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Abstract
Purpose Glioma is the most common primary tumor in the brain, accounting for 81% of intracranial malignancies. Nowa-
days, cancer immunotherapy has become a novel and revolutionary treatment for patients with advanced, highly aggressive 
tumors. However, to date, there are no effective biomarkers to reflect the response of glioma patients to immunotherapy. In 
this study, we aimed to assess the clinical predictive value of ITGB2 in patients with glioma.
Methods The correlation between ITGB2 expression levels and glioma progression was explored and validated using data 
from CGGA, TCGA, GEO datasets, and patient samples from our hospital. Univariate and multivariate cox regression 
models were developed to determine the predictive role of ITGB2 on the prognosis of patients with glioma. The relationship 
between ITGB2 and immune activation was then analyzed. Finally, we predicted the immunotherapy response in both high 
and low ITGB2 expression subgroups.
Results ITGB2 was significantly elevated in gliomas with higher malignancy and predicted poor prognosis. In multivariate 
analysis, the hazard ratio for ITGB2 expression (low versus high) was 0.71 with 95% CI (0.59–0.85) (P < 0.001). Further-
more, we found that ITGB2 stratified glioma patients into high and low ITGB2 expression subgroups, exhibiting different 
clinical outcomes and immune activation status. At last, we demonstrated that glioma patients with high ITGB2 expression 
levels had better immunotherapy response.
Conclusions This study demonstrated ITGB2 as a novel predictor for clinical prognosis and response to immunother-
apy in gliomas. Assessing expression levels of ITGB2 is a promising method to discover patients that may benefit from 
immunotherapy.
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Introduction

Glioma is the most common primary tumor in the brain, 
accounting for 81% of intracranial malignancies [1, 2]. 
At tissue level, gliomas originate from glial cells, and the 
main types include astrocytoma, oligodendroglioma, epend-
ymoma, neuronal and mixed neuro-glioblastoma (e.g., gan-
glion glioma) [3]. Glioma is extremely harmful to human 
body; also, the median survival time of newly diagnosed 
glioma is only 12–18 months [4–6]. Although there are 
many treatment options for gliomas, including surgical treat-
ment, chemotherapy, radiotherapy, and immunotherapy, the 
survival rate of glioma remains very low. The possible rea-
son is that the heterogeneity of tumors and the complexity 
of epigenetics make it difficult to determine the therapeu-
tic target of glioma, and the existence of the physiologi-
cal blood–brain barrier limits the effect of drugs. Besides, 
the infiltrative nature of the tumor makes surgical treatment 
largely ineffective. Therefore, an in-depth understanding of 
the biological behaviors of tumor occurrence and progres-
sion will help provide more innovative and effective methods 
for clinical diagnosis and treatment in patients with glioma.

Previous studies confirmed that CTLA4 (cytotoxic T 
lymphocyte-associated protein 4), PDCD1 (PD1) (pro-
grammed cell death protein 1/programmed cell death 1), 
CD274 (PDL1) (cluster of differentiation 274/programmed 
death ligand 1) as immune checkpoints can prevent the 
immune system from killing cancer cells by inhibiting the 
auto-immunity [7, 8]. At the same time, the current main 
method of cancer treatment is based on the cancer immuno-
therapy with immune checkpoint blocker (ICB). Therefore, 
the use of anti-CTLA4, anti-PDCD1 (PD1) and anti-CD274 
(PDL1) drugs will be promising means for the diagnosis and 
treatment of diseases, which has become the most effective 
method for advanced highly invasive anti-tumor patients to 
achieve therapeutic effect by regulating the state of T cell. 
However, in fact, only a few patients can benefit from immu-
notherapy currently. In addition, little is known about the 
immune checkpoints found to be synergistic with PD1 in 
glioma tissues, so it is crucial to find effective biomarkers 
associated with it.

ITGB2 (CD18) is one subunit of the β2 integrins, which 
are heterodimeric surface receptors expressed by leuko-
cytes specially. It can connect the cytoskeleton and partici-
pate in intracellular signaling [9]. Also, combining 4 kinds 
of α subunits which are αL (CD11a, ITGA), αM (CD11b, 
ITGAM), αX (CD11c, ITGAX) and αD (CD11d, ITGAD) 
can become LAF-1 (leukocyte factor 1,CD11a/CD18) [10], 
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MAC-1 (macrophage-1 antigen, CD11b/CD18) [11], CR4 
(complement receptor 4,CD11c/CD18) [12] and CD11d/
CD18 which bears structural similarity with MAC-1 [13]. 
In tumors, β2 integrin is involved in cell adhesion, stromal 
remodeling, and signal transduction among tumor cells 
and between tumor cells and tumor microenvironment to 
induce tumors to infiltration, angiogenesis and tumor-spe-
cific immune responses [14, 15]. Likewise, ITGB2 is closely 
related to the development of tumors. ITGB2 is involved in 
the development, metastasis and invasion of various tumors, 
such as liver cancer, colon cancer breast cancer and leuke-
mia [16–18]. In addition, previous studies have shown that 
ITGB2 is involved in the development of glioma, but the role 
of ITGB2 in glioma progression and the potential molecular 
mechanism were poorly understood [19–23]. The aim of this 
study was to demonstrate that ITGB2 is a promising pre-
dictive target for glioma prognosis and immunotherapeutic 
response.

