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Abstract
Excessive hepatic lipid accumulation is closely linked to inflammation, insulin resistance, and metabolic syndromes. We 
hypothesized that a combined extract containing Schisandra chinensis (SCE) could alleviate hepatic lipid accumulation. 
Male Sprague–Dawley rats fed a high-sucrose diet (HSD) were randomly assigned to three groups (n = 6): normal diet (ND), 
HSD (60% kcal from sucrose), and HSD + SCE (HSD with 2.44% SCE). Liquid chromatography–tandem mass spectrom-
etry revealed that SCE contains chlorogenic acid (5.514 ± 0.009 mg/g) and schisandrin (0.179 ± 0.002 mg/g) as bioactive 
components. SCE did not alter the body weight, fat mass, lean mass, or glucose levels. Strikingly, SCE effectively reduced 
the plasma triglyceride (TG) and hepatic TG levels compared to the HSD group. Adiposity reduction is due to decreased 
activity of hepatic de novo lipogenic enzymes. These results indicated that SCE has nutraceutical potential for the preven-
tion and treatment of hepatic steatosis.
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Introduction

Hepatic steatosis, also known as fatty liver disease, is 
a condition in which excess fat accumulates in the liver 
cells. This can lead to inflammation and liver damage, and 

in some cases, progress to more severe forms of liver dis-
ease, such as non-alcoholic steatohepatitis (NASH) and 
cirrhosis (Angulo, 2002; Nature Medicine, 2017). The 
prevalence of fatty liver disease is increasing worldwide 
and is now considered a major public health concern. The 
global prevalence of fatty liver disease is estimated to be 
approximately 25%, with higher rates in some regions such Haneul Lee, Eun Young Kang, and Joowon Lee have contributed 
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as South America, the Middle East, and Asia (Lazarus 
et al., 2022a; b; Younossi et al., 2023). Complications of 
fatty liver disease include liver fibrosis, which can pro-
gress to cirrhosis, liver failure, and increased risk of liver 
cancer. Fatty liver disease is associated with an increased 
risk of cardiovascular diseases, type 2 diabetes, and met-
abolic syndromes (Diehl and Day, 2017; Lazarus et al., 
2022a; b). Fatty liver disease is important because of its 
potential to progress to more severe forms of liver disease 
and its association with other metabolic and cardiovascular 
disorders (Donnelly et al., 2005).

Dietary modifications, weight loss, and regular exercise 
are recommended to prevent and treat non-alcoholic fatty 
liver disease (NAFLD). However, adherence to lifestyle 
changes is challenging (Vilar-Gomez et al., 2016). Although 
pharmacotherapeutic agents, such as metformin and thiazo-
lidinediones, are available for NAFLD, their use is limited 
owing to safety concerns and side effects (Polyzos et al., 
2019). The U.S. Food and Drug Administration has not 
approved any drugs specifically for the treatment of NAFLD; 
however, metformin, pioglitazone, vitamin E, and statins 
have been used off-label (Younossi et al., 2016). Metformin 
showed only marginal improvement in the hepatic tissue. 
Pioglitazone has been shown to reduce liver fat content and 
improve liver enzyme levels. However, it is associated with 
side effects, such as weight gain, edema, and increased risk 
of bone fractures (Cusi et al., 2016; Chalasani et al., 2012). 
To overcome these limitations, research on the develop-
ment of various extracts and functional food ingredients is 
increasing, and there is a growing interest in natural pre-
ventive medicine and related markets (Wang et al., 2023). 
Many functional foods and bioactive substances have been 
developed for this purpose (Pathak et al., 2023).

