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Abstract

The hippocampus is generally considered to have relatively late involvement in recognition memory, its
main electrophysiological signature being between 400 and 800 ms after stimulus onset. However, most
electrophysiological studies have analyzed the hippocampus as a single responsive area, selecting only a
single-site signal exhibiting the strongest effect in terms of amplitude. These classical approaches may
not capture all the dynamics of this structure, hindering the contribution of other hippocampal sources
that are not located in the vicinity of the selected site. We combined intracerebral electroencephalogram
recordings from epileptic patients with independent component analysis during a recognition memory
task involving the recognition of old and new images. We identified two sources with different responses
emerging from the hippocampus: a fast one (maximal amplitude at ∼250 ms) that could not be directly
identified from raw recordings and a latter one, peaking at ∼400 ms. The former component presented
different amplitudes between old and new items in 6 out of 10 patients. The latter component had dif-
ferent delays for each condition, with a faster activation (∼290 ms after stimulus onset) for recognized
items. We hypothesize that both sources represent two steps of hippocampal recognition memory, the
faster reflecting the input from other structures and the latter the hippocampal internal processing.
Recognized images evoking early activations would facilitate neural computation in the hippocampus,
accelerating memory retrieval of complementary information. Overall, our results suggest that the hippo-
campal activity is composed of several sources with an early activation related to recognition memory.
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Significance Statement

In the human memory circuit, the hippocampus is considered as a structure with relatively late
activation, associated with the retrieval of elaborate memories. However, in most electrophysiological
studies, it is characterized by the activity of a single contact, which may not represent the entire
dynamics of this structure. Here, we combined intracerebral recordings with independent component
analysis to separate the activity from two different neural sources generated in the hippocampus.
We analyzed the responses of both sources during the recognition of old and new images. Our results
reveal new dynamics associated with different neuronal sources within the hippocampus, with
recognition memory occurring much faster than previously reported.Continued on next page.
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Introduction
Recognition memory plays a crucial role in our ability to navigate and comprehend the

world around us. The information retrieved is rapidly processed in the brain with behavioral
responses starting ∼350 ms after stimulus presentation (Besson et al., 2012). However,
the timing at which each structure is engaged/involved in this process is still obscure
(Warburton and Brown, 2015).
In the hippocampus, event-related potentials (ERPs) are elicited during recognition of

known faces or words, with larger amplitudes between 400 and 600 ms poststimulus
(hippocampal P600) for successful item recognition (Fernández et al., 1999; Trautner
et al., 2004; Barbeau et al., 2008). The timing of this response, together with the activation
of other brain areas, allows a rough estimation of the memory circuit of the brain. Early
potentials are generated along the whole ventral pathway (Allison et al., 1999).
However, the first structure showing a modulation by the old/new status of the stimuli is
the perirhinal cortex, with higher responses for known items at ∼200–300 ms, followed
by the supplementary motor area, and by various frontal and parietal regions (Gonzalez
et al., 2015; Despouy et al., 2020a). In this context, the hippocampus has been considered
as one of the latest structures involved in recognition (Despouy et al., 2020a), with the first
difference between old and new elements occurring almost 500 ms after stimulus onset.
This result has suggested that the hippocampus is mainly involved in a slower process
that retrieves complementary information (Despouy et al., 2020a), although early activa-
tions have also been identified for specific source memory effects (Staresina et al.,
2012). A similar result was found in a recent magnetoencephalography (MEG) study,
with higher amplitudes for recognition memory at ∼500 ms (López-Madrona et al.,
2022). Interestingly, the responses to old and new elements were different not only in
amplitude but also in delay, with faster activations for recognized items. The time delay
between conditions was ∼100 and 150 ms. The origin of the MEG activity was validated
using simultaneous intracerebral recordings, corresponding to the combined activity of
the hippocampus and the rhinal cortex.
Despite the high spatial resolution of intracerebral recordings (stereotaxic electroen-

