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Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through 
the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor 
microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the 
development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due 
to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like 
TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. 
However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims 
to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the 
polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, 
clinical trials, and combinatorial immunotherapy.
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Abbreviations
ATC   Anaplastic thyroid cancer
APC  Antigen-presenting cells
APOE  Apolipoprotein E
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CAR-TAMs  Chimeric antigen receptor-tumor-associated 
macrophages

CCL  Chemokine C-C motif ligand
CCR   C-C chemokine receptor type
CSF-1  Colony-stimulating factor
CSF-1R  Colony-stimulating factor receptor
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CTLA-4  Cytotoxic T-lymphocyte-associated 
protein-4

CXCL  Chemokine C-X-C motif ligand
CXCR  C-X-C chemokine receptor
DC cell  Dendritic cell
DTC  Differentiated thyroid cancer
EGF  Epidermal growth factor
EMT  Epithelial-mesenchymal transition
EVs  Extracellular vehicles
FGF  Fibroblast growth factor
FTC  Follicular thyroid cancer
GM-CSF  Granulocyte-macrophage colony-stimulat-

ing factor
HDAC  Histone deacetylase
HER2  Receptor tyrosine-protein kinase erbB-2
HGF  Hepatocyte growth factor
HIF-1α  Hypoxia inducible factor-1α
IDO  Indoleamine 2,3-dioxygenase
IFN-γ  Interferons-γ
IL  Interleukin
iNOS  Inducible nitric oxide synthase
LILRB1/2  Leukocyte immunoglobulin-like receptor 

subfamily B1/2
LPS  Lipopolysaccharide
MARCO  Macrophage receptor with collagenous 

structure
MDSC  Myeloid-derived suppressor cells
MEK  Mitogen-activated protein kinase
MET  Receptor tyrosine kinase of MET 

proto-oncogene
MHC-II  Major histocompatibility complex class II
MTC  Medullary thyroid cancer
miRNA  MicroRNA
MR  Mannose receptor
NF-κB  Nuclear factor-κB
NK cell  Natural killer cell
ONJ  Osteonecrosis of the jaw
PARP  Poly ADP ribose polymerase
PD-1/2  Programmed cell death protein 1/2
PDGF  Platelet-derived growth factor
PI3K  Phosphoinositide 3-kinases
PD-L1/2  Programmed death-ligand 1/2
PTC  Papillary thyroid cancer
scRNA-seq  Single-cell RNA sequencing
SIRP-α  Signal regulatory protein-α
SPP1  Secreted phosphoprotein 1
STAT3  Signal transducer and activator of transcrip-

tion 3
TAMs  Tumor-associated macrophage
TC  Thyroid cancer
TGF-β  Transforming growth factor-β
Th17 cell  T helper 17 cell

TIM3  T cell immunoglobulin and mucin domain-
containing protein 3

TKIs  Tyrosine kinase inhibitors
TLR  Toll-like receptor
TME  Tumor microenvironment
TNF-α  Tumor necrosis factor-α
TNM  Tumor, node and metastasis
Treg cell  Regulatory T cell
TREM2  Scavenger receptor-triggering receptors 

expressed on myeloid cells 2
VEGF  Vascular endothelial growth factor
VEGFR  Vascular endothelial growth factor receptor
VSIG4  V-set and immunoglobulin domain contain-

ing 4

Introduction

Thyroid cancer (TC) is one of the most common endocrine 
tumors in the world, with a high incidence rate, attracted 
more and more attention [1–3]. There are several subtypes 
of TC, with a variety of prognostic and therapeutic options. 
For example, follicular-cell-derived cancer accounts for the 
majority of TC and divided into follicular thyroid cancer 
(FTC), invasive-encapsulated follicular variant papillary 
cancer, papillary thyroid cancer (PTC), oncocytic carci-
noma of the thyroid, poorly differentiated thyroid cancer, 
differentiated high-grade thyroid cancer, and anaplastic 
thyroid cancer (ATC) based on the cell of origin, patho-
logic features, biological behavior, and molecular clas-
sification [2, 4]. Among them, PTC and FTC are "mild" 
and have a good prognosis, while ATC is fierce, highly 
malignant and has a poor prognosis [2]. Currently, the 
conventional treatment for TC includes surgery, radiation 
therapy and thyroid hormone preparation, but satisfactory 
outcomes are sometimes difficult to achieve [5]. Tumors 
mainly through tumor-infiltrating immune cells, immu-
nomodulatory molecules and soluble factors interact with 
the surrounding immune microenvironment during their 
development, to weaken the anti-tumor activity of the 
immune system, thereby mediating the immune tolerance 
and causing tumor escape [6, 7].

Macrophages constitute a substantial portion of the 
stromal cells in the tumor microenvironment (TME) 
(referred to as tumor-associated macrophages, or TAMs) 
and exhibit conflicting roles in the development, inva-
sion, and metastasis of TC [8–10]. TAMs can be divided 
into two subgroups, M1-like TAMs and M2-like TAMs. 
M1-like TAMs are capable of directly killing tumor cells, 
and recruiting and activating other immune cells in the 
early stages of cancer. However, M2-like TAMs promote 
tumor progression. Moreover, TAMs play a crucial role in 
the behavior of TC due to their high degree of infiltration 
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and prognostic relevance [7, 9, 11]. It has been found that 
TAMs correlate with extrathyroidal extension and capsular 
invasion in poorly DTC [12]. ATC also had the highest 
density of TAMs in TME resulting in decreased survival 
rates [7]. And in PTC, the density of TAM positively cor-
relates with lymph node metastasis, larger tumors and 
poorer survival rates [9, 13]. In addition, TAMs were 
increased and correlated with tumor size, epithelial char-
acteristics, lymph node metastases, and a reduced CD4/
CD8 positive T cell ratio in the v-Raf murine sarcoma 
viral oncogene homolog B (BRAF) mouse model [14, 
15]. The previous studies have also demonstrated that 
chemokine C-C motif ligand 2 (CCL2) levels are associ-
ated with TAM levels [16, 17], and the presence of large 
amounts of TAMs was more frequently associated with 
the poor prognosis of patients with TC [14]. This review 
aims to discuss the impact of TAMs on TC, including their 
role in tumor promotion, gene mutation, and other factors 
related to the polarization of TAMs.

Thyroid cancer and tumor microenvironment

TME is primarily made up of stromal cells, innate and 
adaptive immune cells, endothelial cells, cytokines, and 
chemokines [18, 19]. And it changes metabolic, secretory, 
immunological, and other factors that affect cancer devel-
opment and promotes the growth and spread of tumors 
[20, 21]. It has been demonstrated that TME, infiltrating 
immune cells and immunotherapeutic effect were different 
for subtypes of TC [10, 14, 22, 23]. Furthermore, it has been 
confirmed that the disruption of the delicate balance of the 
original microenvironment encouraged the migration and 
proliferation of TC [8, 24]. Contrarily, tumor immune escape 
is another way for TC cells to survive and proliferate in vivo 
through TME [25]. Although tumor cells are often destroyed 
by immune cells in the early stages of cancer, TME can help 
tumor cells evade immune surveillance and even prevent 
immune cells from producing cytotoxic effects on the tumor 
cells [10, 20, 26, 27]. Macrophages occupy high percent-
age in the TME referred to as TAMs, play a crucial role in 
the regulation of the immune system and TC cells [28–30]. 
The different functions of TAMs have been classified into 
two opposing phenotypes, M1-like TAMs with a pro-inflam-
matory pathogen-killing capacity and M2-like TAMs that 
promote tissue remodeling, angiogenesis, and a key role in 
TC progression [8, 31–33]. In addition, as the degree of 
infiltration of M2-like TAM was strongly associated with 
the progression of TC suggested that the TAMs-targeting 
therapeutic approach could be the potential approach for TC 
[6, 9, 13, 34].