Schisandra chinensis (SCE) is a valuable natural resource 
due to its pharmacological effects (Kwon and Park, 2008). 
It has been reported to have antioxidant, blood glucose-reg-
ulatory, and immunomodulatory effects (Jeong et al., 2009; 
Kim et al., 2009; Park et al., 2012a; You et al., 2023). In 
addition, SCE extract has been shown to reduce triglyceride 
(TG) and cholesterol levels in the blood of high-fat-induced 
obese mice (Song et al., 2013). Considering these benefits, 
the development of a combined extract containing Schisan-
dra chinensis to treat hepatic steatosis has been of great 
interest. Identifying the bioactive compounds in SCE can 
offer valuable information on their mechanism of action and 
contribute to the standardization of herbal medicines and 
functional foods, thereby ensuring the consistency and effec-
tiveness of these products. This study aimed to identify the 
bioactive compound in SCE and assess its effects on growth 
performance, body composition, and hepatic TG metabolism 
in rats fed a high-sucrose diet. This study explored the poten-
tial application of SCE as a nutraceutical for the treatment 
of hepatic steatosis.

Materials and method

Preparation of a combined extract containing 
Schisandra chinensis (SCE)

SCE was extracted with distilled water at approximately 
98–100 ℃ for 2 h. The crude extract was filtered through 
microfilter paper and concentrated under reduced pressure at 
50 ℃ or lower. Final sterilization was followed at 95–98 ℃ 
for 20 min. Chlorogenic acid and schisandrin were quanti-
tatively analyzed using liquid chromatography as standard 
substances for SCE.

Sample preparation for analysis

SCE (10 g) was ground to a powder, mixed with 50 mL 
of 80% methanol, and homogenized at 8000 rpm (WiseTis 
homogenizer, HG-15D, Won-ju, Korea). The homogenized 
sample was sonicated for 30 min, then, filtered through a 
CHMLAB No. F1093-110 qualitative filter paper. The 
extracted sample was concentrated by a rotary evaporator 
(Eyela Rotary Vacuum Evaporator NN series, Eyela, Tokyo, 
Japan) under reduced pressure at 35 °C. For analysis, 1 µg/
mL of dissolved sample in 90% methanol and centrifuged 
for 5 min at 14,000 g x (LaboGene 1730 R, LaboGene, 
Daejeon, Korea), after which the supernatant was filtered 
using a 13 mm diameter Nylon syringe filter with a 0.22 µm 
pore size (Sartorius, Darmstadt, Germany). The sample was 
stored at − 21 °C until analysis.

LC–MS/MS conditions

The content of chlorogenic acid and schisandrin in SCE was 
analyzed using a Xevo TQ-MS triple quadrupole mass spec-
trometer (Waters, Manchester, UK) equipped with a Waters 
Acquity UPLC system (Waters, Milford, MA, USA). The 
column was a ZORBAX Eclipse Plus C18 rapid resolution 
HD (2.1 × 100 mm, 1.8 Micron). A mobile phase consisting 
of 0.1% formic acid in acetonitrile (Thermo Fisher Scien-
tific, cat. LS120-212) (A) and 0.1% formic acid in distilled 
water (Thermo Fisher Scientific, cat. LS118-212) (B) was 
used to inject 5 µL of the sample at a flow rate of 0.2 mL/
min and analyzed by linear gradient elution. The mobile 
phase comprised of 5% A and 95% B from 0 to 2 min, 
100% A from 6 to 12 min, and 5% A and 95% B from 15 to 
18 min. The multiple reaction monitoring conditions were 
as follows: detection was operated in electrospray ionization 
source in positive ion mode, capillary voltage 3.0 kV, source 
temperature 150 °C, desolvation temperature 350 °C, desol-
vation gas flow rate 300 L/Hr. The cone voltage and collision 
energy were individually optimized for chlorogenic acid and 
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schisandrin (Table 1). Precursor/product transitions (m/z) 
were 355 > 163 for chlorogenic acid, 433 > 415 for schisan-
drin. Mass data were processed using TargetLynx software 
(version 4.1, Waters).