cephalography, SEEG), it is extremely difficult to separate different signal sources within
the hippocampus. Substructures such as CA1, CA3, and the dentate gyrus (DG) are
roughly of the same size as SEEG contacts—a few millimeters. A single contact may
spatially cover more than one structure, while others may not be sampled. In addition,
SEEG sampling is constrained by clinical indications. Only a limited number of contacts
are placed in the hippocampus and their location varies across patients. The different
substructures of the hippocampus are folded one in the other, resulting in overlapped field
potentials. Therefore, the hippocampus is most commonly analyzed as a single respon-
sive area in SEEG, blurring the contribution of each substructure to the recordings
(Ludowig et al., 2010; Barbeau et al., 2017).
When the activities of various structures overlap in time and space, independent com-

ponent analysis (ICA) may be used to separate the time courses of the different current
generators contributing to the recorded field potentials (Makarova et al., 2011; Herreras
et al., 2015, 2022). ICA has been extensively used in human EEG and MEG, removing
artifacts as the cardiac activity (Jung et al., 2000) or retrieving neuronal sources (Hsu
et al., 2022; Velmurugan et al., 2022). In intracerebral data, the efficiency of ICA to disen-
tangle hippocampal pathways has been well established in animal studies, where it has
helped isolating the different inputs to CA1 (Benito et al., 2016; López-Madrona et al.,
2020) and to the DG (Benito et al., 2014; Fernández-Ruiz et al., 2013, 2021). In humans,
methods such as bipolar montages or current source density analysis are commonly
used to measure the local inflow and outflow of currents in a specific location
(Nicholson and Freeman, 1975; Mitzdorf, 1985). However, thesemethodsmay not recover
the correct time courses of the local sources (Fernández-Ruiz and Herreras, 2013; Martín-
Vázquez et al., 2013; Michelmann et al., 2018). For example, in the case of two colocalized
sources (i.e., close to the same SEEG contact), the bipolar montage would measure a
combination of the activities of both structures. This overlap can have critical conse-
quences. If the sources have anticorrelated activities, one or both signals would be can-
celled. Although the identification of intracerebral sources with ICA has so far been
restricted to animal studies, it has been proposed as an optimal solution to remove the
electrical reference (Hu et al., 2007; Whitmore and Lin, 2016), or for rereferencing intrace-
rebral EEG data and identifying neural generators in LFP recordings (Michelmann et al.,
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2018). Moreover, ICA has been recently proposed as a method to localize and reconstruct remote sources nonsampled
with the intracerebral electrodes (López-Madrona et al., 2023).
Using such an approach, we clearly identified for the first time different sources of the electrophysiological signal in the

hippocampus during a recognition memory task. First, we applied ICA on SEEG recordings, identifying two different
hippocampal current generators and disentangling their time courses from other close or distant activities. Then, we
examined the spatial topography of each hippocampal component and corroborated the local origin of the sources.
Finally, we characterized the dynamics of the hippocampal responses during a recognition memory task.

Materials and Methods
Participants. Ten patients (three females) with pharmacoresistant epilepsy volunteered for this study. They were

implanted with SEEG depth electrodes along the longitudinal axis of the medial temporal lobe during presurgical evalu-
ation. All these patients had been implanted in the hippocampus for clinical reasons (Extended Data Figure 1-1). Each elec-
trode was placed targeting either the anterior (electrode B) or the posterior hippocampus (electrode C). The final location
was determined by the neurosurgeon based on the individual anatomy of each patient. Five patients were recruited at La
Timone Hospital (Marseille, France) and the other five at the Emergency University Hospital Bucharest (Romania). None of
the patients presented sclerosis. For those patients recorded in Marseille, the hippocampus exhibited the stereotyped
responses during an oddball task, which confirmed the correct functionality of this structure. Table 1 shows the clinical
information for each patient. This research has been approved by the relevant Institutional Review Board (Comité de
Protection des Personnes, Sud-Méditerranée I, ID-RCB 2012-A00644-39) and the Bucharest University ethical committee
approval (CEC 23/20.04.2019). All participants signed a written informed consent form regarding this research.