The classifications and functions of TAMs

TAMs are generally divided into two phenotypes: M1-like 
TAMs, which contribute to the ability of the immune sys-
tem to control malignancy, and M2-like TAMs, which 
accelerate tumor growth and reduce the anti-tumor effect 
of the immune system [35, 36]. Figure 1 A and B describe 
the subpopulations and functions of TAMs with identi-
fiable markers and secretions. In detail, M1-like TAMs 
could activate innate or adaptive lymphocyte-mediated 
mechanisms of tumor resistance. The immunostimulatory 
cytokines such as interleukin (IL)-6, IL-12, and tumor 
necrosis factor-α (TNF-α) from M1 phenotype TAMs 
can enhance the anti-tumor ability of T cells and natural 
killer (NK) cells [37, 38]. Meanwhile, M1-like TAMs can 
promote can act as specialized antigen-presenting cells 
(APCs) when properly activated [39]. Also, the M1-like 
TAMs have the potential to kill tumor cells, relying 
mainly on antibody-dependent cellular cytotoxicity and 
autophagocytosis, which can cause vascular damage and 
tumor necrosis [40]. In contrast, TAMs are predominantly 
of the M2 phenotype in most solid tumors and promote the 
proliferation of cancer cells, angiogenesis in the TME, and 
suppression of innate and adaptive immune responses [27, 
41, 42]. Several studies have shown that M2-like TAMs 
secretion of fibroblast growth factor (FGF) and vascular 
endothelial growth factor (VEGF) are essential to support-
ing the progress of the tumor-associated vascular system, 
a process by which new blood vessels sprout from existing 
vessels or through the proliferation, motility, and accumu-
lation of vascular endothelial cells [13, 43–45]. Moreover, 
M2-like TAMs cause immunosuppression by expressing 
inhibitory receptors or immune checkpoint ligands, such as 
programmed death-ligand1/2 (PD-L1/2), and CD80/CD86 
[42, 46, 47] and the cytokines including IL-10 and trans-
forming growth factor-β (TGF-β). In addition, M2-like 
TAMs promote metastasis of tumors by secreting growth 
factors that support tumor angiogenesis and neointimal 
formation as well as epithelial-to-mesenchymal transition 
(EMT) and tissue remodeling [30, 45, 48]. The extracel-
lular vehicles (EVs) released by M2-like TAMs are also 
responsible for cancer metastasis by transferring certain 
microRNA (miRNA) in the colorectal cancer model [49]. 
TAMs from different polarization may perform different 
functions in the TME of cancer, which provides an oppor-
tunity to target immunotherapies more precisely (Fig. 1 
C-E). Hence, the ideal strategy would involve selective tar-
geting of M2-like TAMs and maintaining the functionality 
of M1-like TAMs without compromising the homeostatic 
immune system in vivo.
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The factors related to the polarization 
of TAMs and the treatment in TC

The gene mutations associated with polarization 
of TAMs in TC

Similar to other malignancies, TME of TC consists of 
immune cells (macrophages, mast cells, and lymphocytes) 
and soluble mediators (chemokines, cytokines, and growth 
factors) that are active in and around cancer cells [50, 51]. 
However, in contrast to other tumors, the prognosis of TC 
was often associated with complex genetic mutations [14, 
52, 53]. For example, the BRAF mutations are most com-
mon in PTC or ATC [54]; RAS mutations are found pre-
dominantly in FTC [55]; and RET proto-oncogene mutations 
are thought to be the cause of the majority of medullary thy-
roid cancer (MTC) [56]. Also, current single-cell technolo-
gies, particularly single-cell RNA sequencing (scRNA-seq) 

demonstrated the impact of cellular subtypes on disease 
progression including TC, and improved the identification 
of biomarkers for stratification of patients. For example, the 
technology of scRNA-seq could quantify the cellular com-
ponents and their interactions in the TME, and improve the 
understanding about the heterogeneity and gene mutation of 
TC [57]. At the same time, many gene mutations in differ-
ent subtypes of TC have been proved to be associated with 
TAMs and the progression of the tumor [13, 15, 26, 43, 
58–62]. A study has shown that protein levels of the CCL2, 
a major tumor-derived serum chemokine of monocytes, were 
regulated by RET/PTC in thyroid cells [58]. Simultaneously, 
previous studies have demonstrated that CCL2 levels are 
associated with TAMs levels [16, 17], and the presence of 
large amounts of TAMs was more frequently associated 
with the poor prognosis of patients with TC [14]. In the 
 BRAFV600E mouse model, TAMs were increased and corre-
lated with tumor size, epithelial characteristics, lymph node 
metastases, and a reduced CD4/CD8 positive T cell ratio, 
thus supporting a potential immunosuppressive effect of 
PTC [14, 15]. Additionally, the BRAF mutation was found 
to be higher in PTC than in benign thyroid tissues and was 
associated with poor prognostic factors such as M2-like 
TAMs, angiogenesis-related genes, elevated tumor, node, 
and metastasis (TNM) staging [43, 60]. The BRAF mutation 
also related with presence of myeloid-derived suppressor 
cells (MDSCs) [53], promoted the TAMs polarized toward 
an M2 phenotype, and can assist the TC cells in escaping 
from immune killing [18]. It has also been shown that the 
BRAF mutation has independent prognostic value as a recur-
rence of PTC and correlates with TAM polarization [15, 
63]. Moreover, the TAMs account for a large proportion of 
tumor-infiltrating immune cells in TC compared with other 
tumors and are highly plastic [9, 13, 34, 64], and therapies 
targeting TAMs could be relevant in TC. Therefore, TAMs 
are the newly insightful therapeutic approach due to the 
polarization, pro-tumorigenic properties [6, 65, 66], gene 
mutation-related specificity[8, 9, 15, 64], and high density 
in the TC [6, 7, 67].

Cytokines associated with polarization of TAMs 
in the TC

M1/M2-like TAMs are highly plastic cells and their function 
can change significantly depending on microenvironmental 
signals from the TME of TC [52, 68–71]. For example, a 
previous study proved that the high expression of C-X-C 
chemokine receptor type (CXCR4) recruits more TAMs 
[72]. At the same time, CXCR4 is often overexpressed by 
TC cells because of RET rearrangements and the quantity 
of CXCR4 expressed by primary TC corresponds with the 
degree TAMs and lymph node metastasis [67, 73, 74]. More-
over, elevated chemokine C-X-C motif ligand (CXCL)16 

Fig. 1  Surface markers and the functions with secretions of TAMs in 
tumor microenvironment. TAMs are classified as M1 and M2 polar-
izations, and plasticity is an important characteristic. TAMs can be 
characterized by the expression of different surface markers, explain-
ing the variation of M1/M2-like TAMs in the TME for the same or 
different markers and receptors. In A, M1-like TAMs that could be 
induced by LPS + IFN-γ with anti-tumor functions can be stimu-
lated by immunostimulatory cytokines, and MHC-II molecules are 
required for effective antigen presentation. In addition, some surface 
proteins of M1-like TAMs, CD80, and CD86, were also upregulated. 
M1-like TAMs also produce chemokines such as CXCL10 that pro-
mote T cell recruitment and activation. On the right, M2-like TAMs 
that could be induced by IL-4 with pro-tumorigenic functions are reg-
ulated by the hypoxic tumor microenvironment and immunosuppres-
sive mediators (IL-10, TGF-β etc.). Similarly, some surface proteins 
of M2-like TAM were upregulated, including CD163, and CD206. 
The M1-like TAMs have the functions of phagocytosis and lysis of 
tumor cells and can promote inflammation and anti-tumor effect. 
Moreover, M1-like TAMs enhance the activity of antigen-present-
ing cells (DC cells) and promote the cytotoxic effects of other can-
cer killing leukocytes (T cells and NK cells) (C). However, M2-like 
TAMs are tumor-promoting activities, commonly through the secre-
tion of growth factors (including EGF, FGF, HGF, PDGF, VEGF, and 
TGF-β, etc.) that support tumor angiogenesis and neointima forma-
tion as well as EMT and tissue remodeling (B). Meanwhile, M2-like 
TAMs promote and induce the proliferation and metastasis of cancer 
cells by creating an immunosuppressive TME (D and E). This fig-
ure was created using BioRender.com. Abbreviations: CCR2, C-C 
chemokine receptor type 2; CXCL8, chemokine C-X-C motif ligand 
8; CXCR1/2, C-X-C chemokine receptor 1/2; DC cell, dendritic cell; 
EGF, epidermal growth factor; EMT, epithelial-to-mesenchymal 
transition; FGF, fibroblast growth factor; GM-CSF, granulocyte–
macrophage colony-stimulating factor; HGF, hepatocyte growth fac-
tor; IDO, indoleamine 2,3-dioxygenase; IL-1, interleukin-1; IFN-γ, 
interferons-γ; iNOS, inducible nitric oxide synthase; LPS, lipopoly-
saccharide; MHC-II, major histocompatibility complex class II; 
NK cell, natural killer cell; PDGF, platelet-derived growth factor; 
PD-L1/2, programmed death-ligand 1/2; TGF-β, transforming growth 
factor-β; Th17 cell, T helper 17 cell; TLR, toll-like receptor, TNF-α, 
tumor necrosis factor-α; Treg cell, regulatory T cell; VEGF, vascular 
endothelial growth factor