Methods and materials

Data source and expression analysis

Pan-cancer dataset in The Cancer Genome Atlas (TCGA) 
which consists of 33 kinds of cancer and adjacent tissue 
samples or GTEx expression matrices was analyzed with 
an online tool, UCSCXenaShiny [24] (https:// hiplot. com. cn/ 
advan ce/ ucsc- xena- shiny). In this study, we analyzed both 
GBM and LGG. Gliovis [25] (http:// gliov is. bioin fo. cnio. 
es/) was used to get all the expression matrices of gliomas, 
including 6 datasets containing 2336 samples: 642 grade II 
patients, 780 grade III patients and 914 grade IV patients 
(Table 1). Single cell RNA sequencing data are obtained 
from TISCH [26] with GEO ID: GSE131928 [27].

Tumor samples collection

Human glioma tissues were considered exempt by the 
Human Investigation Ethical Committee of Shanghai Gen-
eral Hospital affiliated to Shanghai Jiao Tong University. 
Human tumor samples were consecutively recruited between 

January 2019 and January 2020 from the Department of 
Neurosurgery in Shanghai General Hospital. A total of 20 
patients with glioma (LGG, n = 9; HGG, n = 11) underwent 
surgery for the first time and had not previously received 
radiotherapy or chemotherapy were collected.

Immunohistochemical (IHC) analysis

Patient tumor samples were fixed in 4% paraformaldehyde 
for 24 h and then embedded in paraffin wax. Paraffin blocks 
were cut into 5-µm sections and sealed with 5% BSA over-
night at 4 °C, followed by staining with ITGB2 (Abcam, 
ab131044, USA). After washing with PBS, the sections were 
incubated with biotinylated anti-rabbit IgG (Vector Labora-
tories, CA, USA). The ABC method (Vector Laboratories) 
was utilized. Sections were observed using an AX-80 micro-
scope (Olympus, Tokyo, Japan). Images were processed with 
Image J software, and relative expression was calculated.

Quantitative real‑time PCR

Total RNA was extracted from human tumor tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and reverse 
transcripted using FastQuant RT kit (Tiangen, Shanghai, 
China). Real-time PCR was carried out using SuperReal 
SYBR Green kit (Tiangen, Shanghai, China) and Lightcycler 
96 (Roche, Penzberg, Germany). The following commer-
cially available Taqman gene expression assays were used: 
ITGB2: Hs00164957_m1. The PCR primers used were as 
follows:

ITGB2 forward: CCT GCA GAT TGT TCC GGA GT; 
reverse: TGG GGC CAC CTT TAC TGA G;

PDCD1 forward: CAG TTC CAA ACC CTG GTG GT; 
reverse: GGC TCC TAT TGT CCC TCG TG.

CTLA4 forward: ACG GGA CTC TAC ATC TGC AAGG; 
reverse: GGA GGA AGT CAG AAT CTG GGCA.

TIM3 (HAVCR2) forward: GAC TCT AGC AGA CAG TGG 
GATC;

reverse: GGT GGT AAG CAT CCT TGG AAAGG.
IDO1 forward: GCC TGA TCT CAT AGA GTC TGGC; 

reverse: TGC ATC CCA GAA CTA GAC GTGC.

Table 1  Datasets used in this 
study

Dataset Data type WHO grade II WHO grade III WHO grade IV

CGGA RNA-seq 291 334 388
TCGA-GBMLGG RNA-seq 226 244 150
Rembrandt Microarray 98 85 130
GSE16011 Microarray 24 85 159
GSE4412 Microarray 26 59
GSE43289 Microarray 3 6 28
Total 642 780 914

https://hiplot.com.cn/advance/ucsc-xena-shiny
https://hiplot.com.cn/advance/ucsc-xena-shiny
http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
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TIGIT forward: TGG TGG TCA TCT GCA CAG CAGT; 
reverse: TTT CTC CTG AGG TCA CCT TCCAC.

The 2−ΔΔCT method was used to calculate the relative 
amplification of the promoter sequence of each gene.

Immune cells and bioinformatic analysis

The single sample gene set enrichment analysis (ssGSEA) 
was used to define an enrichment score to represent the 
degree of absolute enrichment of a gene set in each sam-
ple within a given dataset with R package “GSVA” [28]. 
Normalized enrichment scores could be calculated for each 
immune category. 28 types of immune cell’s gene set signa-
tures were obtained from a previous study [29] (Additional 
file: Sheet 1).

To explore the association between ITGB2 expression 
levels and immune status, 25 immune-related gene sets from 
previous studies included innate and adaptive responses 
[30] (Additional file: Sheet 2). Gene set variation analysis 
(GSVA) was performed to obtain the immune profile of 
glioma samples with R package “GSVA”. GEPIA2021 [31] 
was utilized to investigate the expression levels of ITGB2 in 
different cell populations.

According to the median expression value of ITGB2, the 
CGGA dataset was divided into the group with high expres-
sion of ITGB2 (top 50%) and the group with low expres-
sion of ITGB2 (bottom 50%). Differentially expressed genes 
(DEGs) were analyzed by R package “limma”. Its biologi-
cal significance is defined as |logFC| ≥ 1.5 and adj. p value 
< 0.05. The Gene Ontology Database (GO) that combines 
the international standard Gene function classification sys-
tem and provides a dynamically changing standard vocabu-
lary to comprehensively describe the attributes of genes and 
gene products in an organism and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database for Gene function 
analysis and linkage of genomic information and functional 
information were used to annotate the Gene set with the R 
package “clusterProfiler” [32]. Functional enrichment was 
further studied by gene set enrichment analysis (GSEA) 
using R package “Pi” [33].

