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Abstract
Deficient mismatch repair (dMMR)/microsatellite instability (MSI) colorectal cancer (CRC) has high immunogenicity and 
better prognosis compared with proficient MMR (pMMR)/microsatellite stable (MSS) CRC. Although the activation of the 
cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered to contribute to 
the high number of CD8+ TILs, its role in dMMR/MSI CRC is largely unknown. In this study, to examine the role of the 
cGAS-STING pathway on the recruitment of CD8+ TILs in dMMR/MSI CRC, we used public datasets and clinical tissue 
samples in our cohorts to evaluate the expression of cGAS, STING, and CD8+ TILs in pMMR/MSS and dMMR/MSI CRCs. 
According to the analysis of public datasets, the expression of cGAS-STING, CD8 effector gene signature, and CXCL10-
CCL5, chemoattractants for CD8+ TILs which regulated by the cGAS-STING pathway, was significantly upregulated in 
dMMR/MSI CRC, and the expression of cGAS-STING was significantly associated with the expression of CD8 effector 
gene signature. Immunohistochemistry staining of the clinical tissue samples (n = 283) revealed that cGAS-STING was 
highly expressed in tumor cells of dMMR CRC, and higher expression of cGAS-STING in tumor cells was significantly 
associated with the increased number of CD8+ TILs. Moreover, we demonstrated that the downregulation of MMR gene 
in human CRC cell lines enhanced the activation of the cGAS-STING pathway. Taken together, for the first time, we found 
that dMMR/MSI CRC has maintained a high level of cGAS-STING expression in tumor cells, which might contribute to 
abundant CD8+ TILs and immune-active TME.
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Introduction

Colorectal cancer (CRC) remains one of the most com-
mon causes of cancer death worldwide [1, 2]. Although 
the advances in primary and adjuvant treatments have 
improved the prognosis of CRC, the cases with advanced 
CRC still have a poor prognosis [3], and thus further thera-
peutic strategies should be required. CRC is biologically 
divided into two groups according to microsatellite stabil-
ity classification: DNA mismatch repair deficient (dMMR) 
CRC tumors generate microsatellite instability (MSI) phe-
notype; MMR proficient (pMMR) CRC tumors are defined 
as microsatellite stable (MSS) but chromosomal unstable. 
The germline mutation in MMR genes including MutL 
homolog 1 (MLH1) (30–40%), MutS homolog 2 (MSH2) 
(50%), MutS homolog 6 (MSH6) (7–10%), and PMS1 
homolog 2 (PMS2) (< 5%), and epithelial cell adhesion 
molecule gene (EPCAM) (1–3%) causes Lynch syndrome 
[4, 5], whereas sporadic dMMR/MSI CRCs most com-
monly arise from hypermethylation of MLH1 promoter 
[3, 6]. dMMR/MSI CRC accounts for 15–20% of all CRC 
cases [3, 6, 7] and is reported to be heavily infiltrated by 
immune cells such as CD8+ TILs, T helper 1 CD4+ TILs, 
and antigen-presenting cells such as dendritic cells and 
macrophages due to a high number of tumor mutational 
burden and neoantigen load [6–13]. dMMR/MSI CRC 
might therefore show a better prognosis and response to 
immunotherapy using immune checkpoint inhibitors (ICI). 
However, the regulatory mechanisms of the immune-active 
TME in dMMR/MSI CRC are not yet fully understood.

The cyclic GMP-AMP synthase (cGAS) is the direct 
cytosolic DNA sensor and innate immune response initia-
tor, which binds to cytosolic DNA and activates stimula-
tor of interferon genes (STING) as a downstream adaptor 
through the generation of the second messenger cyclic 
GMP-AMP (cGAMP) [14]. The activated STING sub-
sequently recruits and activates TANK-binding kinase 1 
and IFN regulatory factor 3 (IRF3) via a phosphoryla-
tion-dependent manner, leading to the production of type 
I IFN and other inflammatory mediators including C–C 
chemokine ligand-5 (CCL5) and C-X-C motif ligand 10 
(CXCL10) [15, 16]. It has been thought that the cGAS-
STING pathway in tumor cells is a critical component for 
regulations of anti-tumor adaptive immunity within the 
TME in several cancers including CRC [17–22]. Indeed, 
Chon et al. reported that patients with STING-high CRC 
showed increasing the number of CD8+ TILs and better 
prognosis when compared to those with STING-low CRC, 
and intra-tumoral injections of the STING agonist, 3′3’-
cGAMP, effectively enhanced infiltration of CD8+ effector 
T cells and suppressed colon cancer progression in mice 
[21]. Moreover, it has been reported that dysregulation of 

the cGAS-STING pathway in colorectal carcinoma might 
escape the tumor from immune recognition [23].