◂
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expression in the medium mediated the invasion of PTC 
tumor cells when PTC cells and TAMs are co-cultured with 
the high percentage of M2-like TAMs has also been dem-
onstrated [52]. Similarly, CSF-1 has also been studied in 
the TC as a major factor controlling the growth and differ-
entiation of TAMs [14]. Previous studies had demonstrated 
that the coordination of autocrine and paracrine interactions 
between TC cells and TAMs is accomplished by chemokines 
and cytokines [6, 10, 14, 32, 60]. Also, the chemokines and 
cytokines in the TME of TC are core regulators and have 
been identified as one of the hallmark drivers of cancer [75]. 
The following types of factors have been shown to correlate 
with the development of TC and TAMs, including VEGF 
[28], CXCL1 [54], 7 [54], 8 [9, 18, 32], 12 [72, 76], 16 [43, 
60], CXCR4 [67, 77–79], colony-stimulating factor 1(CSF-
1) [14, 73], C-C chemokine receptor (CCR) type 2 [32, 75] 
and cytokines including IL-1 [18, 28], 6 [6], 8 [18, 34, 75, 
80], 32 [80].

The treatment method associated with polarization 
of TAMs in TC

Currently, the main treatments for not-resectable cancerous 
diseases, radiotherapy, and chemotherapy, both cause tis-
sue damage and cancer cell death due to local or systemic 
inflammation [18, 81–83]. Previous studies found that after 
ablative radiotherapy, the innate immune system was acti-
vated by inflammatory cytokines [84] and pro-fibrotic fac-
tors that recruited TAMs and promoted tumor recurrence 
and progression [69, 85]. Furthermore, the radiotherapy also 
induced senescence of TC cells, and the senescent cells trig-
gered the polarization of M2-like TAMs accompanied by 
increased expression of CCL17, CCL18, IL-18, and TGF-β 
[69, 86]. In addition, differentiated M2-like TAMs promote 
the stemness and migration of tumor cells [30, 48, 68, 86, 
87]. The study of TAMs should be more significant and 
necessary since radiotherapy is essential in the treatment of 
intractable TC. In addition to radiotherapy, chemotherapy for 
the TC, including systemic drugs targeting tumor angiogen-
esis [88], and targeted molecular drugs such as multikinase 
and rapamycin inhibitors, could also induce M2-differenti-
ation of TAMs [18, 89, 90]. For example, in the treatment 
of ATC, Lenvatinib monotherapy and even in combination 
therapies with programmed cell death protein (PD-1)/PD-L1 
inhibitor increased the density of M2-like TAMs [91]. More-
over, TAMs also modulate other immune cells in the TEM 
of TC. For example, TAMs express T cell immune check-
point ligands and directly inhibit T cell functions, while also 
secreting cytokines such as IL-10 and TGF-β that contribute 
to the maintenance of a strong immunosuppressive TME 
[28, 45, 92, 93]. Since TAMs can promote tumor growth and 
metastasis by secreting cytokines or producing immunosup-
pressive TME, removal of TAMs or alteration of TME has 

been confirmed could reduce the progression of TC [14, 91, 
94–96]. Considering the plasticity of TAMs, the concept that 
reprogramming the polarization may affect the function of 
TAMs, has also attracted significant attention in the treat-
ment of TC [6, 45, 68, 70, 76, 77, 79, 97].

Other factors in TME that associated 
with polarization of TAMs in the TME of TC

As one of the most relevant intercellular communication 
mechanisms between cells in the TME, EVs could also 
reprogram the host cell and affect the polarization of TAMs 
[98, 99]. For example, colorectal cancer cell-derived EVs 
containing miR-934 induced CD163 positive M2 polariza-
tion of TAMs by activating the phosphoinositide-3 kinases 
(PI3K)/AKT signaling pathway and enhanced invasion and 
liver metastasis [100]. Similarly, a study reported that epi-
thelial ovarian cancer-derived exosomal miRNA-222-3p 
induced polarization of TAMs to the M2 phenotype by 
activating the SOCS3/STAT3 signaling cascade [101]. 
Furthermore, it has also been demonstrated that colorectal 
tumor-secreted EVs with miRNA-145 promote the polari-
zation of THP-1 to M2-like TAMs, leading to the down-
regulation of IL-12 and the upregulation of IL-10 [102]. In 
addition, it has been reported that exosomes derived from 
hypoxic epithelial ovarian cancer were enriched in miRNA-
21-3p, miRNA-125b-5p, and miRNA-181-5p, and these 
miRNAs promoted M2 polarization of TAMs by activating 
the SOCS4/5/STAT3/hypoxia inducible factor-1α (HIF-1α) 
signaling cascade [103]. These studies demonstrated that 
miRNAs are primarily involved in EV-mediated M2-like 
TAM polarization and miRNAs are hallmarks of tumor-
derived EVs a cargo consisting of multiple miRNAs (41.7% 
mature miRNAs of all RNAs in EVs) [104]. Additionally, 
the lactate in the TME also affect polarization of TAMs and 
has been shown to upregulate M2-like TAM by enhanc-
ing aerobic glycolysis in recent studied of TC [105, 106]. 
Therefore, an in-depth understanding of the changes in the 
complex relationship between tumor cells, TME and TAMs 
may provide new ideas for the treatment of TC.

TAMs‑centered treatment strategy in TC

Therapeutic strategies aimed at targeting TAMs or modu-
lating their activity are under development and are being 
applied in both clinical trials and animal experiments [27, 
92, 107]. More than 90% of TC patients are PTC and FTC 
with relatively good prognoses, but there are still some 
patients with refractory TC. For example, the treatment and 
prognosis of patients with ATC were very limited, but the 
proportion of TAM is positively correlated with the aggres-
sive tumor, so targeting TAM may provide new ideas for 
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refractory TC [7, 10, 34, 61]. Additionally, another study 
revealed significant differences in TAM density between 
subtypes, leading the researchers to hypothesize that TAM 
density may be a prognostic factor for TC [65]. Several TAM 
targeting techniques have been investigated, including TAM 
depletion to decrease the pro-tumorigenic activity of TAMs 
[15, 58, 107, 108], inhibition of TAM[14, 94, 108, 109] 
recruitment from monocytes [14, 75], reprogramming of the 
TAMs to an M1-like phenotype [28, 32, 68, 70, 110, 111], 
and dissolving the immunosuppressive environment with the 
recovery of tumor-killing activities of cytotoxic T cells [6, 
91, 112, 113]. TAMs, the primary cells that mediate the rela-
tionship between cancer and inflammation, undoubtedly play 
a significant role in opening the door for a novel approach 
to the treatment of TC. Figure 2 summarized the studies 

reporting TAMs targeting strategies and methods for the 
dichotomous behavior of TAMs and the existing approach 
applied for TC was marked with asterisks *.