Quantifying the relative abundance of TIICs 
and predicting the response of the ITGB2 subgroup 
to immunotherapy

The cancer immunity cycle reflects the anticancer immune 
response and comprises seven steps: release of cancer cell 
antigens (Step 1), cancer antigen presentation (Step 2), 
priming and activation (Step 3), trafficking of immune 
cells to tumors (Step 4), infiltration of immune cells into 
tumors (Step 5), recognition of cancer cells by T cells 
(Step 6), and killing of cancer cells (Step 7). The activi-
ties of these steps determine the fate of the tumor cells. 

Xu et al. [34] evaluated the activities of these steps using 
a single sample gene set enrichment analysis (ssGSEA) 
based on the gene expression of individual samples (Addi-
tional file: Sheet 3). We also collected other therapeutic 
signatures, including oncogenic pathways that could shape 
a non-inflamed TME, targeted therapy-associated gene 
signatures (Additional file: Sheet 4), and gene signatures 
predicting radiotherapy responses [35].

Immune Cells Abundance Identifier (ImmuCellAI) 
(http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI# !/ analy sis) is a 
novel algorithm for estimating immune cell abundance based 
on RNA-seq or microarray data, which focuses on subsets of 
T cells that are associated with tumor progression and initia-
tion [36]. It uses genome set markers to estimate the abun-
dance of 24 immune cells from transcriptome data. Also, 
ImmuCellAI can be used to predict the response of ICB 
therapy with the ICB response prediction being checked. 
Genome set markers for the T cell subsets used in this study 
are listed in the supplementary material (Additional file: 
Sheet 5), including 18 T cell subtypes and 6 other immune 
cell types.

Patient’s response to a drug was a complex phenome-
non, determined by a combination of genetic factors and 
the environment, so drug responses could be predicted by 
genomic characteristics. Glioma samples were scored using 
the GSVA method to predict the likely response of glioma 
to anti-PD1 drugs, and T-cell inflammation (TIS) signals 
from previous studies [30] were used and listed in Additional 
file: Sheet 6.

The subclass mapping (SubMap) method was also used 
to evaluate the correspondence of the two subgroups and the 
patients with different immunotherapy responses [37]. The 
P value is used to evaluate the similarity, and the lower the 
P value, the higher the similarity. In this study, TIS, Sub-
Map, and ImmunCellAI were used to predict the response 
of glioma patients to immunotherapy.

Statistical analysis

All statistical analyses were performed using R software 
4.0.1. Wilcoxon rank sum test and Fisher’s exact test were 
used to assess association between different factors. Cor-
relation was assessed by Pearson correlation test. The asso-
ciation between clinical factors and overall survival was 
assessed using the Cox regression model in the survival 
analysis. Kaplan–Meyer survival curves were plotted and 
compared between subgroups using log-rank test with R 
packages “survival” and “survminer”. R package “meta” 
was used for meta-analysis. The ROC curve, sensitivity, 
specificity and the area under the curve (AUC) were gener-
ated using the R package “pROC”. The P value < 0.05 was 
considered significant for all statistical analysis.

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis
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Results

Pan‑cancer analysis of ITGB2 expression

To investigate the expression of ITGB2 in tumors and nor-
mal tissues, we utilized an online tool, UCSCxenaShiny 
[24]. Pan-cancer analysis of ITGB2 expression revealed 
significant differences in the expression of ITGB2 levels 

between various tumors and adjacent tissues (or GTEX) 
(Fig. 1a). The expression of ITGB2 in breast invasive car-
cinoma (BRCA), esophageal carcinoma (ESCA), glioblas-
toma multiforme (GBM), head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma 
(KIRC), kidney renal papillary cell carcinoma (KIRP), 
acute myeloid leukemia (LAML), brain lower grade 
glioma (LGG), liver hepatocellular carcinoma (LIHC), 
ovarian serous cystadenocarcinoma (OV), pancreatic 

Fig. 1  Pan-cancer analysis of ITGB2 expression. a UCSCXenaShiny 
was used to visualize ITGB2 mRNA expression in the cancer genome 
atlas (TCGA) pan-cancer datasets. *, P < 0.05; * *, P < 0.01; * * *, 
P < 0.001; * * * *, P < 0.0001, ns = no significance (Wilcoxon test). 

b Risk plot of correlation between ITGB2 with OS, PFI, DSS (red 
represents HR >  1 (risky) and P value <  0.05; blue represents HR 
< 1 (protective) and P value < 0.05; gray represents no significance 
with P value > 0.05)
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adenocarcinoma (PAAD), skin cutaneous melanoma and 
stomach adenocarcinoma (SKCM), stomach adenocarci-
noma (STAD), testicular germ cell tumors (TGCT), thy-
roid carcinoma (THCA), uterine corpus endometrial car-
cinoma (UCEC), and uterine carcinosarcoma (UCS) was 
higher than that in normal tissues (P < 0.05). Besides, 
ITGB2 expression in adrenocortical carcinoma (ACC), 
lung squamous cell carcinoma (LUSC) and thymoma 
(THYM) were lower than those in normal tissues (P 
< 0.05).