Animals and diets

This study was approved by the Institutional Animal Care 
and Use Committee (IACUC) of Hanyang University (HY-
IACUC-2019-0182A). Eight-week-old Sprague–Dawley rats 
(Koatech Animal, Seoul, Korea) were purchased and housed 
under controlled conditions of 22 ± 1 ℃, 40–50% humid-
ity, and a 12:12 light–dark cycle with ventilation facilities 
throughout the experimental period. After 1 week of adapta-
tion, the rats were randomly assigned to three groups (n = 6): 
(1) normal diet (ND), (2) high-sucrose diet (HSD, 60% kcal 
from sucrose, negative control), and (3) HSD + SCE (HSD 
with 2.44% SCE). Food and water were provided ad libitum 
throughout the experiments. The SCE dose was calculated 
based on the equivalent human dose (11 g/60 kg body weight 
(bw)) (Table S1).

Growth performance and body composition

Growth performance, including body weight, weight gain, 
total energy intake, and water intake, was assessed weekly. 
Total energy intake (kcal) was calculated from the feed 
intake. Body composition analysis was conducted using 
dual-energy X-ray absorptiometry (DEXA; Medikors, 
Seongnam-si, Korea) to determine lean mass (g), fat mass 
(g), and bone mineral density (mg/cm2). To measure body 
composition, rats were anesthetized with ketamine (100 mg/
kg bw; Yuhan Co., Seoul, Korea) and xylazine (10 mg/kg 
bw; Bayer, Leverkusen, Germany) by intraperitoneal injec-
tion 6 h fasting to measure body composition.

Fasting blood glucose and oral glucose tolerance 
test (OGTT)

Fasting blood glucose levels were measured every 2 weeks 
from the rats’ tails after 6 h of fasting using an Accu-Chek 
glucometer (Roche, Basel, Switzerland). After the rats were 
treated with SCE for 8 weeks, OGTT was performed after 
6 h of fasting by oral administration of 2 g/kg bw of glucose. 

Blood glucose levels were measured from the tail at 0, 15, 
30, 60, 120, and 240 min using a glucometer (Roche).

Plasma and hepatic TG contents

Blood was collected from rats fasted for 6 h from the retro-
orbital cavity using heparin-treated tubes. Plasma was sepa-
rated by centrifugation (2000× g, 15 min, 4 °C). Hepatic 
tissue lysates were collected using RIPA buffer. The TG 
levels in the plasma and liver were measured using com-
mercially available kits (Wako, Osaka, Japan). Absorbance 
was measured at 600 nm using a spectrophotometer (BioTek, 
Winooski, VT, USA).

Immunoblotting

Total protein in the liver tissue was evaluated by lysing 
the tissue in NP-40 lysis buffer (Thermo Fisher Scientific, 
Waltham, MA, USA) containing a phosphatase and protease 
inhibitor cocktail (Cell Signaling, Danvers, MA, USA). A 
bicinchoninic acid (BCA) assay was used to determine 
the protein concentration in the lysates. Protein samples 
were mixed with 2 × Laemmli buffer (Bio-Rad, Hercules, 
CA, USA) and proteins were separated using 10% sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE). The separated proteins were transferred onto poly-
vinylidene fluoride membranes. The membrane was blocked 
with 5% bovine serum albumin (GenDEPOT, Barker, TX, 
USA) in Tris-buffered saline (TBS) containing 0.1% Tween 
20. Primary antibodies (1:1000), including acetyl-CoA car-
boxylase 1 (ACC1), fatty acid synthase (FAS), and stearoyl-
Coenzyme A desaturase 1 (SCD1), were used for incubation 
overnight at 4 ℃. After that, the membrane was incubated 
with the HRP-conjugated secondary antibody (1:3000) for 
1 h at 20 ℃. Proteins were quantified using Image Lab soft-
ware (Bio-Rad).

Statistical analysis

All data are presented as the mean ± standard error of the 
mean (SEM). All experimental results were analyzed using 
Prism 9 (GraphPad Software, San Diego, CA, USA) and sta-
tistical significance was evaluated using an unpaired t-test. 
Statistical significance was defined as p < 0.05.