TAM depletion and inhibition of recruitment

Targeting the Elimination of TAMs

A tyrosine kinase receptor named CSF-1 receptor (CSF-
1R), expressed by macrophages, activated the recruitment of 
monocytes to TAMs, leading to the reprogramming of these 
TAMs to the M2 phenotype, which has been demonstrated in 
many animal tumor models including TC [14, 114], primary 
human macrophages[115] and clinical trial [94]. Therefore, 
blockade of the CSF-1R and CSF-1 axis may be a viable 

Fig. 2  Therapeutic strategies targeting and reprogramming TAMs: 
The strategies are divided into four main categories: (1) elimina-
tion of TAMs and inhibition of monocyte differentiation to TAMs; 
(2) reprogramming TAMs to the anti-tumor activity based on the 
polarization to the M1-like TAMs and expression of markers target-
ing M2-like TAMs; (3) reprogramming based on the phagocytosis 
function of TAMs; (4) inhibiting the immune suppression microen-
vironment and allow cytotoxic T cells activity. *Articles marked with 
asterisk are studies for thyroid cancer. This figure was created using 
BioRender.com. Abbreviations: CCR2, C-C chemokine receptor type 

2; CCL2, chemokine C-C motif ligand 2; CSF-1, colony-stimulating 
factor-1; CSF-1R, colony-stimulating factor-1 receptor; CTLA-4, 
cytotoxic T-lymphocyte-associated protein-4; EVs, extracellular vesi-
cles; HDAC, histone deacetylase; LILRB-2, leukocyte immunoglob-
ulin-like receptor subfamily B member 2; PD-1, programmed cell 
death protein 1; PD-L1, programmed death-ligand 1; PI3K, phospho-
inositide 3-kinases; SIRP-α, Signal regulatory protein α; STAT3, sig-
nal transducer and activator of transcription 3; TIM3, T cell immu-
noglobulin and mucin domain-containing protein 3; TLR, toll-like 
receptors; VEGF, vascular endothelial growth factor



3902 Cancer Immunology, Immunotherapy (2023) 72:3895–3917

1 3

strategy for targeting tumor suppressor TAMs with an M2 
phenotype [114–116]. In many clinical studies, including 
TC, various antibodies and small compounds predominantly 
targeting CSF-1R are being investigated [65, 92]. Small mol-
ecules such as PLX3397 [94, 117] and JNJ-40346527 [108, 
109] have been examined in the clinical trials, while other 
small molecules such as ARRY-382 [118], PLX7486 [119], 
and BLZ945 [120] are currently under clinical trials inves-
tigation. Other monoclonal antibodies targeting CSF-1R or 
its ligand CSF-1, such as emactzumab [121], AMG820 [122, 
123], cabiralizumab [124, 125], and MCS110 [126], are also 
currently being clinical trials investigated as monotherapy 
or in combination.

Clinical trials [94] and experimental animal studies 
[127] using CSF-1R antibodies or in combination with 
other checkpoints clinical trials [128, 129] have also been 
conducted for TC. The findings from phase I and phase II 
trials demonstrated that PLX3397 was well tolerated at a 
dosage of 1000 mg, and the extension study found that 12 
of 23 patients (52%) had an anti-tumor response after treat-
ment [130]. Furthermore, CSF-1/CSF-1R-targeted therapy 
is tolerable to date, suggesting the possibility of combina-
tion therapy with current immunotherapy options, includ-
ing immune checkpoint inhibitors. Additionally, conditional 
activation of  BRAFV600E increased the expression of the 
TAM chemoattractant CSF-1, and targeting CSF-1-ex-
pressing cells reduced TAMs had been proved in animal 
models [14, 65]. This strategy also induced smaller tumors, 
reduced PTC proliferation, and restored the thyroid follicular 
architecture. The CSF-1R inhibitor treatment also impaired 
the progression of PTC and TAM recruitment. This study 
primarily focused on PTC and FTC and demonstrated that 
TAMs are pro-tumorigenic in TC and can be used as target-
ing pharmacology. Moreover, it may be potentially useful 
for patients with advanced TC, such as ATC. The clinical 
immunotherapy strategies for TC are listed in Table 1.

In addition, VEGF can lead to massive infiltration of 
TAMs into the TC, and a previous study indicated upregu-
lation of VEGF-A expression in ATC patients, which dem-
onstrated that suppression of VEGF might also be a poten-
tial strategy for the depletion of TAMs in the TC [65, 131]. 
Previous studies in hepatocellular carcinoma cell lines [44] 
and patients of colorectal cancer [132] have observed that 
a VEGF-depleted environment attenuates the tumor-pro-
moting function of TAMs by reducing cytokine secretion. 
However, the results also demonstrated that the inhibition of 
VEGF secretion by cancer cells did not alter the M2 polari-
zation of macrophages in TME. The proangiogenic of TAMs 
and their assistance in tumor metastasis has been reported in 
several studies including experiment research and the tissue 
of patients [43, 44, 133]; however, there are limited studies 
targeting this modality in TC. Furthermore, another thera-
peutic strategy is the selective depletion of TAM, employing 

bisphosphonates including clodronate and zoledronic acid. 
The previous result of the animal model has shown that 
injection of clodronate with liposomes into the mice reduced 
the M2-like TAMs and inhibited the lung metastasis of ATC 
[95]. In another retrospective clinical study, zoledronic acid 
was effective in reducing new metastases and improving 
survival in patients with bone metastases with FTC [134]. 
Moreover, it was also indicated that the potential therapeu-
tic mechanism may be due to zoledronic acid inhibiting the 
growth of TAMs, which often overexpress osteoclast-induc-
ing factors to prompt bone resorption or osteolysis [135].

Targeting the inhibition of monocyte recruitment

TAM expansion in cancers is typically mediated by mono-
cyte recruitment via the CCL2-CCR2 axis, including TC 
[14, 32, 64]. Several investigations have established the 
role of CCL2, a potent chemoattractant for monocytes, T 
cells, and NK cells, in the accumulation of TAMs in animal 
tumor models and the sample of patients [14, 16, 17, 32, 
75]. Additionally, it has been demonstrated that patients with 
ATC have elevated serum CCL2 levels [75], indicating that 
CCL2 and its receptor, CCR2, may be potential therapeutic 
targets for TC patients. Another study revealed that vita-
mins can function as an independent factor to decrease the 
migration of TC cell lines by lowering the levels of CCL2 
and CCL8 [136]. The relationship between vitamins and 
inflammation in tumors is currently the subject of one clini-
cal trial; additional findings may be attained in the future 
[137]. In addition, the lack of experimental and clinical trials 
of TC and the findings from other animal models of can-
cer calls for careful consideration of anti-CCL2 drugs as 
monotherapy [138]. The researchers emphasized the TME 
as a key determinant of successful anti-metastatic therapy 
and indicated the need for additional biological knowledge 
to effectively inhibit TAMs. For example, CCL2 inhibi-
tion severely depletes monocytes while also increasing the 
risk of compensatory macrophage growth if recruitment 
is inhibited, and CCL2-CCR2 communication is essential 
for monocytes to enter the circulation from the bone [139]. 
However, prolonged systemic depletion of TAMs may lead 
to host immunosuppression and susceptibility to opportun-
istic infections, so targeting downstream mediators of TAMs 
may be an alternative strategy [92, 140].

Reprogramming of TAMs

TAMs are typically pro-tumorigenic but can be repro-
grammed to suppress tumor development by triggering the 
immune system [27, 97, 141]. According to this scenario, it 
may be possible for TC to employ plasticity therapeutically 
to restore the anti-cancer capabilities of TAMs [6, 69, 70, 
86, 142].
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Targeting the specific marker of TAMs

Targeting immunosuppressive TAMs effectively is signifi-
cantly hampered by the absence of specific protein mark-
ers expressed on M2-like TAMs. Several new ATC-specific 
immune checkpoint genes have been experimentally identi-
fied by using the tissue sample of patients, including the 

immunosuppressive molecule leukocyte immunoglobulin-
like receptor subfamily B member-2 (LILRB-2) [10]. The 
combination of antibodies to LILRB-2 and anti-PD-L1 
attenuates the inhibitory effect of TAMs on T cell prolifera-
tion and alters the TME to induce anti-tumor immunity in 
the animal model [143]. Furthermore, stabilin-1 has been 
shown to be expressed primarily by TAMs in human gastric 

Table 1  Immunotherapy strategies and therapeutic targets for thyroid cancer

Abbreviations: ATC, anaplastic thyroid cancer; BRAF, v-Raf murine sarcoma viral oncogene homolog B; CSF-1R, colony-stimulating factor 1 
receptor; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; DTC, differentiated thyroid cancer; FTC, follicular thyroid cancer; HDAC, his-
tone deacetylase; MEK, mitogen-activated protein kinase; MET, receptor tyrosine kinase of MET proto-oncogene; PD-1, programmed cell death 
protein 1; PD-L1, programmed death-ligand 1; PI3K, phosphoinositide 3-kinases; TC, thyroid cancer; VEGFR, vascular endothelial growth fac-
tor receptor