Since the expression of ITGB2 varied significantly 
between a variety of tumors and normal tissues, we fur-
ther investigated the relationship between ITGB2 expres-
sion levels and clinical outcomes. Patients in a cohort of 
33 tumor types were then divided into high-expression and 
low-expression groups based on median of ITGB2 gene 
expression. Survival analysis revealed significant differences 
between several cancer types (Fig. 1b). Specifically, patients 
with high levels of ITGB2 expression showed shorter overall 
survival (OS), progression-free interval (PFI), and disease-
specific survival (DSS) than patients with low levels of 
ITGB2 expression (Fig. 1b) in the LGG and GBM cohorts. 
In the following study, we focused on exploring the role of 
ITGB2 in gliomas.

High expression of ITGB2 infers a poor prognosis 
for glioma

The above analysis showed that ITGB2 expression was sig-
nificantly associated with the prognosis of glioma patients. 
To verify the reliability of this result, we further explored 
the prognostic value of ITGB2 in six independent datasets 
(Table 1). According to the median expression of ITGB2, 
patients in these datasets were divided into high expression 
subgroup and low expression subgroup. The log-rank test 
analysis (Kaplan–Meier curves) revealed that patients in 
CGGA(P < 0.0001), TCGA (P < 0.0001), Rembrandt (P 
< 0.0001) and GSE16011(P < 0.0001) with high expres-
sion of ITGB2 showed significantly poorer prognosis than 
low-expression subgroup (Fig. 2a, b, c, and d), while patients 
from the GSE43289 and GSE4412 datasets showed a similar 
trend but with no statistical significance (Fig. 2e, f).

The sample sizes of the six cohorts varied widely, with 
three having more than 500 samples and two having less 
than 200 samples. In order to improve the stability of the 
results, meta-analysis was performed and the results con-
firmed that patients with high expression of ITGB2 had 
shorter overall survival than patients with low expression 
(RR = 1.37, 95% CI 1.28–1.45, Fig. 2g).

To better understand the role of expression of ITGB2 in 
patients with glioma, we analyzed the CGGA dataset with 
clinical data of 1013 glioma patients. According to the 
ITGB2 levels, patients were divided into high expression 

group (n = 506) and low expression group (n = 507). Statisti-
cal analysis of the clinical data revealed that higher ITGB2 
expression was more likely to be associated with older age 
(P < 0.001), poorer prognosis (P < 0.001), higher grade 
(P < 0.001), GBM type (P < 0.001), mesenchymal sub-
type (P < 0.001), IDH wild type (P < 0.001), and different 
therapeutic options (radiotherapy, P = 0.050; chemotherapy, 
P = 0.040), while there was no significant differences in gen-
der and recurrence (Table 2).

By utilizing the Cox regression model, we computed 
both univariate and multivariate hazard ratios for different 
variables of 1013 glioma patients. Univariate cox regression 
analysis (Fig. 3a) showed that ITGB2 expression level was 
an independent variable (low versus high, HR = 0.53, 95% 
CI (0.45–0.62)) to predict the outcome of glioma patients. 
Multiple cox regression analysis also revealed that ITGB2 
expression level was an independent determinant (low versus 
high, HR = 0.71, 95% CI (0.59–0.85)) of the prognosis of 
patients with glioma after adjusting for age, grade, recur-
rence, IDH status and chemotherapy status.

These results above confirmed that the expression level 
of ITGB2 was significantly related to the OS of glioma 
patients. ITGB2 expression value was a stable factor for 
predicting the prognosis of glioma patients.

The expression level of ITGB2 increased 
with the progression of gliomas

After illustrating the prognostic value of ITGB2, we next 
investigated the correlation between ITGB2 expression level 
and tumor progression of glioma.

We observed that the expression level of ITGB2 increased 
in gliomas with high malignancy. In CGGA dataset, the 
ITGB2 expression was significantly higher in WHO grade 
III (n = 334) and grade IV (n = 388) than grade II (n = 291) 
(IV versus III: P < 0.001; IV versus II: P < 0.001; III versus 
III: P = 0.087, Fig. 4a). In the TCGA-GBMLGG dataset, 
a significant increase in ITGB2 expression was also noted 
in WHO grade IV (n = 150), and grade III (n = 244) than 
grade II (n = 226) (IV versus III: P < 0.001; IV versus II: P 
< 0.001; III versus III: P = 0.0012, Fig. 4b). Furthermore, a 
remarkable upward trend was also found in the Rembrandt 
dataset with 98 grade II, 85 grade III, and 130 grade IV 
patients (IV versus III: P < 0.001; IV versus II: P < 0.001; 
III versus II: P = 0.41, Fig. 4c). In addition, based on anal-
ysis of GEO datasets, we also found that the GSE16011 
dataset with grade II (n = 24), grade III (n = 85), and grade 
IV (n = 159) glioma patients (IV versus III: P < 0.001; IV 
versus II: P = 0.00021; III versus III: P = 0.99, Fig. 4d), 
GSE43289 dataset with 3 grade II, 6 grade III, and 28 grade 
IV patients (IV versus III: P = 0.16; IV versus II: P = 0.0018; 
III versus II: P = 0.024, Fig. 4e), and GSE4412 dataset (26 
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grade III and 59 grade IV patients, P < 0.0001, Fig. 4f) all 
showed higher expression of ITGB2 in high grade gliomas.

To further validate above results, IHC for ITGB2 was 
performed to assess ITGB2 expression in patient-derived 
glioma tissue samples. Consistent with previous results, in 
comparison with low-grade gliomas (LGG), a significant 
increase in ITGB2 was observed in high-grade gliomas 
(HGG) (Fig. 4g and h).