Table 1   Precursor/product 
transitions and parameters for 
multiple reaction monitoring 
(MRM)

*ESI electrospray ionization, CV cone voltage, CE collision energy, RT Retention time

Analyte Precursor ion 
(m/z)

Product ion 
(m/z)

Ion mode CV* (V) CE* (V) RT* (min)

Chlorogenic acid 355 163 ESI+ 60 5 4.50
Schisandrin 433 415 ESI+ 25 5 6.58
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Results and discussion

LC–MS/MS determined the concentration 
of chlorogenic acid and schisandrin in SCE

Qualitative and quantitative analyses of chlorogenic acid 
and schisandrin in SCE were performed using liquid 
chromatography-mass spectrometry. As shown in Table 2, 
chlorogenic acid and schisandrin concentrations ranged 
from 0.01 to 0.5  µg/L. The calibration equations were 
Y = 889.46x–19.194 (R2 = 0.999) and Y = 2313.3x–38.296 
(R2 = 0.999) for chlorogenic acid and schisandrin, respec-
tively. The limits of detection and quantification for chloro-
genic acid and schisandrin were estimated to be 0.001 and 
0.003 g/mL, respectively. Chlorogenic acid was quantified as 
5.514 ± 0.009 mg/g and schisandrin as 0.179 ± 0.002 mg/g. 
The effects of extracts including chlorogenic acid and 
schisandrin on the SCE were investigated. Chlorogenic 
acid is a phenolic compound with many beneficial prop-
erties, such as antioxidative activity (Farah et al., 2008), 
modulation of glucose metabolism (Ong et al., 2012), and 
prevention of cardiovascular risk factors (Li et al., 2020). 
Schisandrin, a dibenzocyclooctadiene lignan, has diverse 
physiological activities, including anti-inflammatory (Guo 
et al., 2008) and hepatoprotective effects (Park and Yoon, 
2015).

Growth performance and body composition

Tracking physical phenotypes such as body weight, feed 
intake, and weight gain in experimental animals studying 
metabolic syndrome is a fundamental and essential research 
topic (Kang et al., 2021; Kim et al., 2020; Wong et al., 
2016). During the 8-week intervention period, growth fac-
tors, including initial and final body weights, feed intake, 
and energy intake, were examined (Table 3). The initial body 
weight of the experimental group was 296–299 g, and no 
statistically significant differences were observed among 
the groups. The HSD group showed a significant increase 
in body weight (p < 0.05) and weight gain (p < 0.01) com-
pared with the ND group. However, no significant changes 
in body weight or weight gain were observed following SCE 

administration. Energy intake was calculated by converting 
the amount of feed consumed into calories. Changes in feed 
or energy intake imply the modulation of appetite. Analysis 
of total energy intake in this study showed no significant 
changes in any of the groups, indicating that HSD increases 
body weight regardless of appetite regulation. These findings 
implied that SCE administration did not alter growth per-
formance traits in rats with HSD-induced hepatic steatosis.

The use of DEXA in metabolically disordered mice 
allows the assessment of various physical phenotypes 
related to body composition, including lean mass, fat 
mass, and bone mineral density (Jeong et al., 2022; Kim 
et al., 2017). It is a non-invasive and widely used method 
for evaluating overall body composition, fat, and lean mass 
distribution in experimental animals (Kishi et al., 2023; 
Nazarian et al., 2009). DEXA was used to trace detailed 
changes in body composition such as lean mass, fat mass, 
and bone mineral density (Table 3). HSD successfully 
induced adiposity (p < 0.05) without altering lean mass. 
However, as with growth performance, SCE did not modu-
late body adiposity (g or %), lean mass, or bone mineral 
density compared to the HSD. These findings suggest that 

Table 2   Quantification of chlorogenic acid and schisandrin from SCE by LC–MS/MS