The majority of CRC (~ 85%) exhibit chromosomal 
instability (CIN) which promotes chromosome segrega-
tion errors leading to the formation of micronuclei and rup-
ture spills genomic DNA into the cytosol [7, 24, 25]. CIN, 
therefore, activates inflammatory signaling downstream of 
cGAS-STING in response to cytoplasmic DNA and triggers 
immune surveillance of malignancies during the early steps 
of tumorigenesis [26]. Santaguida et al. also demonstrated 
that the cells with abnormal karyotypes were eliminated by 
cGAS-STING-mediated activation of the immune system 
that may serve as cancer cell immunosurveillance [27]. On 
the other hand, recent studies reported that dMMR-mediated 
cytosolic DNA sensing by the cGAS-STING pathway also 
contributed to anti-tumor immunity [28]. MLH1-deficiency 
triggered DNA hyper-resection by loss of MutLα-specific 
regulation of exonuclease 1, which activates the cGAS-
STING pathway in dMMR tumors [29]. Mowat et al. also 
demonstrated that genomic instability induced by dMMR 
stimulated the cGAS-STING pathway and type I IFN signal-
ing in murine CRC [30]. Given the accumulating evidence 
described above, both CIN CRC and MSI CRC might have 
the potential to activate the cGAS-STING pathway through 
the generation of cytosolic dsDNA in tumor cells, resulting 
in immune activation during tumorigenesis.

In this study, to investigate the role of the cGAS-STING 
pathway in the immune-active TME of dMMR/MSI CRC 
especially, we investigated the expression of cGAS and 
STING between pMMR/MSS and dMMR/MSI CRCs by 
analyzing public datasets and IHC of our cohort and evalu-
ated the association of the expression of cGAS and STING 
with CD8+ TILs between pMMR and dMMR CRCs. We 
also examined whether the downregulation of MMR genes 
led to activating the cGAS-STING pathway in human CRC 
cells in vitro.

Materials and methods

Data analyses of the cancer genome atlas (TCGA) 
and the gene expression omnibus (GEO) database

Publicly accessible datasets of mRNA expression of genes 
for colon and rectal adenocarcinoma were obtained from 
cBioPortal (http://​www.​cbiop​ortal.​org/) [31] or the GEO 
database in April 2021. To compare mRNA expression lev-
els of cGAS (MB21D1) and STING (TMEM173) between 
MSI (MSI-H) and MSS (MSI-low and microsatellite sta-
ble) CRCs, we obtained the expression z-score from TCGA 
(COADREAD) or the log2 signal intensity from GSE39582. 
We also calculated multi-gene expression signatures includ-
ing CD8 effector genes (GZMK, CD3E, CD3G, CXCR3, 

http://www.cbioportal.org/
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CD3D, BCL11B, CD28, KLRG1, IL7R), CD4 mature 
genes (IGFBP4, ITM2A, AMIGO2, TRAT1, CD40LG, 
ICOS, RCAN3), regulatory T (Treg) genes (IL2RA, FOXP3, 
CTLA4, SLC35D1, GDPD3, CISH) [32], and myeloid-
derived suppressor cell (MDSC) genes (ITGAM, CD14, 
FUT4, CD33) [33] using TCGA and GSE39582 samples, 
and compared each score between MSS and MSI CRCs.

Patient samples

We enrolled 283 patients with primary CRC (MSS, n = 243; 
MSI, n = 40) who underwent surgical resection at Fukush-
ima Medical University Hospital between 2002 and 2013 
(Table 1). The available formalin-fixed paraffin-embedded 
tissue samples were used for IHC. Clinical and pathological 

information were retrospectively obtained from reviewing 
medical records. The study was conducted in accordance 
with the Declaration of Helsinki and was approved by the 
Institutional Review Board of Fukushima Medical Univer-
sity (Fukushima, Japan).