In conclusion, the expression of ITGB2 increased with 
the development of gliomas, suggesting that ITGB2 may be 
involved in the malignant progression of gliomas.

Fig. 2  High expression of ITGB2 infers a poor prognosis for glioma. 
Kaplan–Meier plots of ITGB2 in six glioma datasets, 95% CI (con-
fidence interval) were also showed. Patients were divided into high 
and low expressed group by the medium expression level. a CGGA, b 

TCGA, c Rembrandt, d GSE4412, e GSE43289, and f GSE16011. g 
Forest plot of the RRs for patients with high ITGB2 expression com-
pared to patients with low ITGB2 expression
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ITGB2 is associated with immune activation 
and immune infiltration in glioma

It is known that the prognosis of glioma is related to the 
infiltration and activation of immune cells [38]. ITGB2, 
which is one subunit of the β2 integrins, plays an essential 
role in the immune system and affects the abundance and 
activation of immune cells (Supplementary Fig. 1a). It has 
been confirmed by research that  CD4+ T cells stimulated by 

dendritic cells will decrease its proliferation and Th1 polari-
zation when lacking LFA-1. And it is suggested that the 
interaction between LFA-1 and ICAM-1 reduces the thresh-
old of T cell stimulation [39].

To further validate these conclusions, we evaluated 
the correlation between ITGB2 expression and the level 
of immune cells infiltration. The relative quantity of the 
28 immune cells from the CGGA dataset was systemati-
cally estimated using the ssGSEA algorithm (Fig. 5a). The 

Table 2  Clinical characteristics 
of 1013 glioma patients in the 
CGGA dataset according to 
ITGB2 expression levels

1 Mean (SD); n (%)
2 Welch two-sample t test; Pearson’s Chi-squared test

Variable N Overall,
N =  10131

High,
N =  5061

Low,
N =  5071

p  value2

Age 1012 43 (12) 45 (13) 42 (11)  < 0.001
Gender 1013 0.2
 Female 421 (42%) 200 (40%) 221 (44%)
 Male 592 (58%) 306 (60%) 286 (56%)
Survival 979 39 (35) 31 (29) 47 (39)  < 0.001
Status 985  < 0.001
 Alive 388 (39%) 144 (29%) 244 (49%)
 Dead 597 (61%) 347 (71%) 250 (51%)
Grade 1013  < 0.001
 II 291 (29%) 104 (21%) 187 (37%)
 III 334 (33%) 157 (31%) 177 (35%)
 IV 388 (38%) 245 (48%) 143 (28%)
Histology 1013
 Anaplastic astrocytoma 214 (21%) 119 (24%) 95 (19%)
 Anaplastic oligoastrocytoma 21 (2.1%) 8 (1.6%) 13 (2.6%)
 Anaplastic oligodendroglioma 94 (9.3%) 29 (5.7%) 65 (13%)
 Astrocytoma 175 (17%) 85 (17%) 90 (18%)
 GBM 388 (38%) 245 (48%) 143 (28%)
 Oligoastrocytoma 9 (0.9%) 1 (0.2%) 8 (1.6%)
 Oligodendroglioma 112 (11%) 19 (3.8%) 93 (18%)
Subtype 432  < 0.001
 Classical 160 (37%) 95 (35%) 65 (41%)
 Mesenchymal 115 (27%) 98 (36%) 17 (11%)
 Proneural 157 (36%) 80 (29%) 77 (48%)
IDH_status 961  < 0.001
 Mutant 529 (55%) 209 (43%) 320 (67%)
 Wildtype 432 (45%) 273 (57%) 159 (33%)
Recurrence 1013 0.057
 Primary 651 (64%) 307 (61%) 344 (68%)
 Recurrent 332 (33%) 182 (36%) 150 (30%)
 Secondary 30 (3.0%) 17 (3.4%) 13 (2.6%)
Radio_status 927 0.050
 No 162 (17%) 68 (15%) 94 (20%)
 Yes 765 (83%) 386 (85%) 379 (80%)
Chemo_status 906 0.040
 No 273 (30%) 122 (27%) 151 (33%)
 Yes 633 (70%) 330 (73%) 303 (67%)
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correlation of ITGB2 expression with infiltrating levels 
of immune cells was evaluated by Pearson method, which 
revealed close relationships between ITGB2 with T cells, 
macrophages, and B cells (Fig. 5b). Previous study reported 
that ITGB2 is expressed on immune cells [40]. Similarly, 
we demonstrated that ITGB2 was predominantly located 
on monocytes/macrophages and CD8+ exhausted T cells in 
glioma (based on single cell RNA sequencing data obtained 
from TISCH [26] with GEO ID: GSE131928 [27]) (Sup-
plementary Fig. 2a, b, c), which further implied ITGB’s role 
in remodeling the immune microenvironment. Furthermore, 
we utilized GEPIA2021 [31] (http:// gepia 2021. cancer- pku. 
cn/) to investigate the expression of ITGB2 in macrophages 
of different states, and the results demonstrated that ITGB2’s 
expression was significantly higher in M2 macrophages 
compared to M0 and M1 macrophages (Supplementary 
Fig. 2d, e), indicating that ITGB2 is involved in macrophage 
polarization, which was an essential step for the remodeling 
of tumor immune microenvironment (TIME). These above 
findings suggest that ITGB2 activation in combination with 
the polarization of M2 macrophages and infiltration of 
exhausted T cells led to remodeling of TIME and marked 
tumor progression.

