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A B S T R A C T   

Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to 
insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including 
using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Sem-
aglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can 
modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti- 
inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide’s 
anti-inflammatory effects and the potential pathways involved.   

Introduction 

The global prevalence of diabetes mellitus (DM) is rapidly increasing 
[1]. This chronic metabolic disorder is characterized by elevated blood 
glucose levels and is associated with various metabolic complications 
and harmful pathways affecting lipids and carbohydrates [2]. Within the 
context of diabetes, several detrimental pathways, such as oxidative 
stress, inflammation, necrosis, and fibrosis, are activated and exacer-
bated [2]. Consequently, these pathways can cause damage to cells and 
tissues, leading to disability or even death [2,3]. As a result, DM is now 
recognized as a significant risk factor for severe complications, driving 
the development of herbal and synthetic antidiabetic treatments aimed 
at managing the disease and alleviating its complications [3–6]. Despite 
these efforts, effectively controlling injurious pathways, such as 
inflammation, in the diabetic environment remains a considerable 
challenge [7,8]. 

Semaglutide is an approved medication belonging to the class of 
incretin-based therapies for individuals with type 2 (T2)DM [9]. It has 
demonstrated potent antidiabetic effects and effectively lowers blood 
glucose levels through multiple cellular pathways [9,10]. Recent evi-
dence suggests that semaglutide, like other glucagon-like peptide-1 
(GLP-1) receptor agonists [11–16], may offer additional benefits beyond 
glycemic control and can suppress certain harmful pathways [17–19]. 

However, the precise impact of semaglutide on inflammatory responses, 
a major pathophysiologic pathway implicated in diabetic complications 
[8,20], is not yet fully understood. In this mechanistic review, our 
objective is to explore the potential benefits of semaglutide in mitigating 
inflammatory responses. 

Classifications of diabetes mellitus 

DM is commonly classified into four main types [21]. T1DM, char-
acterized by a deficiency of circulating insulin due to beta cell 
dysfunction or failure [21]. T2DM, the most prevalent form of DM, 
primarily associated with insulin resistance in peripheral tissues [21]. 
Gestational diabetes occurs in pregnant women and is believed to be 
caused by hormonal changes [16]. Additionally, less frequently occur-
ring forms of DM include latent autoimmune diabetes in adults (LADA), 
maturity-onset diabetes of the young (MODY), and secondary diabetes 
resulting from conditions like pancreatitis or certain medications, such 
as corticosteroids. These specific forms collectively form the fourth 
category of DM [21–23]. 

Inflammation, roles in diabetic complications 

Chronic hyperglycemia, characterized by high blood sugar levels, is 
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strongly associated with increased incidence of inflammatory reactions 
[24–26]. These inflammatory reactions play a significant role in the 
development of diabetes mellitus and its associated complications 
[27,28]. Elevated glucose levels can activate immune cells and trigger 
the release of inflammatory cytokines, making chronic hyperglycemia a 
key driver of inflammation in diabetes [29]. Inflammation is involved in 
the pathophysiology of insulin resistance and diabetes, disrupting in-
sulin signal transduction [10]. Additionally, mounting experimental and 
clinical evidence confirms that inflammation is implicated in the path-
ophysiology of diabetes-induced vascular disorders, including diabetic 
retinopathy, diabetic nephropathy, diabetic neuropathy, and cardio-
vascular disorders [8,27,28,30]. It also contributes to other diabetic 
complications, such as fatty liver [31]. Moreover, patients with diabetic 
complications typically exhibit elevated levels of inflammatory cyto-
kines in their plasma [28,32]. 

Numerous inflammatory mediators, including tumor necrosis factor- 
alpha (TNF-α), interleukins (IL-1β, IL-6, IL-18), matrix metal-
loproteinases (MMPs), chemokine ligand 2 (CCL-2), monocyte chemo-
attractant protein-1 (MCP-1), nuclear factor kappa B (Nf-κB), 
transforming growth factor-beta (TGF-β), E-selectin, various adhesion 
molecules (ICAM-1, VCAM-1), toll-like receptors (TLRs), adiponectin, 
endothelial cell-selective adhesion molecule (ESAM), and interferon- 
gamma (INF-γ), are strongly implicated in diverse forms of diabetic 
complications [33–35]. Furthermore, these potent biological elements 
are highly expressed and secreted in the diabetic context, supporting the 
“inflammation theory” that emphasizes the pivotal roles of inflamma-
tory responses in the pathophysiology of diabetes mellitus and its 
associated complications [28,36]. Therefore, understanding and 
addressing the inflammatory component of diabetes is crucial for the 
development of effective therapeutic strategies aimed at preventing or 
mitigating complications associated with this disease. 