IHC

Paraffin-embedded 4-μm CRC tissue sections were depar-
affinized in xylene and rehydrated in ethanol. Endogenous 
peroxidases were blocked with 0.3% hydrogen peroxide in 
methanol. Antigens were retrieved by autoclave with Target 
Retrieval Solution pH6.0 or pH9.0 (Dako/Agilent Technolo-
gies, Santa Clara, CA, USA). After washing with PBS, the 
sections were incubated at 4 ℃ overnight with the following 

Table 1   Clinicopathological 
characteristics of colorectal 
cancer patients according to 
MMR status

Age Mean ± SD pMMR (n = 243) dMMR (n = 40) p-value
68.0 ± 12.1 66.6 ± 15.3 0.80

Gender 0.079
Male 154 (63.3%) 19 (47.5%)
Female 89 (36.6%) 21 (52.5%)

Location < 0.001
Proximal colon 78 (32.1%) 29 (72.5%)
Distal colon 68 (27.9%) 6 (15.0%)
Rectum 97 (40.0%) 5 (12.5%)

Differentiation < 0.001
Well 112 (46.0%) 12 (30.0%)
Moderately 123 (50.6%) 16 (40.0%)
Poorly 8 (3.3%) 12 (30.0%)

Tumor invasion 0.11
Tis 13 (5.3%) 0 (0.0%)
T1 31 (12.7%) 1 (2.5%)
T2 35 (14.0%) 9 (22.5%)
T3 101 (41.5%) 20 (50.0%)
T4 63 (25.9%) 10 (25.0%)

Lymph node metastasis 0.29
Absent 144 (59.3%) 27 (67.5%)
Present 99 (40.7%) 12 (30.0%)
Not available 0 (0.0%) 1 (2.5%)

Distant metastasis 0.27
Absent 213 (87.7%) 38 (95.0%)
Present 30 (12.3%) 2 (5.0%)

Stage 0.26
0 13 (5.3%) 0 (0.0%)
I 52 (21.4%) 9 (22.5%)
II 72 (29.6%) 18 (45.0%)
III 76 (31.2%) 10 (25.0%)
IV 30 (12.3%) 3 (7.5%)

PD-L1 expression  < 0.001
Negative 231 (95.0%) 25 (62.5%)
Positive 12 (4.9%) 15 (37.5%)



2768	 Cancer Immunology, Immunotherapy (2022) 71:2765–2776

1 3

primary antibodies: anti-cGAS mAb (#79,978; Cell Sign-
aling Technology, Danvers, MA, USA), anti-STING mAb 
(#13,647; Cell Signaling Technology), anti-three-prime 
repair exonuclease 1 (TREX1) mAb (ab185228; Cambridge, 
UK), PD-L1 mAb (#13,684, Cell Signaling Technology), 
anti-CD4 mAb (M7310; Dako/Agilent Technologies), anti-
CD8 mAb (M7103; Dako/Agilent Technologies), and anti-
Foxp3 mAb (ab20034; Abcam, Cambridge). The sections 
were then incubated with horseradish peroxidase-conjugated 
anti-mouse or anti-rabbit secondary antibodies (K4003 or 
K4001; Dako/Agilent Technologies). Peroxidase was visu-
alized with diaminobenzidine (Dojindo Molecular Tech-
nology, Kumamoto, Japan), and nuclei were counterstained 
with Mayer Hematoxylin Solution (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan).

The expression of cGAS, STING, and TREX1 in tumor 
cells was evaluated using IHC score (H-score; 0–300) cal-
culated by multiplying intensity score and extent score. The 
intensity score was graded by staining in the cytoplasm as 
follows: 0 (none), 1 + (weak), 2 + (moderate), or 3 + (strong), 
and the extent score was defined as the percentage of stained 
cytoplasm (0%–100%). The medians were adopted for esti-
mating cGAS-low and cGAS-high, and STING-low and 
STING-high. PD-L1 expression was evaluated by assess-
ing membranous staining without cytoplasmic staining 
and tumor specimens were considered to be PD-L1-posi-
tive when > 1% of the tumor cells exhibited membranous 
staining of any intensity [34]. For the assessment of CD4+ 
and CD8+ TILs, the invasive front region of the tumor was 
reviewed in four independent areas, and counted the number 
of lymphocytes at a magnification of × 400, as previously 
described [35]. IHC analyses were evaluated by two observ-
ers (A.K and S.N) who were blinded to all of the clinical 
and pathological information. Samples with contradictory 
scores between the observers were discussed and reevaluated 
jointly until they reached an agreement.

Determination of MMR status

IHC for MMR proteins was performed using primary 
antibodies for MLH1 (M3640; Dako/Agilent Technolo-
gies), MSH2 (M3639; Dako/Agilent Technologies), MSH6 
(M3646; Dako/Agilent Technologies), and PMS2 (M3647; 
Dako/Agilent Technologies) as previously described by 
us [36]. Loss of at least one MMR protein was defined as 
dMMR and tumors with intact MMR protein expression as 
pMMR.