Also, we analyzed the KEGG pathways and GO terms 
with the DEGs (differentially expressed genes). According 
to the KEGG analysis results, complement and coagulation 
cascades, pertussis, focal adhesion and ECM−receptor inter-
action were remarkably enriched (Supplementary Fig. 3a). 
Among the biological process terms of GO, most of DEGs 
were enriched in neutrophil degranulation, neutrophil activa-
tion involved in immune response, and collagen-containing 
extracellular matrix (Supplementary Fig. 3b, c).

Gene set enrichment analysis (GSEA) was also used to 
explore the mechanisms of ITGB2 in gliomas. The CGGA 
expression data were analyzed with “MsigdbC2REAC-
TOME” (REACTOME gene set, based on R package “Pi”). 

The enrichment results are shown in Additional file 1: Sheet 
6. Results showed that various immune activation and tumor 
progression-associated genes were enriched, especially in 
cytokine signaling in immune system, cell cycle and PD-1 
signaling (Supplementary Fig. 3d), reflecting relatively 
enhanced tumor progression and activated inflammation.

Correlation between ITGB2 and immune 
phenotypes and TIICs of gliomas

To further explore the presence of malignant gliomas with 
active immune phenotype, an artificially managed set of 
genes associated with adaptive and innate immune responses 
was used to quantify the immunophenotype [30]. As shown 
in heatmap, with the ITGB2 expression increased, the 
immune phenotype trended to be “hot”. The quantification 
of the result showed a high correlation between the expres-
sion of ITGB2 with PDL1 signaling (r = 0.62, P < 0.05), 
CTLA4 signaling (r = 0.45, P < 0.05), and T cell-mediated 
immunity (r = 0.50, P < 0.05) via Spearman’s test (Fig. 5c, 
d), which further confirmed the findings in GSEA results.

Considering the correlation between ITGB2 and T cells, 
the relative abundances of 24 types of tumor infiltrating 
immune cells (TIICs) of gliomas were quantified with 
ImmuCellAI [36]. It is worth noting that the proportion of 
TIICs was significantly different between ITGB2 high and 
low subgroups (Fig. 5e).

The activities of the cancer immunity cycle are a 
direct comprehensive performance of the functions of the 
chemokine system and other immunomodulators. In the 
high-ITGB2 subgroup, activities of the majority of the 
steps in the cycle were found to be up-regulated, includ-
ing the release of cancer cell antigens (Step 1), priming 
and activation (Step 3), and trafficking of immune cells 
to tumors (Step 4) (CD8 T cell recruiting, macrophage 
recruiting, Th1 cell recruiting, NK cell recruiting, DC 

Fig. 3  Univariate and multivariate analysis for overall survival of glioma patients

http://gepia2021.cancer-pku.cn/
http://gepia2021.cancer-pku.cn/
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recruiting, and TH17 recruiting). Subsequently, the 
increased activities of these steps may increase the infiltra-
tion levels of effector TIICs in the glioma immune micro-
environment (Fig. 6a, top-right).

Subgroups divided by ITGB2 expression predict 
potential immunotherapy responses of gliomas

We analyzed the correlations between ITGB2 and the 

Fig. 4  The expression level of 
ITGB2 increased with the pro-
gression of gliomas. The X-axis 
represents the WHO grade, and 
the Y-axis represents ITGB2 
expression values (log2). Based 
on Wilcoxon test. a CGGA, 
b TCGA, c Rembrandt, d 
GSE16011, e GSE43289, and 
f GSE4412. g Representations 
(left) and quantification of 
immunohistochemistry (right) 
positive areas of ITGB2 in 
low-grade glioma (LGG) and 
high-grade glioma (HGG)
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ICB response-related signatures [35]. ITGB2 positively 
correlated with the enrichment scores for immunother-
apy-related positive signatures, such as IFN γ signature 
(Fig. 6a, bottom-left). The above findings suggested that 
ITGB2 was closely associated with T cells, which play an 
important role in immunosurveillance evasion in malig-
nant gliomas [41].

Interestingly, TIICs levels were up-regulated in the high-
ITGB2 group, while immune activation and tumor progres-
sion were both enriched in ITGB2 high group. This may be 
due to the high expression of PD1 (PDCD1)/PDL1 (CD274) 
and CTLA4 in the high-ITGB2 group. We used the linear 
regression model and found ITGB2 showed significant cor-
relations with PDCD1(r = 0.51, P < 0.05), CD274(r = 0.45, 
P < 0.05) and CTLA4(r = 0.31, P < 0.05) (Fig. 6b); the 
same conclusions were also drawn in analysis of TCGA 
GBMLGG dataset (Supplementary Fig. 4a). ITGB2-high 
subgroup was characterized by immune activation and 
also accompanied with immune suppression, this feature 
explained why immune activation enriched in ITGB2-high 
subgroup, but did not hinder tumor progression.