LOD Limit of detection, LOQ Limit of quantification
a LOD and LOQ were estimated as 3.3 (LOD) or 10 (LOQ) × standard deviation of the blank/slope of the calibration curve

Analyte Content ± SD (mg/g) Equation (y = ax + b) Calibration range 
(µg/mL)

Linearity (R2) LODa LOQa

µg/mL

Chlorogenic acid 5.514 ± 0.009 Y = 889.46x−19.194 0.01–0.5 0.999 0.001 0.003
Schisandrin 0.179 ± 0.002 Y = 2313.3x−38.296 0.01–0.5 0.999 0.001 0.003

Table 3   Growth performance and body composition in rats fed a 
high-sucrose diet

Values are expressed as mean ± standard error of the mean (n = 6)
ND normal diet, HSD high-sucrose diet, 60% kcal from sucrose; SCE, 
a combined extract containing Schisandra chinensis
*,**p-values compared to ND and HSD

ND HSD HSD + SCE

Growth factor
 Initial body weight (g) 299 ± 1 296 ± 1 298 ± 3
 Final body weight (g) 402 ± 5 424 ± 3* 421 ± 8
 Weight gain (g/week) 107 ± 2 126 ± 3** 123 ± 6
 Total energy intake (kcal) 4,496 ± 43 4,395 ± 61 4,466 ± 63
 Final water intake (g) 206 ± 10 180 ± 5 144 ± 6

Body composition
 Lean mass (g) 284 ± 6 300 ± 4 288 ± 4
 Fat mass (g) 88.8 ± 2.6 98.7 ± 2.8* 101 ± 4
 Fat in tissue (%) 23.2 ± 0.4 24.6 ± 0.1* 25.6 ± 0.7
 Bone mineral density (mg/

cm2)
0.22 ± 0.0 0.24 ± 0.0* 0.25 ± 0.0
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the administration of SCE for 8 weeks did not noticeably 
affect the body composition of rats with HSD-induced 
hepatic steatosis.

SCE did not alter fasting glucose level and OGTT​

Type 2 diabetes mellitus is associated with insulin resist-
ance, fatty liver-related obesity, and cardiovascular dis-
eases (Lee et al., 2020). In this study, mice were fed a 
high-sucrose diet to investigate biomarkers associated with 
type 2 diabetes and glucose homeostasis. Two commonly 
used in vivo markers for diabetes diagnosis and monitor-
ing are fasting glucose levels and OGTT (Roden, 2016). In 
rodents, elevated fasting glucose levels indicate impaired 
glucose regulation, which is a hallmark of diabetes (Muni-
yappa et al., 2008). The OGTT is a widely used diagnostic 
test for diabetes in rodents. It involves administering a 
glucose solution orally and measuring blood glucose lev-
els at regular intervals over a set period. An elevated area 
under the curve (AUC) characterizes impaired glucose 
tolerance after administering glucose, indicating reduced 
insulin sensitivity or impaired insulin secretion (Andriko-
poulos et al., 2008).

This study assessed fasting glucose levels at weeks 2, 
4, and 8 (Fig. 1A). Throughout the intervention period, all 
groups maintained their blood glucose levels within the 
normal range (approximately 100 mg/dL), and there were 
no significant changes among the groups. The results of 
the OGTT are shown in Fig. 1B. In all groups, blood glu-
cose levels peaked 15–30 min after glucose administration 
and then gradually decreased. There were no significant 
differences in blood glucose levels or AUC between the 
groups. Therefore, there is insufficient evidence that SCE 

improves the risk factors for type 2 diabetes, including 
fasting glucose levels and OGTT results.