CRC cell lines

Human colorectal cancer cell lines were purchased from the 
Korean Cell Line Bank (SNU81) and the American Type 
Culture Collection (SW480), and the cell lines have been 

authenticated using STR analysis (Promega Japan, Tokyo, 
Japan). The cells were maintained with RPMI-1640 (Merck 
Sigma-Aldrich, St-Louis, MO, USA) containing 10% heat-
inactivated FBS and 1% penicillin/streptomycin at 37 ℃ 
in an atmosphere of 5% CO2. The cells were seeded into 
12-well plates at 2.0 × 105 cells/well 24 h before the stimu-
lation and then treated with 2’,3’-cGAMP (#35,573; Cell 
Signaling Technology) at a final concentration of 5 μg/ml 
for 18 h.

Knockdown experiments were conducted using siRNA 
oligonucleotides for MLH1 (s297; Thermo Fisher Sci-
entific, Waltham, MA, USA), MSH2 (s534362; Thermo 
Fisher Scientific), TMEM173 (s50646; Thermo Fisher 
Scientific) genes, or scramble control (negative control#1; 
Thermo Fisher Scientific) with Lipofectamine RNAiMAX 
Transfection Reagent (Thermo Fisher Scientific), according 
to manufacturer’s instructions. Knockdown of MLH1 and 
MSH2 was confirmed by immunoblot analysis.

CD8+ cell isolation from human peripheral blood 
mononuclear cells (PBMC)

PBMC were isolated from the peripheral blood of healthy 
volunteers using Ficoll-Paque (GE Healthcare, Little Chal-
font, UK). Human CD8+ cells were isolated from PBMC 
using the MACS magnetic cell separation system (CD8 
MicroBeads, human; Miltenyie Biotec, Bergisch Gladbach, 
Germany).

Cell migration assay

Human CRC cell line SW480 cells were stimulated with 
or without 2’,3’-cGAMP, a STING agonist, for 18 h, and 
the conditioned medium (CM) was collected and added to 
the bottom wells of the migration assay chamber (CytoSe-
lect; CELL BIOLABS, San Diego, CA, USA). After set-
ting a membrane chamber into the migration assay chamber 
containing the CM, isolated CD8+ cells from PBMCs were 
added to the membrane chamber. After 24 h of incubation, 
the level of migrated cells was measured according to the 
manufacturer's protocol.

Quantitative real‑time PCR (qPCR)

Total RNA was extracted using TRIzol Reagent (QIAGEN, 
Valencia, CA, USA). Obtained RNA was quantified on a 
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Sci-
entific). Total RNA was reverse transcribed to cDNA using 
ReverTra Ace qPCR RT Master Mix with gDNA remover 
(TOYOBO, Osaka, Japan) according to the manufacturer’s 
instructions. qPCR reaction was performed on the QuantStu-
dio3 real-time PCR system (Applied Biosystems, Carlsbad, 
CA, USA) using PrimeTime Gene Expression Master Mix 
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(Integrated DNA Technologies, Coral Ville, IA, USA) with 
specific primers and probes against CXCL10 (Accession 
No: NM_001565.1), CCL5 (Accession No: NM_002985.1), 
MLH1(Accession No: NM_001258271), and GAPDH 
(Accession No: NM_002046.1) (Integrated DNA Tech-
nologies). The levels of gene expression were normalized 
to GAPDH.

Immunoblot analysis

Total cell proteins were extracted using RIPA buffer sup-
plemented with protease inhibitor and phosphatase inhibi-
tor cocktail. The protein concentration was measured using 
the XL-Bradford kit (Aproscience, Tokushima, Japan). 
Tris–Glycine SDS sample buffer (Thermo Fisher Scien-
tific) was added to protein samples and boiled at 100 ℃ for 
5 min. The equal amount of protein was loaded onto the 
4–20% or 10% Tris–Glycine gels (Thermo Fisher Scientific) 
and electrophoresed at 125 V for 60 min using Invitrogen 
XCell SureLock electrophoresis system with Tris–Glycine 
SDS Running buffer (Thermo Fisher Scientific). Then, the 
proteins were transferred onto the PVDF membrane using 
iBlot2 Dry Blotting System (Thermo Fisher Scientific). The 
membranes were blocked with 5% non-fat dried skimmed 
milk and incubated with primary antibodies including anti-
phospho-IRF3 mAb (#37,829; Cell Signaling Technology), 
anti-STING mAb (#13,647; Cell Signaling Technology), 
anti-MLH1 mAb (#3515; Cell Signaling Technology), anti-
MSH2 mAb (#2017; Cell Signaling Technology), and anti-
β-actin mAb (sc-69879; Santa Cruz Biotechnology, Dallas, 
TX, USA) at 4 ℃ overnight. The membranes were then 
incubated with HRP-linked anti-mouse IgG or anti-rabbit 
IgG antibodies (Cell Signaling Technology) for 1 h at room 
temperature. Immunoreactive proteins were visualized using 
ImageQuant LAS 4000 mini (Fuji Film, Tokyo, Japan) with 
ECL prime western blot detection reagent (GE Healthcare, 
Chicago, IL, USA).