Drug Therapeutic targets Patient population Status Trial registry number

LY3022855 CSF-1R Head and neck carcinoma Completed NCT01346358
LY3022855 plus Tremeli-

mumab and Durvalumab
CSF-1R plus PD-1 Advanced solid tumors Completed NCT02718911

Tremelimumab plus Dur-
valumab

PD-1 Metastatic TC Recruiting NCT03753919

Pembrolizumab PD-1 ATC Completed NCT02688608
Pembrolizumab PD-1 ATC Recruiting NCT05119296
Pembrolizumab PD-1 Advanced solid tumors (TC) Recruiting NCT02628067
Pembrolizumab PD-1 FTC Completed NCT02054806
Pembrolizumab plus Docetaxel PD-1 TC Recruiting NCT03360890
Pembrolizumab plus SO-C101 PD-1 Advanced solid tumors (TC) Recruiting NCT04234113
Pembrolizumab plus Lenvatinib PD-1 plus VEGFR ATC Recruiting NCT04171622
Pembrolizumab plus Lenvatinib PD-1 plus VEGFR DTC Active, not recruiting NCT02973997
Pembrolizumab plus Dabrafenib 

and Trametinib
PD-1 plus BRAF and MEK ATC Recruiting NCT04675710

PDR001 PD-1 ATC Completed NCT02404441
PDR001 plus Dabrafenib and 

Trametinib
PD-1 plus BRAF and MEK TC Active, not recruiting NCT04544111

Vudalimab PD-1 and CTLA-4 ATC Recruiting NCT05453799
Nivolumab plus Ipilimumab PD-1 plus CTLA-4 Rare tumor (TC) Active, not recruiting NCT02834013
Nivolumab plus Ipilimumab 

and Cabozantinib
PD-1 plus CTLA-4 and 

VEGFR
Advanced DTC Active, not recruiting NCT03914300

Nivolumab and Cabozantinib PD-1 plus VEGFR Advanced tumor (TC) Recruiting NCT04514484
Nivolumab and Lenvatinib PD-1 plus VEGFR ATC Recruiting NCT05696548
Nivolumab plus Encorafenib 

and Binimetinib
PD-1 plus BRAF and MEK TC Recruiting NCT04061980

CemIplimab plus Dabrafenib 
and Trametinib

PD-1 plus BRAF and MEK ATC Recruiting NCT04238624

Tislelizumab plus Surufatinib PD-1 plus VEGFR Advanced solid tumors (ATC) Active, not recruiting NCT04579757
Tislelizumab plus Anlotinib and 

Radiotherapy
PD-1 plus VEGFR ATC Recruiting NCT05659186

AIC100 Chimeric Antigen 
Receptor (CAR) T cells

PD-1 and CTLA-4 TC Recruiting NCT04420754

Atezolizumab plus Cabozan-
tinib

PD-L1 plus VEGFR ATC Active, not recruiting NCT04400474

Atezolizumab plus Cobimetinib PD-L1 plus MET TC Completed NCT01988896
Durvalumab and Radiotherapy PD-L1 TC Active, not recruiting NCT03215095
Vorinostat HDAC TC Completed NCT00134043
PCI-24781 plus Pazopanib HDAC plus VEFGR Metastatic solid tumors (TC) Recruiting NCT01543763
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cancer tissues, and a higher density of stabilin-1-positive 
cells was linked with a lower survival rate [144]. In addition, 
 BRAFV600E expression in mice models of PTC showed the 
high recruitment of stabilin-1-positive TAMs and induced 
the immunosuppressive effect [54]. Moreover, increas-
ing evidence suggests that targeting the mannose receptor 
(MR), CD206, which is highly expressed on M2-like TAMs, 
is a valuable alternative [145, 146]. In addition, a synthetic 
peptide, RP-182, can modulate the conformational switch 
of the MR expressed on M2-like TAMs, induce phagocy-
tosis, phagosome-lysosome formation in macrophages, and 
transfer TAMs from the M2 to the M1 phenotype, increas-
ing innate and adaptive anti-tumor immune responses and 
improving tumor treatment outcomes [147]. Both in vitro 
and in vivo experiments have demonstrated that TC-derived 
medium significantly increased MR expression in TAMs [6, 
148]. Also, activated TAMs can establish a tumor-promoting 
environment and promote the progression of TC cells [6]. 
These findings indicate that targeting M2-like TAM markers 
may be a potential therapeutic approach for patients with 
TC.

Targeting the polarization signaling pathway‑PI3K inhibitor

The PI3K signaling pathway is involved in almost all types 
of signaling and acts as a molecular switch that increases 
immunosuppressive to immunostimulatory activity in the 
TAMs [92]. A previous study confirmed that the genetic 
ablation of PI3K decreased hypoxic stabilization and the 
TAMs-related proangiogenic factors while inducing the 
secretion of proinflammatory cytokines [11]. Furthermore, 
it has been confirmed that M2-like TAMs could activate the 
PI3K pathway and promote TC stem cell proliferation and 
metastasis in the ATC in experiment research and the tissue 
of patients [30]. Moreover, a multicenter phase II pilot study 
showed that PI3K inhibitors can reduce tumor growth in 
rats; however, no survival benefit was obtained, which may 
be due to incomplete inhibition of oncogenic pathways and/
or escape mechanisms [149]. These results suggest that the 
PI3K inhibitor is not sufficient alone, but it could reprogram 
TAMs and reduce the formation of TC stem cells. Therefore, 
PI3K could be a potential future therapeutic target for TC 
treatment.

Targeting the polarization signaling pathway‑Histone 
deacetylase (HDAC) inhibitor

HDAC inhibitors are well-known epigenetic modulators 
with therapeutic potential for a variety of cancer by modi-
fying the polarization of TAMs [27, 150, 151]. Recently, a 
study has linked HDAC inhibitors with immune-mediated 

anti-cancer effects, influenced the efficiency of immuno-
therapy, and reduced the M2-like TAMs in the animal 
model [150]. In other animal experiment, researchers 
found the release of inflammatory cytokines was increased 
as a result of MP195, a selective HDAC2 inhibitor with 
the highest concentration, which increased the proportion 
of M1-like TAMs [151]. Furthermore, celastrol, a novel 
HDAC inhibitor, was shown to modulate TAM polariza-
tion from M2 to M1 and inhibited colorectal cancer growth 
in the animal model [152]. However, in phase II clinical 
study designed to evaluate the objective response to HDAC 
inhibitor (vorinostat) in 19 patients with progressive TC, 
no patients achieved a partial or complete response [153]. 
Recently, the combination of TMP195 and PD-1 blockade 
may provide a therapeutic strategy for colorectal cancer-
bearing mice [154], which may provide a novel combina-
tion therapy for TC as HDAC inhibitors have no significant 
effect as monotherapy against TC [153, 155, 156].