To verify transcriptome results from public datasets, 20 
patients from Shanghai general hospital were included in our 
study and quantitative real-time PCR was utilized to inves-
tigate the correlation between expression levels of ITGB2 
and immune checkpoints, and the results showed that ITGB2 
was positively correlated with PDCD1 (r = 0.58, p = 0.0072), 
CTLA4 (r = 0.51, p = 0.0219), TIM3 (HAVCR2) (r = 0.58, 
p = 0.0079), TIGIT (r = 0.59, p = 0.0065) and IDO1 (r = 0.52, 
p = 0.0179) (Supplementary Fig. 4b). Meanwhile, we used 
CGGA and TCGA datasets to verify the correlation between 
ITGB2 and these immune checkpoints, and the results were 
consistent with the conclusions obtained from the above 
experiments (CTLA4 (r = 0.24, CGGA; r = 0.24, TCGA), 
TIM3(HAVCR2) (r = 0.77, CGGA; r = 0.95, TCGA), TIGIT 
(r = 0.24, CGGA; r = 0.22, TCGA) and IDO1 (r = 0.39, 
CGGA; r = 0.52, TCGA)) (Supplementary Fig.  4c, d); 
ITGB2 was positively correlated with the expression of 
PDCD1, CTLA4, TIM3, TIGIT and IDO1, which indicated 
a hypothetic treatment as immune checkpoint.

To further validate this hypothesis, we utilized T cell 
inflammatory signature (TIS) scores in high and low ITGB2 
subgroups. Patients with high ITGB2 expression get higher 
scores in the TIS signature (Fig. 6c) (P < 0.001), report-
ing to be correlated with response to anti-PDL1 checkpoint 
inhibitor pembrolizumab, which supports the hypothesis. 
Meanwhile, ImmunCellAI also suggested that high levels 
of ITGB2 tended to more likely respond to immunotherapy 
(80.0%, 405/506, CGGA) than low ITGB2 subgroup (54.0%, 
274/507, CGGA) (Fig. 6d), with high predictive efficacy 
of ITGB2 for immunotherapy response in glioma patients 
(AUC: CGGA 69.05% (67.83–72.94%)) (Supplementary 
Fig. 5a).

We also utilized the SubMap algorithm to compare the 
similarity of the expression profiles between the two ITGB2 
subgroups of glioma patients and 47 previous melanoma 
patients with detailed immunotherapeutic information, 
and revealed that patients in ITGB2-high subgroup were 
more responsive to anti-PD1 and anti-CTLA4 treatment 
(Bonferroni corrected P value = 0.032 and 0.009, respec-
tively) (Fig. 6e), which was consistent with the previous 
conclusions.

To sum up, ITGB2 may be a good index for quantify-
ing the tumor immune microenvironment and prediction for 
immunotherapy responses of gliomas.

Discussion

Due to the high heterogeneity of glioma, the individual case 
is highly variable [42]. Therefore, the treatment of glioma 
needs comprehensive consideration based on the individ-
ual prognostic factors, clinical symptoms, side effects and 
tumor progression [43]. Genetic examination can be used 
to guide radiotherapy and chemotherapy. For an instance, 
people with mutations in isocitrate dehydrogenase gene 1 
(IDH1) and 2 (IDH2) have a more favorable prognosis and 
clinical response after radiotherapy and chemotherapy [44, 
45]. Besides, patients with methylated MGMT status have 
predictive value on the benefit of chemotherapy [46–48] and 
the ones with 1p19q co-deletion considered not to adminis-
trated with radiotherapy [49, 50], while there are still lack 
of biomarkers to guide adjuvant immunotherapy. Thus, we 
aim to explore the underlying mechanism of ITGB2 in the 
progression of glioma, and its potential immune activation 
and sensitivity to immunotherapy responses in patients with 
glioma.

ITGB2, also known as CD18, is the key subunit of β2 
integrin, which actively participates in the immune response 
of the body. At present, β2 integrin, considered as a target 
therapy for autoimmune diseases, has attached much atten-
tion. It is well known that T cells, which express LFA-1, are 
closely related to tumor progression clinical prognosis, and 
response to immunotherapy in both of human and mice [41]. 
However, there are few researches clarifying the relationship 
between ITGB2 and tumor immunotherapeutic target. In our 
present study, we found that ITGB2 is highly expressed in 
a variety of cancers, especially in glioma. We observed that 
patients with high levels of ITGB2 showed shorter OS, PFI, 
and DSS than the one with low ITGB2 expression. In order 
to further explore the correlation between ITGB2 and gli-
oma, the data from CGGA were divided into high- and low-
ITGB2 subgroups according to the median value of ITGB2 
expression. The results showed that high ITGB2 expression 
was more likely to be associated with age, poor prognosis, 
high grade, GBM type, mesenchymal subtype, IDH wild 
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type, and different therapeutic options. Therefore, we specu-
lated that ITGB2 can be served as a predictor for clinical 
prognosis of glioma patients.

It is known that the prognosis of glioma is related to the 
infiltration and activation of immune cells [38]. The fol-
lowing bioinformatics analysis showed there was close 
relationship between ITGB2 and immune progress, which 
indicated ITGB2’s role in glioma immune microenviron-
ment. In this study, we observed that ITGB2-high group 
is characterized by immune activation and also accompa-
nied with immune suppression; this feature explains why 
immune activation enriched in ITGB2-high subgroup, but 
did not hinder tumor progression. Previous study reported 
that ITGB2 is expressed on immune cells [40]. Similarly, 
we demonstrated that ITGB2 was predominantly located 
on monocytes/macrophages and CD8+ exhausted T cells 
in glioma, which further implied ITGB’s role in remodeling 
the immune microenvironment. Moreover, the expression 
of ITGB2 was significantly higher in M2 macrophages 
compared to M0 and M1 macrophages. The above findings 
suggest a critical role for ITGB2 in the remodeling of the 
immune component of TIME of glioma.