Detection of intracellular dsDNA in flow cytometry

Cells were fixed in 4% paraformaldehyde for 15 min at 
room temperature, and then, the cell membranes were dis-
rupted by 0.1% Triton-X in PBS with 3% donkey serum 
(blocking solution) at room temperature for 30 min. After 
washing with PBS, the fixed cells were stained with anti-
dsDNA mAb (ab270732; Abcam) or mouse IgG3 isotype 
control (14–4742-82; Thermo Fisher Scientific) at 4 ℃ for 
2 h, followed by incubation in the blocking solution with 
Alexa Fluor 488-conjugated anti-mouse secondary anti-
body (A-21202; Thermo Fisher Scientific) at 4 ℃ for 1 h. 
The stained cells were analyzed on a BD FACSCanto II 
flow cytometer (BD Biosciences, San Jose, CA, USA), and 

flow cytometry data were analyzed using FlowJo software 
(FlowJo, Ashland, OR, USA).

Statistical analysis

Statistical analyses were performed using STATA15 
(STATA Corp., College Station, TX, USA) or Graph pad 
Prism 6 (Graph Pad Software, San Diego, CA, USA). Fish-
er’s exact test, Welch’s t-test, or Mann–Whitney U test were 
used to determine differences between two variables. For 
multigroup comparisons, we applied a one-way ANOVA 
with post hoc Tukey–Kramer test or Kruskal–Wallis test 
with post hoc Dunn test after analyzing the raw data to check 
whether they were normally distributed. P-values less than 
0.05 were considered statistically significant.

Results

Higher expression of cGAS‑STING and CD8 effector 
gene signature in MSI CRCs

To first examine the expression of cGAS-STING between 
dMMR/MSI and pMMR/MSS CRCs, we analyzed their 
expressions in data obtained from TCGA COADREAD and 
GSE39582 contained 526 (450 MSS and 76 MSI) and 536 
(459 MSS and 77 MSI) CRC samples, respectively. mRNA 
expression levels of MB21D1 (cGAS) and TMEM173 
(STING) were significantly higher in MSI CRC than those 
in their MSS counterparts (Fig. 1a, b). We also examined 
the expression of CD8 effector, CD4 mature, and Treg gene 
signatures between MSI and MSS CRCs using these data-
sets, and analyzed the association between the expression of 
those gene signatures and cGAS-STING. CD8 effector gene 
signature was highly expressed in MSI CRC compared with 
that in MSS CRC (Fig. 1c, d), while the expression of CD4 
mature and Treg gene signatures was comparable between 
MSI and MSS CRCs (Supplementary Fig. S1a–S1d). When 
dividing all CRC cases into cGAS-high or cGAS-low, and 
STING-high or STING-low, the expression of CD8 effector 
gene signature was significantly higher in cGAS-high and 
STING-high CRCs than those in cGAS-low and STING-low 
CRCs (Fig. 1c, d), suggesting that the infiltration of CD8+ 
effector T cells might be associated with the expression of 
cGAS and STING in CRC. CCL5 and CXCL10 are well 
known as STING-dependent genes and function as chem-
oattractants for CD8+ TILs in CRC [37, 38]. We found that 
both chemokines were highly expressed in MSI CRC and 
significantly associated with the expression of cGAS and 
STING (Fig. 1e–h).

CCL5 has been reported to function as a chemo-attractant 
not only for CD8+ T cells but also for MDSCs [39, 40]. We, 
therefore, examined the presence of MDSC in pMMR/MSS 
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Fig. 1   MSI CRC has a higher expression of cGAS-STING and CD8 
effector gene signature a, b mRNA expression levels of MB21D1 
(cGAS) and TMEM173 (STING) in 450 MSS CRCs and 76 MSI 
CRCs in TCGA (a), and in 459 MSS CRCs and 77 MSI CRCs in 
GSE39582 (b). c–h The expression of CD8 effector gene signature 
(c and d), CXCL10 (e and f), and CCL5 g and h in CRC samples in 
TCGA and GSE39582, respectively (left). Comparison of the expres-