GLP-1 receptor agonists and semaglutide 

Incretin-based medications are a class of drugs commonly used in the 
management of T2DM (Table 1) [37]. These medications target the 
incretin system, which plays a crucial role in regulating blood sugar 
levels [37,38]. Incretins are hormones released by the enteroendocrine 
L-cells of the gastrointestinal (GI) tract in response to food intake [38]. 
They stimulate the release of insulin from the pancreas and reduce the 
production of glucagon, helping to normalize postprandial glucose 
levels [38,39]. Incretin-based medications mimic the actions of natural 
incretins, such as GLP-1 and gastric inhibitory hormone (GIP). They 
increase insulin secretion from the pancreas, decrease glucose produc-
tion by the liver, slow down stomach emptying, and suppress appetite 
[10]. There is also evidence suggesting that GLP-1 up-regulates insulin 

expression [40] (Fig. 1). 
GLP-1, a 30-amino acid peptide, is produced from the pre- 

proglucagon within enteroendocrine L-cells located in the GI tract 
[41]. GLP-1 receptor agonists (GLP-1RAs) are a category of antidiabetic 
medications designed to induce hypoglycemic effects by replicating the 
actions of incretin hormones, particularly through the activation of GLP- 
1 receptors [41,42]. These medications act on the GLP-1 receptor, a type 
of G-protein coupled receptor primarily found on the surfaces of 
pancreatic beta cells [42]. Activation of the GLP-1 receptor leads to the 
generation of cyclic adenosine monophosphate (cAMP), subsequent 
cellular depolarization, and insulin secretion from pancreatic beta cells 
in response to feeding [42–44]. 

Semaglutide is a specific type of incretin-based medication known as 
a GLP-1 analogue. It binds to its specific receptors on pancreatic beta 
cells, enhancing insulin secretion in response to postprandial hyper-
glycemia (Fig. 1) [42,55]. It also inhibits glucagon release, which helps 
reduce excessive glucose production by the liver [55]. Additionally, 
semaglutide can promote a feeling of fullness, reduce food cravings, and 
lead to a reduction in food intake and, consequently, weight loss in some 
individuals [55,56]. There is also evidence suggesting that semaglutide 
induces the expression of Glut-4 [57]. Semaglutide is often administered 
as an injectable medication, but it is also available in an oral form, 
making it the only oral GLP-1 analogue currently available [9,58]. Three 
forms of semaglutide, namely Ozempic, Rybelsus, and Wegovy, have 
been approved by the FDA [59,60]. Like all synthetic drugs, semaglutide 
may induce some adverse effects, such as nausea and diarrhea [61]. 

Semaglutide and inflammation 

While semaglutide is primarily known for its metabolic benefits, such 
as regulating glucose levels, promoting weight loss, and normalizing 
lipid profiles, there is emerging evidence suggesting that it may also 
have additional anti-inflammatory effects [20,62]. In fact, there is 
strong evidence indicating that semaglutide can modulate or reduce 
inflammatory processes [63–65]. Considering that inflammation is a key 
factor in many diabetic complications, these anti-inflammatory effects 
of semaglutide could provide additional benefits, particularly in the 
cardiovascular system [66]. Therefore, semaglutide may have protective 
roles in addition to its metabolic benefits, potentially benefiting the 
cardiovascular system [66,67], liver tissue [68], and kidneys [69]. 

Although there is still limited evidence exploring the specific 
mechanisms involved, current knowledge suggests two major pathways 
by which semaglutide exerts its anti-inflammatory effects: reducing in-
flammatory cytokine levels and modifying immune system activity. It is 
important to note that these pathways may overlap and be inter-
connected in many cases. In the following sections, we will present the 

Table 1 
Pharmacological properties of the main approved forms of GLP-1 receptor 
agonists.   

Name Half 
life 

Administration Ref. 

