Skip to main content
. 2022 Jan 28;9(1):8. doi: 10.1186/s40643-022-00497-4

Table 4.

Enhancement of curcumin production by metabolic engineering

Hosts Strategies Substrate Yield Year References
Curcuma longa In vitro propagation / 260 μg/g fresh weight 2012 Pistelli et al. (2012)
Curcuma aromatica In vitro propagation / 534 μg/g 2015 Wu et al. (2015)
Curcuma longa Chitosan elicitation / 1.3 mg/g DCW 2016 Sathiyabama et al. (2016)
Curcuma longa

Bacillus endophyticus TSH42 and Bacillus cereus TSH77 were used for bacterization of rhizome

in C. longa

/ 4.16 g/100 g 2017 Chauhan et al. (2017)
E. coli Introduction of 4CL, acetyl-CoA carboxylase (ACC) and CUS Ferulic acid 57 mg/L 2008 Katsuyama et al. (2008)
E. coli Co-expression of TAL, C3H, COMT, 4CL, DCS and CURS1 Tyrosine 0.2 mg/L 2015 Rodrigues et al. (2015)
E. coli Co-expression of TAL, C3H, COMT, 4CL, and CUS Tyrosine 0.67 mg/L 2015 Wang et al. (2015)
E. coli Optimization of PBS; employment of heat shock promoters Ferulic acid 17 μM 2017 Rodrigues et al. (2017)
E. coli Optimization of cultivation conditions, including E. coli subspecies, induction parameters, culture media and carbon source concentration Ferulic acid 817.7 μM 2017 Couto et al. (2017)
E. coli Screening a library of 5’-UTR sequence mutants via MAGE Glucose 3.8 mg/L 2018 Kang et al. (2018)
Aspergillus oryzae Overexpression of CUS; Strengthening malonyl-CoA supply via disruption of SnfA and SCAP Feruloyl-N-acetylcysteamine 404 μg/plate 2019 Kan et al. (2019)
E. coli

Gene expression optimization via replacement of plasmids;

Co-culture system

Tyrosine 15.9 mg/L 2020 Rodrigues et al. (2020)
E. coli Direction evolution of CUS, and cell membrane engineering via overexpression of monoglucosyldiacylglycerol synthase and supplementation of unsaturated fatty acid 0.6 g/L palmitoleic acid and 4 mM ferulic acid 1.46 mM curcumin 2020 Wu et al. (2020a)