton to retain its stability, which monitors 
cell migration, adhesion, and differentiation [82, 83]. High 
expression of VIM has a positive relationship with PD-L1 
expression and promotes the epithelial-mesenchymal transi-
tion (EMT) [83, 84]. Meanwhile, as the marker of circulating 
tumor cells, the cells with positive VIM expression on the 
cell surface showed a higher nPD-L1 expression in multi-
ple cancer types, which indicates the regulatory function of 
VIM in PD-L1 nuclear location [19]. In addition, the mass 

spectrometry data has also illustrated that PD-L1 connected 
several cytoskeleton proteins by its C-terminal, including 
VIM and Keratins (KRTs). The depletion of VIM caused 
the down-regulation of PD-L1 accumulation in nuclear and 
cytoskeletal [9]. The VIM-induced PD-L1 binding to the 
cytoskeleton is associated with the functional PD-L1 interac-
tion with Huntingtin-interacting-protein-1-related (HIP1R) 
protein, which is an essential factor in PD-L1 lysosomal 
degradation [9, 85]. These results implied that the nuclear 
import and export of PD-L1 depends on the route along with 
the cytoskeleton.

The function of nPD‑L1 in cancer cell

Although the canonical modification of PD-L1 has been 
widely investigated in a series of research, which is con-
sidered as the criminal in anti-tumor immunity, the reverse 
signaling of PD-L1 in cancer cell regulation is still unknown 
[86]. The activation of PD-L1 induced by PD-1 reduced the 
susceptibility to apoptosis induced by Fas ligation or stau-
rosporine [87]. Meanwhile, the antibody-induced PD-L1 
blocking inhibited mTOR and reprogramed the metabolic 
process in tumor cells in a T cell-independent manner [88]. 
However, the current PD-L1 concerned research focuses 
on the effect in the tumor microenvironment, especially in 
the cancer cell-T cell interaction. The regulatory function 
of PD-L1 in cytoplasm and nuclear cancer cells remains 
unclear.

The function of PD-L1 in various cancers partly results 
from the nPD-L1-induced cell remodeling. Yu and his col-
leagues found that nPD-L1 replaces the role of Sororin and 
engaged in the formation of sister chromatid cohesion by 
binding to PDS5B. The abolishment of PD-L1 downregu-
lated the proliferation, colony formation of cancer cells 
in vitro, and tumor growth in vivo [89]. On the other hand, 
nPD-L1-induced Gas6 expression is recognized by MerTK 
and enhanced cell proliferation with the activation of ERK 
and AKT signaling pathways [54]. The nPD-L1-induced 
proliferation promotion results from the increasing expres-
sion of cell cycle regulator BUB1 via thyroid hormone 
receptor-associated protein 3 (THRAP3), thereby acceler-
ating cell cycle progression and enhancing cell prolifera-
tion [90]. Moreover, the nuclear transportation of PD-L1 
increases the transcription of immunosuppressive molecules 
such as PD-L2, VISTA, and B7H3 and decrease the T cell-
induced anti-tumor immunity [9]. Shim and his colleagues 
found that the high-level expression of nPD-L1 predicted 
the higher Gleason score and cT stage in the prostate can-
cer patients with the treatment of primary radiation therapy, 
which suggested the higher malignancy and poor prognosis 
[91]. Similarly, the research in HNSCC also showed upregu-
lated nuclear distribution of PD-L1 in radiotherapy-resistant 
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cancer cells as well as the cells post-radiation treatment [80]. 
In this regard, cancer cells enhance cell proliferation and the 
resistance of radiotherapy and immunotherapy via PD-L1 
nuclear relocation.

However, the expression of nPD-L1 enhanced the 
STAT3-induced transcription of the GSDMC gene. GSDMC 
is a member of the conserved proteins family that includes 
gasdermin A, B, C, D, E, and DFNB59 [92]. Cleaved by 
Caspase family, GSDM family generates an N-terminal 
pore-forming fragment and gathers in the plasma mem-
brane, forms the gasdermin pore and causes cell pyroptosis 
[93]. Hou’s research found that nPD-L1-induced GSDMC 
expression accelerates the TNFα-induced tumor necrosis 
and promotes the chemotherapy-mediated pyroptosis in 
breast cancer in hypoxia condition [10, 94]. The knockdown 
of PD-L1 reduces the function of PD-L1/STAT1 binding 
complex and suppresses the hypoxia-induced pyroptosis 
[95]. These results indicated that nPD-L1 increases the 
response to the cell death signal and causes the better prog-
nosis after chemotherapy. This research explained the results 
from Schmidt and his colleagues, which elucidated that the 
PD-L1 positive cancer patients who received adjuvant ther-
apy have a higher survival rate while it has no prognostic 
significance in whole patient analysis [43]. Meanwhile, two 
studies from BRAFV600E-induced human colon cancer cells 
showed that tumor intrinsic PD-L1 enhances chemotherapy-
induced apoptosis [96, 97]. Knockout of tumor intrinsic 
PD-L1 reduces pro-apoptotic BIM and BIK, which cause 
the resistance to drug-induced apoptosis and show the better 
prognosis. These results suggested that the PD-L1 nuclear 
transportation has a different function in cancer develop-
ment, which improves the sensibility of chemotherapeutic 
and prolong the survival time.

Conclusion

Separated from PD-L1/PD-1 interaction in the canonical 
immune checkpoints pathway, the expression of PD-L1 in 
nuclear reveals the novel transcription regulation in can-
cer development and immune escape. The nPD-L1 pro-
motes cell proliferation by chromatin remodeling, while 
the nuclear translocation of PD-L1 induced by hypoxia 
shows a higher sensibility to pyroptosis and enhances the 
therapeutic effect. Moreover, the nuclear-translocation of 
PD-L1 also promotes the expression of immune checkpoint 

ligands such as PD-L1, PD-L2, VISTA and B7-H3. These 
immune checkpoint ligands interact with their receptors 
and cause the exhaustion of immune cells, further pro-
moting the cancer immune escape (Fig. 1). These finding 
suggested that cancer cell with nPD-L1 expression has 
higher proliferation by cell cycle promoting. nPD-L1 also 
increase immunosuppression ability of cancer cells by fur-
ther expression of immune check-point markers. However, 
these cells also facilitate the pyroptosis and show a higher 
sensibility to chemotherapy. This bidirectional regulation 
could contribute to the difference of prognosis in PD-L1 
expression cancer patients (Fig. 2). The patients with nPD-
L1+ cancer should consider the reinforce of chemotherapy 
and radiotherapy and have the higher frequency of follow-
up. Thus, nPD-L1 is expected to be the biomarker of can-
cer development and therapeutic effect in future cancer 
treatment.

Fig. 1   The overview of nPD-L1 in cancer cells. A The PD-L1 was 
deacetylated in hypoxia condition and start the process of nuclear 
transportation regulated by a series of factors including KPNs, 
STAT3, AKT and VIM. nPD-L1 regulates the cancer cells in these 
four apsects: (1) promote the proliferation of cancer cells; (2) enhance 
the transcription of GMDSC and facilitate pyroptosis; (3) increase 
the secretion of Gas6 and (4) upregulation the expression of immune 
check-point molecules such as PD-L1, PD-L2, VISTA and B7-H3 
and cause the immune escape
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