GLP-1 
RA 

Exenatide 2.4 h Twice daily 
subcutaneously 

[45–47] 

Exenatide 
(extended-release) 

– Once weekly 
subcutaneously 

[45,46,48,49] 

Liraglutide 13 h Once daily 
subcutaneously 

[45,46,50] 

Albiglutide 4–7 
days 

Once weekly 
subcutaneously 

[45,46,51] 

Dulaglutide 5 days Once weekly 
subcutaneously 

[45,46,52] 

Lixisenatide 3 h Once daily 
subcutaneously 

[45,46,53] 

Semaglutide 168 h One weekly 
subcutaneously 
or once daily orally 

[45,46,54]  

Fig. 1. Semaglutide modulates post-prandial glucose levels thru 
several pathways. 
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latest findings regarding the anti-inflammatory roles of semaglutide and 
discuss the possible mechanisms involved, drawing from both clinical 
trials and experimental studies.See (Table 2). 

Reducing the inflammatory cytokines 

Semaglutide, a GLP-1 receptor agonist, has been shown to have anti- 
inflammatory effects by suppressing the release of pro-inflammatory 
cytokines, such as IL-6 and TNF-α [63,70]. In an animal model of sei-
zures using pentylenetetrazole, semaglutide demonstrated neuro-
protective effects and improved cognitive function by inhibiting the 
release of inflammatory cytokines mediated by the NLRP3 inflamma-
some, a complex involved in regulating the innate immune system and 
inflammatory responses. This effect was observed in mice [70]. 

In another animal seizure model, semaglutide reduced inflammation 
signaling pathways, including p38 MAPK, c-Jun-Nf-κB p65, in brain 
tissues of rats [71]. These neuroprotective effects were also demon-
strated in another experiment [72]. In a study using male Swiss albino 
mice, semaglutide reduced levels of TNF-α, IL-6, and IL-1β in brain tis-
sues during endotoxemia and polymicrobial sepsis, leading to improved 
cognitive abilities [72]. Additionally, semaglutide reduced lung injury 
in a rat model of lipopolysaccharide (LPS)-induced acute lung injury by 
suppressing TNF-α, IL-6, and Nf-κB activities [73]. 

Clinical evidence also supports the anti-inflammatory effects of 
semaglutide. In a study involving 40 men with T2DM, treatment with 1 
mg of semaglutide per week for 6 months reduced circulating levels of 
inflammatory cytokines TNF-α and IL-6 [63]. This effect may contribute 
to a reduction in systemic inflammation and potentially lower the risk of 
cardiovascular disorders [63]. A more recent clinical study reported 
anti-inflammatory effects of semaglutide (1 mg/week) in patients with 
T2DM, although these effects were not significant after 3 months [64]. 
Furthermore, a meta-analysis examining the effects of semaglutide on 
the inflammatory cytokine high-sensitive C-reactive protein (hsCRP) 
found a significant reduction in its levels in patients with T2DM [74]. 

In a recent clinical study, semaglutide improved renal function in 
patients with T2DM by reducing inflammatory responses [65]. It has 
also been suggested that semaglutide may have greater anti- 
inflammatory potential in suppressing the inflammatory storms 
induced by COVID-19 compared to other GLP-1 mimetics [75,76]. 
Overall, the available evidence suggests that semaglutide has the ability 
to attenuate or block the release of inflammatory cytokines in various 
tissues [77] (Tables 3 and 4). 

Modulation of immune system response 

Semaglutide has the ability to modulate immune system activity 
through various pathways [62,66,81]. GLP-1 receptors are found on 

Table 2 
Pharmacokinetic properties of oral and injective Semaglutide.   

Oral Semaglutide Injective Semaglutide 

Absorption  
Bioavailability 0.5–1 % 89 % 
Steady state plasma level 14.6 nmol/L (14 mg once 

daily) 
123 ng/ml (1 mg weekly 
once) 

Time to achieve steady 
state level 

4–5 weeks 4–5 weeks 

Time to achieve maximum 
level 

1 h 1–3 days 

Distribution  
Protein binding > 99 % > 99 % 
Metabolic pathway Proteolytic degradation followed by fatty acid 

oxidation 
Volume of distribution 8 Liters 12.5 Liters 
Elimination profile  
Elimination t1/2 7 days 7 days 
Rate of clearance 0.04 L/hour 0.05 L/hour  

Table 3 
Experimental studies suggesting anti-inflammatory properties of semaglutide 
(TNF-α = tumor necrosis factor alpha, IL-6 = interleukin-, Nf-κB = nuclear factor 
kappa b, NLRP3 = NLR family pyrin domain containing 3 inflammasome, MAPK 
= mitogen activated protein kinase, c-Jun = transcription factor Jun).  