Experimental paradigm. Each block of the recognition memory task started with an encoding phase, during which 12
pictures were presented, one after the other, and the participant was asked to memorize them. Each picture was a simple
colored drawing of a familiar item (e.g., a dog or a car) on a gray background. The picture database and precise selection
criteria are described below. After a distracting video of 1 min (silent excerpts from a documentary showing birds and land-
scapes), the recognition phase involved a set of 24 pictures from the same database. Half of these pictures had been
presented during the encoding phase, while the other 12 were new, never-presented, pictures. Participants were asked
to press two different buttons if they recognized the image as having been presented earlier during encoding (“old”
condition), or if the image was “new” to them. The latency of this response is the response time (RT). Stimuli presentation
and response logging were controlled by the software E-prime 3.0 (Psychology Software Tools).
Each trial started with a fixation cross-presented in the center of the screen for 1,000 ms, followed by the experimental

picture, presented for 1,000 ms in the encoding sub-block and for 1,500 ms in the recognition sub-block. The subsequent
intertrial interval was fixed to 1,000 ms in both blocks. For each participant, a total of seven blocks were programmed to be
displayed consecutively, using different images.
We selected 24×7= 168 images to be used as experimental materials from the database of Duñabeitia et al. (2018).

They were selected as having high name agreement (above 90%). To ensure that the observations were not driven by
item-specific properties, different experimental lists were created for each participant. The items were separated into
twomatched groups of 84 items to serve as old and new, alternatively across patients. Across the “old” and “new” groups
of items, there were roughly equal numbers of natural and artifact stimuli, with matched visual complexities; their names in
French were matched for name agreement, length in syllables, and (log) lexical frequency of use [normative data from
Duñabeitia et al. (2018) or New et al. (2004)]. The 84-item groups were further broken down into seven groups to be

Table 1. Clinical information of each patient

Patient Age Epilepsy Language organization Electrode(s) location

1 36 Bilateral temporomesial Atypical bilateral Right anterior
Right posterior

2 37 Bilateral temporomesial Left typical Right anterior
Left anterior

3 17 Left operculoinsular Left typical Left anterior
4 36 Right temporomesial Left typical Right anterior

Left anterior
5 26 Bilateral extensive on heterotopia Right atypical Left anterior

Right posterior
Left posterior

6 47 Left temporomesial Left typical Left posterior
7 38 Right insular Left typical Right anterior
8 27 Left insular Left typical Left posterior
9 23 Right parietotemporal heterotopia Left typical Right anterior
10 29 Right temporo-occipital heterotopia Left typical Right posterior
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used in the different blocks, with items matched for visual complexity and (log) lexical frequency across the seven groups.
All matching across picture groups was performed with theMATCH utility (van Casteren and Davis, 2006). In the encoding
phases, the 12 items were presented in a random order; in the recognition phases, the items were presented in a pseu-
dorandom order, with the constraint that there were never more than three “old” or “new” items in a row.

SEEG recordings. SEEG recordings were performed using depth electrodes (Alcis and DIXI Medical), implanted stereo-
taxically (Talairach et al., 1992). The electrodes of both clinical centers had between 8 and 18 contacts per electrode, a
diameter of 0.8 mm, and contact length of 2 mm and were separated from each other by 1.5 mm. We implanted between
89 and 223 SEEG contacts per patient (total contacts recorded, 1,590; mean of 159 contacts per patient, SD±55).
A scalp electrode placed at the Fz location was used as reference for the recordings performed in Marseille, while the
recordings in Bucharest used an intracranial contact located in the white matter, exhibiting the lowest activity. To deter-
mine the exact location of each electrode and contact, a postimplantation CT scan fusion with the preoperative MRI was
performed for each patient. SEEG signal from Marseille center was recorded on a digital system (Natus Medical
Incorporated) with sampling at 1,024 Hz or more with 16-bit resolution, a hardware high-pass filter (cutoff = 0.16 Hz),
and an antialiasing low-pass filter (cutoff = 340 Hz). Data from the Bucharest hospital were recorded with a Quantum
128 system (Natus Neuro), sampling rate at 4,096 Hz, 24-bit resolution, and a hardware high-pass filter at 0.08 Hz. To
homogenize both datasets, we applied digital high-pass and low-pass filters at 0.5 and 256 Hz, respectively, and down-
sampled the data to 1,024 Hz.We inspected the data for interictal epileptiform discharges and other artifacts andmanually
removed those segments.