Targeting the polarization signaling pathway‑signal 
transducer and activator of transcription 3 (STAT3) inhibitor

An experimental study demonstrated the regulating poten-
tial of the T cell immunoglobulin and mucin domain 3 
(TIM3) pathway in TC where it was found that TIM3 
blockage partially reversed TAM polarization [6]. Fur-
thermore, one animal study indicated that TIM3 activated 
the STAT3 signaling, increased M2-like TAM polariza-
tion, promoted the epithelial-mesenchymal transition of 
the tumor cells, and finally induced the lung metastasis of 
osteosarcoma [87]. Clinical trial exploring the therapeu-
tic effects is currently being conducted for solid cancers, 
and in vitro study showing the therapeutic potential of 
anti-TIM3 antibodies have shown encouraging results in 
ATC [6, 157]. Therefore, TIM3 blockers have tremendous 
potential for TC immunotherapy in conjunction with the 
reprogramming of TAMs. In addition, STAT3 has been 
shown to directly induce the expression of the marker 
protein CD163 in macrophages and induce the change 
in TAMs from the M1 to the M2 phenotype of human 
monocyte-derived macrophages and animal models [158, 
159]. Moreover, another experimental study in TC found 
miRNA-324-5p could affect the polarization of TAMs 
through the STAT3 signaling pathway [142]. The findings 
also suggested that miRNA-324-5p induced the invasion 
or migration of endothelial cells and the polarization of 
M2-like TAMs via VEGF and IL-4 or IL-13, respectively. 
Several STAT3 inhibitors are being tested in clinical tri-
als, including TTO101 [160–163], OPB-31121 [164–166], 
and Imx110 [167], but trials for TC patients are still not 
available. Although some methods were still not applied 
in TC, TAMs targeting strategies are classified in Table 2.
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Targeting the polarization signaling pathway with toll‑like 
receptor (TLR) agonists

TAMs have been observed to become pro-inflammatory 
when exposed to TLRs in TME and restricted tumor 
progression in the animal tumor model [23, 168]. For 
example, intra-tumor administration of TLR-7 and TLR-9 
increased monocyte infiltration and repolarized TAMs 
toward a proinflammatory phenotype in breast tumor 
mice models [169]. Furthermore, due to changes in the 
TAM phenotype, a similar effect was observed with TLR-7 
and TLR-8 agonists that cause tumor regression in the 
mice models of melanoma [170, 171]. TLR-4 expression 

in TC is related to tumor metastasis, aggressiveness, 
and the  BRAFV600E mutation, according to two stud-
ies using the tissue of patients and animal experiments 
[172, 173]. However, the therapeutic role of TLR agonists 
in TC with TAMs has not been studied. Currently, four 
TLR7 agonists (DSP-0509 [174], BNT411 [175], BDC-
1001 [176], BDBD018 [177] and three TLR9 agonists 
(SD101 [178–180], CMP-001 [181–183], and tilsotolimod 
[184–186]) are being tested in clinical trials for their anti-
tumor properties, and several clinical trials for solid tumor 
[175, 177, 186] and advanced cancer [184] may include 
patients with TC.

Table 2  Therapeutic strategies aimed into TAMs

* Articles marked with asterisk are studies for thyroid cancer
Strategies to deplete or inactivate TAMs (by targeting cytokines, the CSF1-CSF1R axis, or using bisphosphonates) and strategies to inhibit 
monocyte recruitment to TAMs (targeting the CCL2-CCR2 axis) have been widely used in the treatment of tumors, including TC. Furthermore, 
changing the phenotype of TAMs from a protumor effect to an anti-tumor state may be another preferable therapeutic approach. It can primar-
ily be divided into two types: (1) phenotype-based reprogramming and (2) function-based reprogramming. These recommendations are under 
development, and several reprogramming strategies have been tested, some of which are already applicable to TC. Additionally, TAMs also have 
protumor effects by suppressing immune activation. Therefore, TC therapy involves blocking immunosuppressive molecules in TAMs, which 
has been investigated in TC. The expression of chimeric antigen receptors (CARs) by TAMs which is currently in clinical trials for breast cancer 
but has not yet been studied in TC, is another provocative therapeutic strategy
Abbreviations: CAR-TAMs, chimeric antigen receptor-tumor associated macrophages; CCR2, C-C chemokine receptor type 2; CCL2, 
chemokine C-C motif ligand 2; CSF-1, colony-stimulating factor; CSF-1R, colony-stimulating factor receptor; CTLA-4, cytotoxic T-lympho-
cyte-associated protein-4; EVs, extracellular vesicles; HER2, receptor tyrosine-protein kinase erbB-2, HDAC, histone deacetylase; LILRB-2, 
leukocyte immunoglobulin-like receptor subfamily B member 2; MARCO, macrophage receptor with collagenous structure; MR, mannose 
receptor; PD-1, programmed cell protein 1; PD-L1, programmed death-ligand 1; PI3K, phosphoinositide 3-kinases; SIRP-α, signal regulatory 
protein-α; STAT3, signal transducer and activator of transcription 3; TC, thyroid cancer; TIM3, T cell immunoglobulin and mucin domain-
containing protein 3; TLR, toll-like receptor; VEGF, vascular endothelial growth factor

Treatment strategies Mechanisms Targets References

The depletion of TAMs Metastasis and Angiogenesis Anti-VEGF [131]*
Apoptosis of the TAMs Bisphosphonates [95]*
Monocyte recruitment CSF-1 and CSF-1R axis [14]*

CCL-2 and CCR-2 axis [75, 136]*
Phenotype-based reprogramming Targeting polarization of TAMs PI3K signaling pathway [30, 105]*

HDAC signaling pathway [156]*
STAT3 signaling pathway [6]*
TLR signaling pathway [169–171]
Reagents [68, 70]*
miRNA inhibitor [142]*
Viruses and bacteria [32, 110, 187]*
EVs [33]*
Nanoparticles [219, 220]*

Targeting M2-like TAMs expression markers Anti-Stabilin-1 [54]*
Anti-LILRB [10]*
Anti-MARCO [251]
Anti-MR [147]

Function-based reprogramming Targeting phagocytic activity of TAMs PD-1 and PD-L1 axis [230]
CD47 and SIRP-α axis [10, 111]*

Macrophage engineering Anti-HER2 CAR-TAMs [256]
Alternation of Immune suppression TME Activation of T cells PD-1 and PD-L1 axis [91, 112, 231, 234]*

CTLA-4 and CD80/86 axis [235, 264]*
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Targeting other factors related to the reprogramming 
of TAMs

Drugs could be used for the reprogramming of TAMs in 
addition to signaling pathway regulators in TC [68, 70]. For 
example, bleomycin, which primarily inhibits DNA syn-
thesis, reverses the M2-like into M1-like TAMs and sig-
nificantly decreases the cell proliferation, migration, and 
invasion of the TPC-1 cell line [70]. The M2-like TAM 
marker CD206 was suppressed by treatment with bleomycin, 
whereas the M1 phenotype marker CD80 and the major M1 
secretagogues (TNF-α and IL-1β) were increased. Similarly, 
zoledronic acid treatment prevented the M2 polarization of 
the THP-1 monocytes cell line, thus inhibiting the stemness 
and metastasis of TC cells [68]. Furthermore, zoledronic 
acid with radioactive iodine has been proven effective in 
reducing new metastases and improving survival in patients 
with DTC bone metastases in one retrospective review con-
ducted on 50 patients [134]. Zoledronic acid inhibits the 
growth of TAMs in TC cell lines, and TAMs often overex-
press osteoclast-inducing factors, which contribute to bone 
resorption or osteolysis [135]. Therefore, targeting TAMs 
may be a potential therapeutic mechanism for the treatment 
of TC bone metastasis. Except for the reagents, studies on 
altering the differentiation of TAMs by the virus have also 
been conducted for the treatment of TC. For example, two 
experimental studies have confirmed that the oncolytic virus 
inhibited ATC growth [187] and switched M2-like TAMs 
toward an M1 phenotype [32]. In addition, the oncolytic 
activity of the virus (dl922-947) could be increased by a 
poly ADP ribose polymerase (PARP) inhibitor and inhibited 
the progression of ATC both in vitro and in vivo experiment 
[110]. Expect the virus, bacteria (e.g., Mycobacterium indi-
cus pranii (Mw)) can also increase TAMs to repolarize to 
the M1 phenotype with the reduction of regulatory T cells 
in the animal models of melanoma [65, 188]. Additionally, 
Mw upregulated the expression of CD80/CD86 positive 
macrophages in a tuberculosis model by stimulating the 
nuclear factor-κB (NF-κB) signaling pathway [189]. Fur-
ther research is required to determine whether these novel 
bacteria and the combination therapy could be used in TC.