SCE decreases TG in plasma and liver tissue

Plasma TG levels are crucial in the development and pro-
gression of hepatic steatosis (Go et al., 2014; Wang et al., 
2015). Elevated plasma TG levels are frequently observed 
in individuals with NAFLD and are strongly associated with 
insulin resistance and dyslipidemia (Arca et al., 2020; Go 
et al., 2014; Heeren and Scheja, 2021; Miller et al., 2011). 
Increased plasma TG levels can result from the increased 
hepatic production of very low-density lipoproteins (VLDL) 
or decreased clearance of TG-rich lipoproteins (Minehira 
et al., 2008). Excessive accumulation of plasma TG can lead 
to its deposition in various tissues, including the liver (Mir 
et al., 2022). Hepatic TG accumulation is a key characteristic 
of NAFLD and closely linked to the development of liver 
steatosis, inflammation, and fibrosis (Diehl and Day, 2017; 
Samuel and Shulman, 2019; Targher et al., 2010). Excessive 
dietary intake of free fatty acids, along with impaired fatty 
acid oxidation and increased de novo lipogenesis in the liver, 
can contribute to the accumulation in hepatocytes (Ipsen 
et al., 2018; Naguib et al., 2020). Hepatic TG accumula-
tion not only reflects the severity of liver steatosis, but also 
plays a critical role in the progression from simple steatosis 
to more advanced stages of NAFLD, such as non-alcoholic 
steatohepatitis (NASH) and fibrosis (Diehl and Day, 2017).

The measurement of plasma TG showed a significant 
increase in the HSD group (109.8 mg/dL) compared to 
the ND group (37.5 mg/dL) (p < 0.001) (Fig. 2A), which 
is consistent with previous studies that reported a signifi-
cant increase in plasma neutral lipids in animals fed a high-
sucrose diet compared to the control group (Kanazawa 
et al., 2003). In this study, the HSD + SCE group showed 

Fig. 1   Glucose homeostasis in rats fed a high-sucrose diet. A Fast-
ing glucose level (mg/dL) and B Oral glucose tolerance test (OGTT, 
mg/dL) and the area under the curve (AUC). Data are expressed as 

mean ± standard error. The difference between groups was analyzed 
by unpaired t-test (n = 6)
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a significant decrease in plasma neutral lipids compared to 
the HSD group (72.4 mg/dL) (p < 0.01) (Fig. 2A). Previous 
studies have confirmed that Schisandra chinensis prevents 
elevated plasma TG levels. For example, the accumulation 
of plasma TG was reduced in Schisandra chinensis supple-
mented mice (p < 0.01) (Sun et al., 2017). Oral supplemen-
tation of Schisandra chinensis also resulted in a significant 
decrease in plasma TG levels in obese Sprague–Dawley 
rats (Park et al., 2012b). However, previous studies have 
not illustrated Schisandra chinensis’s fundamental compo-
nents in reduced plasma lipid biomarkers. These findings 
suggest that chlorogenic acid and Schisandrin are critical 
for reducing plasma neutral lipid levels in the HSD + SCE 
group, which may improve hypertriglyceridemia and car-
diovascular disease.

In addition to plasma triglycerides, hepatic TG is also 
associated with metabolic disorders such as obesity and 
type 2 diabetes (Seppäla-Lindroos et al., 2002). Particularly, 
hepatic TG increase hepatic steatosis and contribute to the 
pathogenesis of NAFLD (Kawano and Cohen, 2013). There-
fore, we measured the hepatic neutral lipid levels (Fig. 2B). 
The HSD ch(p < 0.05). Animals fed a high-sucrose diet for 
5 weeks showed a significant increase in hepatic neutral 
lipids (approximately 0.08 g/100 g tissue) compared to the 
control group (Huang et al., 2007), indicating that a high-
sucrose diet is involved in the accumulation and inhibition 
of the breakdown of hepatic neutral lipids. In the current 
study, SCE notably decreased hepatic neutral lipids by 30% 
compared with the control (p < 0.05). Similarly, Schisandra 
chinensis berry ethanol extract significantly ameliorated 
lipid accumulation in HepG2 cells treated with oleic acid 
(p < 0.05) (Chung et al., 2017).