Effects Model Treatment Ref. 

Reduced the TNF-α, IL-6 and Nf-κB 
signalings 

LPS-induced lung 
injury in rats 

Semaglutide [73] 

Blocked the NLRP3 activity PTT-induced 
seizure in C57/ 
BL6J mouse 

Semaglutide [70] 

Reduced the TNF-α, IL-6, and IL-1β 
levels in brain tissues 

Endo-toxemia in 
male Swiss albino 
mice 

Semaglutide [72] 

Reduced p38 MAPK, c-Jun- NF-κB 
p65 inflammation signaling 
pathway in brain tissues 

Animal model of 
seizure 

Semaglutide [71] 

Reduced intramuscular fat and 
improved muscle function by 
lowering the, TNF-α, IL-6, IL-1β 
levels 

Male C57BL/6 
mice 

Semaglutide [78] 

Declined TNF-α, and IL-6 serum and 
heart tissues 

Obese mouse Semaglutide [62] 

Decreased vascular inflammation and 
micro-calcifications 

Obese rabbit Semaglutide [79] 

Attenuated inflammatory markers 
and improved cardiac function 

Obese mice Semaglutide [80]  

Table 4 
Clinical or human evidences explored anti-inflammatory effects of semaglutide 
(CKD = chronic kidney disease, hsCRP = high-sensitive C-reactive protein).  

Treatment Patients/ 
samples 

Dose/ 
duration 

Effects Ref. 

Semaglutide 40 men with 
DM 

1 mg/week/6 
months/ 
injection 

Reduced the 
inflammatory 
cytokines of TNF-α 
and IL-6 

[63] 

Semaglutide 20 patients 
with T2DM 

1 mg/week/3 
months/ 
injection 

Minor changes in 
some inflammatory 
cytokines (not 
meaningful) e.g. 
CRP and IL-6 

[64] 

Semaglutide Patients with 
T2DM 

– Semaglutide is 
associated to 
reduced levels of 
hsCRP vs baseline in 
patients with T2DM 

[74] 

Semaglutide Obese patients 
with T2DM 

0.25 mg/week 
for 4 weeks, 
increased to 
0.50 mg/week 
for 16 weeks, 
and then to 1 
mg/week for 
10 months 

Semaglutide 
improved psoriasis 
and epicardial fat 
volume and 
inflammation 

[89] 

Semaglutide Patients with 
T2DM and CKD 

3 mg/day/ 
9months/orally 

Semaglutide 
improved renal 
function probably 
by lowering 
inflammation 

[65] 

Semaglutide Epicardial fat 
biopsies of 
patients 
undergoing 
open-heart 
surgery 

– Semaglutide 
reduced the 
neutrophils 
adhesion into 
endothelial cells and 
enhances the 
angiogenesis process 

[67] 

Semaglutide Epicardial fat 
biopsies of 
patients 
undergoing 
cardiac surgery 

– Semaglutide 
induced anti- 
thrombotic and anti- 
atherosclerotic 
effects by 
suppressing 
neutrophils’ activity 

[87]  

H. Yaribeygi et al.                                                                                                                                                                                                                              



Journal of Clinical & Translational Endocrinology 36 (2024) 100340

4

different immune cells, such as neutrophils and eosinophils [82–85], 
and their activation has modulatory effects on immune responses and 
inflammatory processes [83,84]. Evidence suggests that semaglutide can 
activate these receptors and modulate immune system activity [83,86]. 
McLean et al. demonstrated that semaglutide activates GLP-1 receptors 
on endothelial and hematopoietic cells in mice [86]. They observed a 
subsequent reduction in inflammatory cytokines such as TNF-α, Abcg1, 
TGF-β1, Cd3g, and CCL-2 in hepatocytes [86]. Emerging evidence has 
also suggested similar benefits in epicardial fat [67]. 

A recent study reported that semaglutide decreases inflammatory 
processes in epicardial fat of patients undergoing open-heart surgery 
[67]. This study demonstrated that semaglutide reduces the activity of 
neutrophils and their adhesion to endothelial cells in human epicardial 
fat, which expresses GLP-1 receptors [67]. Another recent study pro-
vided further evidence suggesting that semaglutide suppresses neutro-
phil activation in epicardial fat collected from patients undergoing 
cardiac surgery [87]. Since the neutrophil-to-lymphocyte ratio is asso-
ciated with cardiovascular risk [88], these anti-inflammatory effects of 
semaglutide may translate into additional cardiac benefits [66,67,87]. 