sion of CD8 effector gene (c and d), CXCL10 (e and f), and CCL5 g 
and h between cGAS-low and cGAS-high CRCs (middle), or STING-
low and STING-high CRCs (right). Median values were used to dif-
ferentiate cGAS-low and cGAS-high CRCs, and STING-low and 
STING-high CRCs. Values are shown as means ± SD. **p < 0.01, 
***p < 0.001, ****p < 0.0001, n.s. not significant
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CRC and dMMR/MSI CRC using the public data. The analy-
ses of the gene expression data of TCGA and GSE39582 
revealed that the expression of a gene signature of MDSC 
was significantly higher in dMMR/MSI CRC than pMMR/
MSS CRC (Supplementary Fig. S1e), suggesting that the 
presence of MDSC might be higher in dMMR/MSI CRC 
than pMMR/MSS CRC.

Taken together, these results suggest that the expression 
of cGAS-STING is upregulated in MSI CRC, and the activa-
tion of the cGAS-STING pathway might be involved in the 
recruitment of CD8+ TILs in MSI CRC.

Higher expression of cGAS‑STING in tumor cells 
in dMMR/MSI CRC​

Analysis of such public datasets is based on whole tissue 
transcript (Fig. 1), and thus, it remains unclear whether 
cGAS-STING is upregulated in tumor cells but not in stro-
mal cells of dMMR/MSI CRC. We, therefore, conducted 
IHC for cGAS-STING using surgically resected CRC speci-
mens including 243 pMMR CRCs and 40 dMMR CRCs to 
evaluate the expression of cGAS-STING in tumor cells. As 
shown in Table 1, dMMR CRCs were significantly asso-
ciated with proximal tumor location (p < 0.001), poorly 
histological differentiation (p < 0.001), and higher PD-L1 
expression (p < 0.001) compared with pMMR CRCs. Fig-
ure 2a shows representative IHC images for cGAS and 
STING staining in each intensity (0–3 +) based on tumor 
cells, and the percentage of moderate and strong staining 
intensity (2 + and 3 +) of cGAS and STING were increased 
in dMMR CRC (Fig. 2b). We found that H-scores of cGAS 
and STING were significantly higher in dMMR CRC com-
pared with those in pMMR CRC (Fig. 2c, d), suggesting that 
cGAS-STING is highly expressed in tumor cells of dMMR 
CRC. We also evaluated the number of CD8+ and CD4+ 
TILs by IHC. As shown in Fig. 2e, f, the number of CD8+ 
TILs was significantly higher in dMMR CRC than that in 
pMMR CRC, while the number of CD4+ TILs did not dif-
fer between the two groups. In addition, significant associa-
tions were observed between the number of CD8+ TILs and 
expression of cGAS and STING in CRC (Fig. 2g). On the 
other hand, neither expression of cGAS nor STING had a 
significant impact on the number of CD4+ or Foxp3+ TILs 
(Treg cells) (Supplementary Fig. S2a and S2b).

TREX1 is a DNA 3’ → 5’ exonuclease that degrades 
DNA and prevents aberrant nucleic acid-sensing. TREX1 is 
known as a negative regulator of cGAS-STING, and TREX1 
dysfunction was reported to activate the cGAS-STING path-
way, leading to the activation of IFN response [41]. mRNA 
expression of TREX1 was significantly higher in MSI CRC 
than that in MSS CRC according to the analysis of TCGA 
dataset (Supplementary Fig. S3a). Consistent with this 
result, the proportion of high staining intensity (2 + and 3 +) 

and H-score of TREX1 was increased in dMMR CRC (Sup-
plementary Fig. S3b and S3c). Although significant associa-
tions between the expression of TREX1 and STING were 
observed in both pMMR and dMMR CRCs, the correlation 
value in dMMR CRC was higher than that in pMMR CRC 
(Supplementary Fig. S3d), suggesting that TREX1 might 
negatively regulate the activation of STING signaling espe-
cially in dMMR CRC.

Taken together, these results suggest that dMMR CRC 
shows higher expression of cGAS-STING in tumor cells, 
resulting in highly infiltration of CD8+ TILs.