EVs in TME have been demonstrated in many studies to 
influence TC development by mediating intercellular sign-
aling and also affecting TAM polarization [33, 190, 191]. 
For example, research on the TC mice model showed that 
CXCR4 expression in PTC is restricted by EVs contain-
ing miRNA-655-3p, which prevents TAM growth, inva-
sion, and M2 polarization [33]. By targeting various tran-
scription factors and bridging proteins, miRNA-29a-3p 
[192], miRNA-103 [193], miRNA-145 [102], miRNA-203 
[194], miRNA-222 [101], miRNA-934 [100], and miRNA-
940 [195] induced M2 polarization. On the other hand, 
the miRNA-9 [196], miRNA-16 [197], miRNA-21 [198], 

miRNA-127 [199], miRNA-125b [200, 201], miRNA-155 
[200] contained in the EVs related to M1 polarization have 
been reported by various experimental studies. In addition, 
the surface glycosylation profile of the EVs has been found 
to contain a significant amount of mannose, making it a suit-
able ligand for MR, which can target M2-like TAMs [202, 
203]. Additionally, modification of the EVs by molecular 
engineering could help reduce the immunosuppression of 
TME [145]. Furthermore, a study has demonstrated that EV-
mimics from M1 macrophages can directly repolarize M2 
into M1-like TAMs that release proinflammatory cytokines, 
induce anti-tumor immune responses, and enhance the 
anti-cancer efficacy of PD-L1 [204]. This approach offers 
the possibility of programmed polarization of TAMs, and 
previous studies have already provided possible candidate 
strategies [145, 205]. In addition to the immunomodulation 
ability, several studies have shown that miRNAs in EVs are 
highly stable and protected by lipid bilayers, making them 
suitable and promising tumor markers for the clinical diag-
nosis of TC [206–209].

In addition to the EVs, nanoparticles alone or with 
chemotherapy can also be intelligently designed to promote 
M1-polarization and inhibited the progress in the mice 
model of melanoma [210–212]. Additionally, nanoparti-
cles that mimic NK cell membranes can modulate TME, 
increase the percentage of M1-like TAMs, and polarize 
TAMs, improving both in vitro and in vivo immunotherapy 
for breast cancer [213]. Also, the effects of glycocalyx-
mimetic nanoparticles on mouse primary peritoneal mac-
rophage polarization have been investigated. The findings 
revealed that macrophage cells of mice were successfully 
repolarized to the M1 phenotype with increased expression 
of CD86 markers and elevated IL-12 levels [214]. Cytokines 
such as IL-12 was considered a typical candidate marker for 
promoting the reversal of M2-like TAMs to an M1 pheno-
type including TC both in clinical and animal study [13, 93, 
215]. Previous research focusing on this characteristic has 
created pH-sensitive polymeric nanoparticles to encapsulate 
IL-12 for targeted immunotherapy. The nanoparticles loaded 
with IL-12 can passively accumulate and release IL-12 at 
tumor sites and exert therapeutic effects by promoting the 
polarization of the TAMs to the M1 phenotype in tumors by 
using the melanoma mice model [216]. Similarly, a plasmid 
DNA encoding the IL-12 gene is delivered into TAMs using 
a multifunctional fusion peptide-modified macrophage and 
tumor-targeted delivery system. This in vitro study indicated 
the nanoparticles enhanced IL-12 production, increased the 
release of proinflammatory cytokines, upregulated the M1 
marker (CD80), and downregulated the M2 marker (CD206) 
[217]. Furthermore, to promote the repolarization of TAMs 
toward the M1 phenotype, clinical trials have respected for 
various transcriptional signaling drugs that can be flex-
ibly loaded into nanoparticles, such as CD47-signaling 
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regulatory protein-α (SIRP-α) antibodies [218] and TLR 
agonists [23]. In addition, it is reassuring to note that nano-
particles are typically decorated with specific targeting 
ligands, which can facilitate the successful transfer of sign-
aling modulators in solid tumor mice models, including TC 
[219, 220]. The unmodified gold nanoparticles limited the 
growth of PTC cells (BCPAP and TPC-1), including cell 
proliferation, migration, and invasion, as demonstrated in a 
previous study [220]. The novel gold nanomedicine CYT-
21625, which was developed for the targeted delivery of 
TNF-α with paclitaxel, has also shown significant inhibition 
of the progression of ATC in animal models [219].

Targeting phagocytic activity of TAMs

Tumor cells can evade clearance by macrophages by overex-
pressing anti-phagocytic surface proteins. The CD47 associ-
ated with macrophage SIRP-α is the source of anti-phago-
cytic signals that have been the subject of most research 
and documentation [221–223]. According to the study using 
the ATC mouse model, inhibiting CD47 increased phago-
cytosis and resulted in the overexpression of CD11B and 
CD80 on TAMs [111]. Moreover, in addition to the CD47 
antibody, TTI-621, a fully human recombinant protein that 
blocks CD47-SIRP-α has been applied in-human phase I 
clinical trials [224]. One experiment study also confirmed 
the LILRB1 on TAMs is a novel signal to inhibit phagocy-
tosis of cancer cells that evade SIRPα-CD47 blockers and 
the expression was increased in the ATC patients [10, 225]. 
While, the clinical trials for the TC are still being developed, 
and dozens of drugs targeting CD47 are currently being 
recruited; their names cannot be listed here in detail. Mono-
clonal antibodies that target the interaction between PD-1 
and PD-L1 have shown clinical significance in combating a 
variety of cancers [226–228]. Recent experiment and clinical 
studies have demonstrated that TAMs also express PD-1 and 
are related to the progress of tumors [46, 229]. Moreover, a 
previous study confirmed that the PD-1 expression of TAMs 
was negatively correlated with phagocytic potency against 
tumor cells [230] and that blocking PD-1 reduced tumor 
growth in the model of orthotopic murine ATC [231].

Alteration of the immune suppression of TME

In the mice model of breast cancer and osteosarcoma, target-
ing PD-1/PD-L1 in TAMs, which converts its phenotype into 
an anti-tumor phenotype, directly leads to increase T cell-
mediated immune surveillance [46, 232]. Another animal 
study of melanoma also demonstrated that anti-PD-L1 treat-
ment increased M1-like TAM cell proliferation, survival, 
and activation, as well as upregulated proinflammatory-
related pathways [47]. In another animal study of melanoma, 
targeted TAM depletion created a favorable environment to 

facilitate local and systemic delivery of antibodies against 
PD-1 antibody-adherent platelets [233]. The TME was fur-
ther reprogrammed and promoted T cell infiltration into the 
tumor tissue by eliminating TAM. The antitumor of targeting 
PD-1/PD-L1 was also performed to enhance the efficacy of 
Lenvatinib by altering the TME in the mice of ATC [91]. 
In addition, another study showed that when a combina-
tion of BRAF inhibitors and anti-PD-1/PD-L1 antibodies 
was used, the reduction in MDSCs was usually accompa-
nied by an increase in M1-like TAMs and reduced tumor 
volume in an orthotopic mouse model [231]. Except for the 
experimental studies, the clinical trials of immunotherapy 
against PD-1/PD-L1 have also been applied in TC [234], 
and the results show promise in patients with ATC [112]. In 
detail, two of 22 patients in a clinical trial of the anti-PD-1 
antibody (pembrolizumab) in patients with advanced and 
PD-L1-positive TC confirmed a partial response [234]. In 
another phase II clinical trial for ATC, 42 patients had three 
complete responses and five partial responses to anti-PD-1 
therapy [112]. Although it is well established that PD-1/
PD-L1 blockade activates T cells, little is known about the 
role of a combination of targeting TAMs and TME in TC. 
The role of PD-1/PD-L1 blockers on TAMs in TC should not 
be neglected by the focus on T-cell signaling, as the effect 
on TAMs may inform the assessment of therapeutic efficacy 
and suggest alternative treatments.

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
is another immune checkpoint inhibitor of TC that func-
tions by unbreaking the T cells to turn on the anti-tumor 
immune response [113, 235]. In a phase II trial for TC, anti-
CTLA-4 and anti-PD-1 combination therapy resulted in an 
objective response rate of 12%, with two partial responses in 
17 patients [113]. In another phase 1 dose-escalation study, 
tumor reduction was demonstrated with anti-CTLA-4 and 
anti-PD-1 combination therapy, but the sample of patients 
with TC patients in this study was too small [235]. Despite 
the rapid advancement of immunotherapy technology, par-
ticularly with the development of immune checkpoint inhibi-
tors, there are limited studies for TC [236, 237].