Furthermore, semaglutide modulates immune system activity by 
decreasing the recruitment or activity of immune cells [66,68]. Raki-
povski et al. demonstrated that semaglutide reduces leukocyte recruit-
ment and rolling and decreases atherogenic plaque formation in mice 
[66]. Hansen et al. reported that semaglutide suppresses the recruitment 
of cytotoxic T-cells (CD8 + ) into hepatocytes in an animal model of non- 
alcoholic steatohepatitis (NASH) [54]. Other suggested mediating 
pathways by which semaglutide modifies immune system activity 
include reducing the proliferation of inflammatory cells [62], lowering 
the uptake of activated macrophages in blood vessels (resulting in fewer 
vascular injuries) [79], and reducing the development of atherosclerotic 
plaque lesions [66]. In summary, semaglutide can modify immune sys-
tem function through various molecular mechanisms. 

Indirect pathways 

Inflammatory processes can be activated in response to other path-
ways, such as oxidative stress [90]. Additionally, they are associated 
with pathological conditions such as obesity, which is characterized by 
underlying chronic inflammation [62]. There is evidence suggesting that 
semaglutide indirectly exerts anti-inflammatory effects by suppressing 
these mediating mechanisms [19,62,80]. It has been shown to reduce 
oxidative stress-dependent inflammation in H9c2 cells treated with LPS 
through an AMPK-dependent pathway, leading to decreased production 
of reactive oxygen species (ROS) and lower levels of NF-κB, TNF-α, and 
IL-1β [19]. Furthermore, semaglutide has been found to ameliorate 
obesity-induced inflammation by down-regulating S100a8, S100a9, and 
Cxcl2 in neutrophils of obese mice [62,80]. It has also demonstrated a 
reduction in obesity-dependent inflammation in obese mice [91]. These 
effects may represent additional molecular links between semaglutide 
and the reduction of inflammation. 

Cardiovascular benefits of anti-inflammatory effects of 
semaglutide 

The anti-inflammatory effects of semaglutide have been shown to 
provide cardiovascular benefits in several experiments [62]. Semaglu-
tide has been found to protect endothelial progenitor cells by inhibiting 
the expression of miR-155 (a microRNA) in macrophage exosomes [62]. 
MiR-155 induces inflammation in macrophage exosomes and impairs 
the function of endothelial progenitor cells, so its inhibition is associated 
with improved endothelial function [62]. Semaglutide has also been 
shown to improve the function of aortic endothelial cells and induce the 
angiogenesis process in the myocardium [67]. In various experiments, 
semaglutide has reduced myocardial injury and improved cardiac 
function by suppressing inflammatory responses [19,62,80]. These anti- 
inflammatory effects have resulted in pro-thrombotic, anti- 

atherosclerotic, and anti-atherogenic benefits in animal [66,79,86] and 
human [67,80] studies. Furthermore, semaglutide may improve 
vascular structure and preserve endothelial permeability by normalizing 
the elements involved in the extracellular matrix and cytoskeleton, such 
as Coll5a1, Lama4, and Sparc [91,92]. Therefore, it appears that sem-
aglutide may protect the cardiovascular system, improve cardiac func-
tion, and promote ventricular thickening through its anti-inflammatory 
effects (Fig. 2) [79,80,93]. 

Conclusion 

Inflammation plays a significant role in the pathophysiology of dia-
betes and its associated complications, and controlling inflammation 
could be a major target for attenuating or preventing these disorders. 
Semaglutide, a long-acting GLP-1 analogue, has potent antidiabetic 
properties and normalizes glucose homeostasis through several path-
ways. Recent evidence suggests additional anti-inflammatory effects of 
semaglutide. While there is still limited available evidence, current 
knowledge suggests that semaglutide is able to reduce circulating in-
flammatory cytokines and modulate immune system responses. Further 
studies are needed to fully understand all the pathways involved, but 
current evidence strongly suggests cardiovascular and hepatic benefits 
for semaglutide based on its potent anti-inflammatory effects. 
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Fig. 2. Semaglutide improves cardiovascular function by its anti-inflammatory 
benefits thru several mechanisms. It can preserves endothelial permeability, 
reduce immune cells recruitment into heart tissues, decrease atherosclerotic 
and thrombotic processes and induce angiogenesis in myocardium. 
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