However, it is important to note that the specific com-
ponents responsible for reducing hepatic TG levels were 
not identified in the previous studies. Hence, identifying 
chlorogenic acid and schisandrin as the active compounds 
in this study’s SCE for reducing hepatic TG levels is a 

noteworthy contribution. Only the independent effects of 
chlorogenic acid and schisandrin on plasma and hepatic TG 
levels have been demonstrated (Cho et al., 2010; Jeong et al., 
2019; Sudeep et al., 2016). Schisandrin A (0.5 g/kg diet 
for 15 weeks) decreased the plasma and hepatic TG levels 
in mice fed a high-fat and high-cholesterol diet (p < 0.05) 
(Jeong et al., 2019). The methanol extract of Schisandra 
chinensis (SC extract) reduced hepatic TG levels in HFD-
induced obese mice (p < 0.05). The SC extract contains 
1.24 mg, which was orally administered (100 and 300 mg/
kg) for 16 weeks. In addition, SC extract (10, 50, and 100 μg/
mL) decreased intracellular TG levels in palmitate-treated 
HepG2 cells (p < 0.05) (Jang et al., 2016). Chlorogenic acid 
significantly reduced plasma and hepatic TG levels. Oral 
administration of chlorogenic acid (150 mg/kg body weight) 
led to a decline in plasma TG levels in high-fat-fed mice 
(p < 0.05) (Wang et al., 2019). Dietary supplements of chlo-
rogenic acid (0.02 g/kg diet) in obese mice also reduced 
plasma TG and hepatic TG levels (p < 0.05) (Cho et al., 
2010). The plasma and hepatic TG levels were consistent 
with those obtained in this study.

Since SCE reduces hepatic TG levels, it is important to 
understand the underlying mechanisms involved in hepatic 
steatosis. One significant pathway that contributes to hepatic 
steatosis is de novo lipogenesis, which involves the synthesis 
of lipids from non-lipid sources, particularly carbohydrates, 
in the liver. To investigate this, we assessed the effect of 
SCE on the activity of DNL-related enzymes using immu-
noblotting (Fig. 3). The phosphorylation of ACC1 at Ser79 
inhibits lipogenic activity (Lally et al., 2019). We observed 
a slight increase in the ratio of phosphorylated ACC1 to 
total ACC1 in the HSD + SCE group compared to the HSD 
group, although the difference was not statistically sig-
nificant (p = 0.06). FAS, a key enzyme involved in hepatic 
lipogenesis responsible for palmitate synthesis, showed sig-
nificantly lower expression in the HSD + SCE group than 
in the HSD group (p < 0.05). However, the expression of 

Fig. 2   Plasma and liver triglyceride (TG) in rats fed a high-sucrose diet. A TG in plasma (mg/dL) and B Liver TG. Data are expressed as the 
mean ± standard error of the mean. #p < 0.05 compared to ND and HSD, *p < 0.05 compared to HSD and HSD + SCE
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SCD1, a lipogenic enzyme that generates monounsaturated 
fatty acids, did not differ between the HSD and HSD + SCE 
groups. These findings provide valuable insights into the 
mechanisms by which SCE may benefit hepatic steatosis, 
particularly by modulating lipogenic enzyme activity.

This study aimed to investigate the effects of extracts 
including chlorogenic acid and Schisandrin on plasma TG, 
hepatic TG, and lipogenic enzymes. Although we observed 
improvements in these parameters, the effects were relatively 
weaker than those reported in previous studies. These differ-
ences could be attributed to variations in intervention proto-
cols, including differences in treatment duration and dosage 
regimens. Nevertheless, present findings support the role of 
chlorogenic acid and Schisandrin as bioactive compounds 
that prevent lipid accumulation. The combination of these 
compounds in this trial presents a promising nutraceutical 
approach for reducing adiposity.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10068-​023-​01464-1.
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