The activation of STING signaling 
by downregulation of MMR genes in human CRC cell 
lines

We finally investigated whether (i) the activation of the 
cGAS-STING pathway in CRC cells contributed to CD8+ 
T cell infiltration, and (ii) the downregulation of MMR 
genes could affect the activation of the cGAS-STING path-
way in CRC cells. CD8+ cells were isolated from PBMC 
(Fig. 3a, left) and subjected to cell migration assay using 
CM of human CRC cell line SW480 cells or CM of STING-
activated SW480 cells. The migration level of CD8+ cells 
was significantly increased by the CM of STING-activated 
SW480 cells compared with the CM of STING-non-acti-
vated SW480 cells (Fig.  3a, right), suggesting that the 
activation of STING signaling in CRC cells contributes 
to CD8+ T cell infiltration. We also investigated the effect 
of the downregulation of MMR genes on the activation of 
the cGAS-STING pathway in CRC cells. mRNA expres-
sion of MLH1 was markedly decreased by MLH1-specific 
siRNA in human CRC cell line SNU81 and SW480 cells, 
which are corresponding to MSS CRC cells (Fig.  3b). 
Please note that siRNA by itself might induce IFN response 
[42], we used scrambled non-targeting siRNA as a nega-
tive control, which has the same lengths (21-bp) as other 
targeted siRNAs. 2’,3’-cGAMP markedly phosphorylated 
IRF3, an activation marker of the cGAS-STING pathway, 
and this phosphorylation was increased by the knockdown 
of MLH1 in SNU81 and SW480 cells (Fig. 3c). Consistent 
with this result, the downregulation of MLH1 significantly 
enhanced 2’,3’-cGAMP-induced expressions of CXCL10 
and CCL5, STING-dependent genes and crucial chemoat-
tractants of CD8+ T cells, in both CRC cell lines (Fig. 3d). 
We also found that the downregulation of another MMR 
gene, MSH2, reinforced the phosphorylation of IRF3 and 
the expressions of CXCL10 and CCL5 by 2’,3’-cGAMP in 
SW480 cells (Supplementary Fig. S4a and S4b). Moreo-
ver, the downregulation of STING significantly blunted the 
enhancement of the expression of CXCL10 and CCL5 by the 
knockdown of MLH1 in SNU81 and SW480 cells (Fig. 3d), 
suggesting that high expression of STING contributes to 
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high productions of CXCL10 and CCL5 in MLH1-defective 
CRC cells.

Because the downregulation of MLH1 by siRNA did 
not affect the expression of STING in SNU81 and SW480 

cells (Supplementary Fig. S4c), another mechanism might 
be involved in the enhancement of the activation of STING 
signaling by the knockdown of MLH1 in CRC cells. Guan 
et al. recently demonstrated that MLH1-deficient tumors 
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exhibited cytosolic DNA accumulation by DNA breaks in 
the cells, resulting in the activation of the cGAS-STING 
pathway [29]. We, therefore, tested whether the downregu-
lation of MLH1 and MSH2 increased cytosolic dsDNA in 
CRC cells. The cytosolic dsDNA levels were found to be 
significantly increased in SW480 cells when the cells were 
treated with siRNA for MLH1 and MSH2 (Supplementary 
Fig. S4d), suggesting that increased expression of cytosolic 
dsDNA by the downregulation of MMR genes might con-
tribute to the enhancement of the activation of STING sign-
aling by 2’,3’-cGAMP in CRC cell lines.

Taken together, our findings suggest that high expression 
and activation of cGAS-STING in tumor cells contributes 
to the high infiltration of CD8+ T cells in dMMR/MSI CRC.

Discussion

It has been widely accepted that dMMR/MSI is associated 
with a high tumor mutation burden, leading to immune cell 
infiltration including CD8+ TILs, and therefore, the treat-
ment with ICIs results in improved survival in patients with 
dMMR/MSI tumors [12]. In this study, as a novel finding, 
we found that cGAS and STING are highly upregulated in 
dMMR/MSI CRC compared with pMMR/MSS CRC by ana-
lyzing public datasets and our IHC cohort, and the expres-
sion of cGAS and STING was significantly associated with 
the number of CD8+ TILs in CRC. Our in vitro experiments 
also revealed that the downregulation of MMR genes sig-
nificantly enhanced the activation of STING signaling by the 
treatment with 2’,3’-cGAMP in CRC cell lines. Therefore, 
our current findings suggest that the cGAS-STING pathway 
in tumor cells could be one of the critical components that 
activate the tumor-immune microenvironment in dMMR/
MSI CRC.