The advantages and prospects 
of TAM‑targeted therapy in TC

As mentioned, the polarization of TAMs was strongly asso-
ciated with TME of TC and correlated with aggressiveness 
of the cancer, which may provide a new platform for the 
treatment of TC that are refractory to conventional treat-
ment strategies [13, 14, 18, 34, 58, 61, 62, 238]. First of 
all, the density of TAMs is increased in PTC tissues com-
pared to benign thyroid disease [13]; and PTC with BRAF 
mutation significantly increases the expression of CSF-1 
and CCL2 which attracted the TAMs [14]. Moreover, the 
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TAMs correlated with lymph node metastasis [9, 13] and 
were used to assess the prognosis of TC [34]. Thus, devel-
oping TAM-targeted therapies requires a thorough under-
standing of the role of TAMs in the progression of TC as 
well as the effects of therapeutic strategies on TME. Also, 
it has been previously suggested that TAM-targeting thera-
peutics may offer a new prospect for EV-mediated tumor 
immunotherapy [205]. For example, EVs have been shown 
to act as effective immunomodulators of TAM depletion 
through the synthesis of paclitaxel-containing microvesicles 
and an ultrasound-mediated delivery method [239]. Moreo-
ver, a previous study found that nanovesicles from M1-like 
TAMs can directly regulate the transition of M2 to the M1 
phenotype by modulating miRNA expression profiles [204], 
and the IL-4 receptor [240]. Therefore, the design of new 
therapeutic EVs, combined with the TAMs-targeted strategy, 
may herald a new era in cancer immunotherapy, including 
TC. Unfortunately, there is limited research on TAM in TC, 
particularly in patients who have recently undergone chemo-
therapy or radiotherapy. Due to the high plasticity of TAMs 
and the high density in TC, TAM-centered therapy, and the 
combinatorial treatment with chemotherapy, radiotherapy, 
or immunotherapy may become a new therapeutic oppor-
tunity for TC.

The limitation of the existing strategies

Appealing therapeutic strategies in TC include the deple-
tion of TAMs and inhibition of monocyte recruitment to 
inhibit tumor development while preserving the cell types 
that support a protective immune response [27, 41, 66, 92, 
97, 241]. However, the successful clinical application of 
these strategies requires careful investigations to overcome 
the current limitations. For instance, clodronate is a drug 
that can completely eliminate TAMs and hence is a simple 
and effective strategy. However, the drug may cause high 
toxicity if patients are treated for prolonged periods [92]. 
Moreover, osteonecrosis of the jaw (ONJ), a rare but severe 
side effect in TC patients, was previously linked to oral 
and systemic administration of bisphosphonates [242]. In 
addition, ONJ may worsen in patients using a combination 
of bisphosphonates and tyrosine kinase inhibitors (TKIs) 
for DTC and ATC [89, 243]. Furthermore, at the clinical 
level, this approach has not been inconsistently tested in 
clinical trials in different cancers [244–246]. These results 
suggest that different cancers or even various subtypes of 
the same cancer such as triple-negative breast cancer, and 
ATC may have side effects due to high doses application 
of the drugs. On the other hand, the depletion of TAM also 
affects other cells, e.g., M1-like TAM produces pro-inflam-
matory cytokines and up-regulates major histocompatibil-
ity complex class II (MHC-II) that promotes the anti-tumor 

activity of T cells [247, 248]. Research has shown that T 
cell-mediated immunity depends on monocytes and mac-
rophages [247], also for anti-PD-1 [249] and anti-CTLA-4 
therapies [250]. Complete TAM depletion makes it challeng-
ing to combine checkpoint inhibitors and immunotherapy 
[66]. In addition, the complex composition of the TME leads 
to dynamic interactions between TAMs and other immune 
cells that may vary with the progression of cancer, for which 
deletion of TAMs may disrupt the equilibrium structure and 
promote tumor progression. Another strategy is to target 
cancer-associated myeloid immature progenitors, which are 
now known to be highly heterogeneous and complex, pos-
ing a challenge to the development of myeloid cell-targeted 
immunotherapies [19, 248]. One of the greatest challenges 
is identifying specific markers [92], and the massive cell 
depletion in immature populations may result in multi-organ 
side effects. Hence, feasible alternatives to consider include 
temporary TAM ablation and targeting the recovery periods 
during which monocytes can be attracted before becoming 
pro-tumoral TAMs.

Therefore, a better strategy in the future would be to 
enhance the activity of anti-tumor TAMs or repolarize exist-
ing TAMs to produce anti-tumor activity, but the results for 
TC are rare. For example, the methods to repolarize M2 
to M1-like TAMs for new characteristic gene markers have 
been used in melanoma and breast cancer, such as mac-
rophage receptor with collagenous structure (MARCO) 
antibody therapy [27, 66, 92, 251], but no experimental or 
clinical trials have been conducted for TC. Additionally, the 
novel signature genes of TAMs have been identified, includ-
ing scavenger receptor-triggering receptors expressed on 
myeloid cells 2 (TREM2) [252], apolipoprotein E (APOE) 
[169], secreted phosphoprotein 1 (SPP1) [10, 253], and 
V-set and immunoglobulin domain containing 4 (VSIG4) 
[10]. Additional single-cell RNA-seq studies also indicated 
that TAMs were frequently present with both pro-tumor and 
anti-tumor signatures [254]. This phenomenon suggests that 
macrophages in the TME may not have conventional M1/
M2 polarization [253]. Understanding the role of novel 
TAMs subsets in TME may require new technologies like 
spatial transcriptomics and multiplex immunofluorescence 
[255]. Therefore, the identification and discovery of targets 
for reprogramming TAMs is critical for transforming TME 
from a pro-cancer to an anti-cancer function. An additional 
provocative therapeutic strategy of TAM manipulation has 
been introduced, including the engineering of macrophages 
to express chimeric antigen receptors (CAR) [27]. To date, 
CAR-TAMs studies are mainly at the preclinical stage, with 
data confirming their efficacy (growth-inhibiting tumor 
phagocytosis) in solid tumors [256–258]. However, whether 
it is the identification and discovery of targets for repro-
grammed TAMs or clinical trials of CAR-TAMs, there is 
limited research in TC.



3909Cancer Immunology, Immunotherapy (2023) 72:3895–3917 

1 3

In addition to the issues of appeal and opportunities, 
many aspects need to be expanded upon. How can a bal-
ance be struck between TAMs and other immune cells to 
favor the acquired immune system over tumor develop-
ment in the ever-changing state of TME? Does the com-
position of TME change before and after treatment? Does 
this change allow TAMs to develop chemotherapy resist-
ance? How should subsequent treatment modalities and 
medications be organized for TAMs that have developed 
resistance? How can different subtypes of TC affect the 
polarization of TAMs, and what are the different thera-
peutic approaches that need to be proposed for the differ-
ent subtypes? How could patients of different genders be 
applied in the clinical setting to develop treatment modali-
ties for TAMs? Many studies have previously shown that 
sex hormones directly influence the characterization of 
TAMs, although this has not yet been explored in TC 
[259–263]. These are the major questions that need to be 
explored and answered subsequently.

Conclusions

To date, tremendous efforts have been made to promote 
immunotherapy to TC. TME plays an important role in TC 
genesis, metastasis, and stem cell proliferation, and TAM 
accounts for the largest proportion of TME cells. Although it 
is currently believed that high infiltration of M2-like TAMs 
supports TME and promotes TC growth, the study of TAM 
in TC is still a new field. Meanwhile, targeting therapy of 
TAMs in TC has the following advantages: 1. TAMs have a 
high degree of infiltration in TC and related with the prog-
nosis of the cancer; 2. common genetic mutations in TC 
related with the polarization of TAMs, e.g., BRAF mutation 
has been shown to cause the TAMs polarization into M2 
phenotype; 3. Since the gene mutation of BRAF correlated 
with high densities of M2-like TAM, targeted therapies can 
be better developed based on the subgroup of TC. Numerous 
studies have demonstrated the importance of innate immune 
cells in preventing the onset and progression of cancer, and 
TAMs may be a promising target in the future. Thus, target-
ing therapy of TAMs provides a platform to be considered 
for immunotherapy of TC. Despite the favorable prognosis 
of TC, more therapeutic strategies based on or in combina-
tion with TAMs need to be explored in the future.
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