Generally, tumor cells can form a pro-tumor progression 
microenvironment together with stromal cells, immune 
cells, vascular endothelial cells, and their secretory factors 
and extracellular matrix components [51]. These immune 
cells and associated stromal components, which can be 
recruited and activated by tumor cells, constructed an anti-
tumor inflammatory microenvironment during the early 
stage of tumor formation, thereby impeding tumor devel-
opment [52]. With tumor progression, immune cells that 
infiltrated in the tumor microenvironment, not only play an 
anti-tumor role, but also promote immune evasion of tumors 
and tumor growth [53, 54]. In recent decades, tumor immu-
notherapy tended to be a research focus and has achieved 
remarkable results in tumor therapy [55, 56]. As is shown 
in our study, we found that DEGs between ITGB2 sub-
groups were enriched in immune response and inflamma-
tory response. According to the results of GSEA, we found 
that a variety of pathways related with immune activation 

and tumor progression were enriched, especially cytokine 
signal and PD1 signal transduction. We clarified that the 
immune microenvironment in glioma with high ITGB2 
levels tended to be “hot”. Furthermore, we found that the 
ITGB2-high subgroup expressed higher levels of PD1, PDL1 
and CTLA4 compared with ITGB2-low subgroup, indicating 
that ITGB2-high subgroup is more likely to be in a state of 
immune suppression, which inhibits the function of immune 
cells. Based on these findings, we investigated the relation-
ship between ITGB2 and immune checkpoints and sensi-
tivity of different subgroups of ITGB2 to immunotherapy 
response. The analysis showed that strong correlations were 
shown between ITGB2 and immune checkpoints, suggesting 
that ITGB2 could be assumed as a new immune checkpoint 
for immunotherapy of glioma. We speculated that ITGB2 
could serve as a therapeutic target for glioma and broaden 
its immunological application.

Immune checkpoint blockade (ICB) uses immune check-
point inhibitors to block inhibitory signaling and directly 
stimulate the activation of cytotoxic T lymphocytes to 
achieve anti-tumor effects [57, 58], with the promoting func-
tion in killing ability of T cells against cancer cells. Although 
the immune system can recognize malignant tumor cells, due 
to the up-regulation of suppressive immune checkpoints in 
the tumor microenvironment, the inactivation of anti-tumor 
T cells leads to the ineffective immune response to cancer. 
Because both of CTLA4 and PD1 are commonly expressed 
on the surface of T cells, ICB can reduce the size of tumors 
and anti-CTLA4 monoclonal antibody and PD1/PDL1 can 
enhance their immune response to cancer by blocking drugs 
CTLA4 and PD1/PDL1 signaling pathways [59, 60]. In our 
study, the relative abundances of 24 types of immune cells 
in the TIME of gliomas were quantified with ImmuCellAI, 
and we found that the relative abundance of many kinds of 
T cells changed significantly in the high expression group 
of ITGB2. Additionally, we found that patients in high 
ITGB2 subgroups get higher TIS scores, reporting to be 
correlated with response to anti-PDL1 checkpoint inhibitor 
pembrolizumab. In order to further demonstrate the predic-
tive value of ITGB2 for immunotherapy response, we used 
ImmuCellAI and SubMap algorithm to predict the possi-
bility of immunotherapy response in patients with glioma, 
all the results confirmed the predictive value of ITGB2 in 
predicting the immunotherapy response of glioma patients. 
Notably, it is the first time to illustrate the ITGB2 as a novel 
diagnostic and therapeutic target for gliomas.

Despite these findings, there are existing limitations. 
The data of samples were obtained from CGGA, TCGA, 
and GEO database, and the particular information about the 
extent of surgical resection was not provided, which is a 
critical factor for overall survival. Therefore, further analysis 
with more detailed clinical information should be presented 
in the following studies. Besides, we lack sufficient clinical 

Fig. 5  ITGB2 is associated with immune infiltration and immune 
activation in gliomas. a Heatmap showing ITGB2-associated relative 
abundance of 28 immune cells in gliomas, annotations show corre-
sponding clinical features of each sample. b The correlation between 
the ssGSEA scores of 28 immune cells and the expression of ITGB2 
in gliomas. c Heatmap showing ITGB2-associated GSVA scores of 
25 innate and adaptive immunity-related gene sets. d The correlation 
between the GSVA scores of 25 innate and adaptive immunity-related 
gene sets and the expression of ITGB2 in gliomas. e The fraction of 
TILCs in ITGB2 high and low subgroups. Within each group, the 
scattered dots represent TILCs expression values. The thick line rep-
resents the median value. The bottom and top of the boxes are the 
25th and 75th percentiles, interquartile range. The statistical differ-
ence of two subgroups was compared through the Kruskal–Wallis test

◂



658 Cancer Immunology, Immunotherapy (2022) 71:645–660

1 3

data to validate the predictive value of ITGB2 for glioma 
immunotherapy response, which require further effort in 
our future studies. At last, we did not systematically inves-
tigate the detailed mechanisms involved in the regulation of 

TIME by ITGB2, which we will focus on studying in future 
researches.

In conclusion, our study illustrated that ITGB2 can be 
a novel effective indicator for predicting the clinical stage, 
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prognosis and immune response of patients with glioma. It is 
reasonable to suggest that the ITGB2 can be a practical tar-
get for immunotherapy in patients with glioma. These results 
are of great clinical significance, which will be conducive to 
the precise treatment of patients with glioma.
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tary material available at https:// doi. org/ 10. 1007/ s00262- 021- 03022-2.
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