Although we found that the expression of cGAS-STING 
in tumor cells was markedly higher in dMMR/MSI CRC 
than pMMR/MSS CRC (Fig. 2), the regulatory mechanisms 

of higher expressions of cGAS and STING in dMMR/MSI 
CRC are still unclear. Because sporadic dMMR/MSI CRCs 
are most commonly caused by MLH1 deficiency, we exam-
ined the association between the expressions of MLH1 and 
cGAS-STING in CRC. However, TCGA dataset revealed 
that the expression of MLH1 was not inversely correlated 
with the expression of MB21D1 (cGAS) and TMEM173 
(STING) in CRCs (Supplementary Fig. S5), suggesting that 
defective or lower expressions of MLH1 might not affect 
the higher expressions of cGAS and STING in dMMR/MSI 
CRC. In a previous report, cGAS and STING were com-
monly suppressed in a wide variety of cancer by epigenetic 
silencing, and promoter methylations of both cGAS and 
STING genes in CRC were higher than those in normal tis-
sues [43]. When comparing methylation levels of cGAS and 
STING genes between MSS and MSI CRCs, the methylation 
level of the STING gene was significantly higher in MSS 
CRC than MSI CRC (Supplementary Fig. S6a). It should be 
noted that the methylation level of STING was inversely cor-
related with the mRNA expression level of STING (Supple-
mentary Fig. S6b). Importantly, our IHC data also revealed 
that the percentage of loss or lower expressions of cGAS and 
STING (intensity 0–1 +) was markedly decreased in dMMR 
CRC compared with pMMR CRC. Thus, higher expressions 
of cGAS and STING in dMMR/MSI CRC might be par-
tially mediated by the lower frequency of their epigenetic 
silencing.

TREX1 is a known IFN-stimulated gene and might be 
upregulated by the activation of the cGAS-STING pathway 
through a negative feedback mechanism [44, 45]. Indeed, in 
MSI CRC, the expression of TREX1 significantly correlated 
with the expressions of several IFN-stimulated genes which 
are mainly regulated by STING signaling (Supplementary 
Fig. S3e). Based on the previous reports and our current cor-
relation data between the expressions of STING and TREX1 
in CRC (Supplementary Fig. S3d and S3e), the high expres-
sion of TREX1 might be modulated by the high activation 
of the cGAS-STING pathway in dMMR/MSI CRC. Because 
the blockade of enzymatic activity of TREX1 could stimu-
late cGAS-STING and type I IFN signaling, TREX1 inhibi-
tion in tumor cells should potentiate the anti-tumor effect 
by activating immune cells in the TME [41]. Indeed, Silson 
et al. reported that microRNA-based TREX1-knockdown 
successfully repressed tumor growth through the immune 
activation of the TME [46]. Therefore, inhibition of TREX1 
might become a novel therapeutic strategy for ICI-based 
immunotherapy of dMMR/MSI CRC by enhancing cGAS-
STING-mediated anti-tumor immune responses.

Recent studies suggested that the cGAS-STING path-
way is necessary for the anti-cancer immune responses 
in many types of cancer, and STING agonists showed a 
favorable effect in promoting CD8+ TILs into the TME 
[47]. Several clinical studies targeting solid tumors using 

Fig. 2   The expression of cGAS-STING is upregulated in tumor cells 
of dMMR CRC and associated with the number of CD8+ TILs a 
Representative IHC staining images for cGAS (upper) and STING 
(lower) in surgically resected CRC specimens. Scale bars, 100  μm; 
original magnification × 200. b The percentage of IHC staining inten-
sity of cGAS (left) and STING (right) in pMMR CRC and dMMR 
CRC tissues. c and d Comparison of H-scores of cGAS (c) and 
STING (d) between pMMR CRC and dMMR CRC. e Representative 
IHC staining images of CD8 and CD4 in pMMR and dMMR CRCs. 
Scale bars, 100  μm; original magnification × 200. f Comparison of 
the number of CD8+ or CD4+ TILs between pMMR and dMMR 
CRCs. g Comparison of the number of CD8+ TILs between cGAS-
low and cGAS-high CRCs (left), or STING-low and STING-high 
CRCs (right). Median values were used to differentiate cGAS-low 
and cGAS-high CRCs, and STING-low and STING-high CRCs. Val-
ues are shown as means ± SD. Blue dots; pMMR, red dots; dMMR. 
**p < 0.01, ****p < 0.0001, n.s. not significant

◂
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STING agonists such as 5,6-dimethylxanthenone-4-acetic 
acid and ADU-S100 have been ongoing [48]. Our current 
findings suggest that the cGAS-STING pathway is impor-
tant for the recruitment of CD8+ TILs in CRC tumors 
including pMMR/MSS CRC, and therefore STING ago-
nists might be applicable in the treatment of CRC, which 
has a low activity of cGAS-STING signaling.

In conclusion, we, for the first time, showed that cGAS/
STING axis is highly upregulated in dMMR/MSI CRC 
compared with pMMR/MSS CRC, and targeting for cGAS/
STING axis may become a novel treatment strategy, when 
ICI treatment is considered.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00262-​022-​03200-w.
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