ICA. Because this work is focused on the analysis of hippocampal sources, we selected for ICA only the electrodes
targeting this structure. ICA was run on the continuous traces of each electrode of each patient separately. We thus
analyzed signals collected using five electrodes (N=15) implanted in 10 patients, having a total of 189 contacts (mean
of 12 contacts per electrode, SD±2).
ICA aims to solve the “cocktail party” problem by separatingN statistically independent sources that have beenmixed in

M recording contacts. It is a blind source separation methodology, as the spatial distribution and time courses of the
sources are unknown. To identify the sources, ICA assumes that they are immobile in space, that is, that the proportional
contribution of each source to every contact is the same throughout the recording session. Each recorded signal um(t) is
thus modeled as the sum of N independent sources (sn(t)) multiplied by a constant factor (Vmn):

um(t) =
∑N

n=1

Vmnsn(t), m = 1, 2, . . . , M, (1)

where um(t) is the SEEG data, Vmn the ICA weights or spatial distribution of each source,M the number of contacts, N the
number of sources, and sn(t) the obtained independent components (“SEEG-ICs”).
In this work, we obtained as many components as contacts per electrode (N=M ), without applying any dimension

reduction (Artoni et al., 2018). We applied ICA on the continuous data, seeking one mixing matrix per electrode. We
used FieldTrip (Oostenveld et al., 2011) to compute ICA based on the infomax algorithm, which aims to minimize the
mutual information between components (Bell and Sejnowski, 1995), implemented in EEGLAB (Delorme and Makeig,
2004). Then, we normalized the data by z-scoring the continuous traces of each component to facilitate the comparison
across subjects. Although only some of the SEEG-ICs were putative neuronal sources, we did not discard any component
at this point.

Analysis of event-related potentials. We segmented the continuous dataset into trials with a duration of 1 s from the
stimulus onset. Only trials associated with the correct behavioral response were considered in the analysis. For each
SEEG-IC, we checked if they had a significant ERP in both the “old” and the “new” conditions. To do so, we tested if
each time point across trials was significantly different from zero with a t test, obtaining a t- and p-values for each time
point. Then, we corrected these tests for multiple comparisons using a local false discovery rate (LFDR; Benjamini and
Heller, 2007) on the t-values with a threshold of 0.2 (Pizzo et al., 2019). LFDR assumes that the distribution of t-values
is Gaussian, considering as significant those values that stand out from the distribution. To have a better estimation of
the distribution, we grouped all the t-values across components of each electrode, obtaining a single threshold per elec-
trode. To remove artifactual single points, that is, single data points that were significant but the anterior and posterior
samples were not, we selected only those points during the first second after the stimulus, and we imposed a minimum
number of consecutive significant time samples (10 ms in this work).
To assess if the responses of the components differed in amplitude during “old” versus “new” trials, we repeated a

similar analysis across conditions. For each component and time point, we performed a t test across trials between the
amplitudes of the ERP in the old and new conditions. Then, we corrected the t-values for multiple comparisons using
LFDR on the t-values of each dataset (i.e., all the components of one electrode). In this way, we identified statistical
differences at the single electrode level.
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Referential and bipolar montages. To compare the results using ICA with traditional approaches to record local signal
sources and sinks, we have analyzed the contacts within the hippocampus using a referential and a bipolar montage
(Hirsch and Brenner, 2010). The ERPs were analyzed following the same approach as for the IC-SEEGs (see above,
Analysis of event-related potentials). As several contacts may be placed within this structure, potentially recording differ-
ent local activities, we followed two different criteria for contact selection. The first criterion was based on the amplitude of
the response, selecting the contact with maximal amplitude for “old” images. In the second criterion, we focused on the
temporal activation, selecting the contact showing the earliest activation, determined as the first time point with an
amplitude significantly different from zero.

Response without prediction. Some factors of our task design could lead to some implicit task structure learning, for
example, the fixed intertrial interval, the same number of “old” and “new” items per block, or the fact that no more than
three consecutive elements of the same condition could be presented. Thus, it is theoretically possible that this trial
prediction is reflected in the hippocampal response. To check whether the SEEG-ICs presented a significant activation
unrelated to the task predictability, we computed the ERPs using only the first trial of each block, that is, images that
did not immediately precede another trial. Only for this analysis, we included trials from the encoding part of the task
to increase the number of trials. A total of 14 trials were selected per SEEG-IC, seven from the encoding sub-block
and seven from the recognition one.

Identification of hippocampal components. We focused on the putative hippocampal SEEG-ICs that were responding
to the protocol. To identify these components from all the obtained sources, we first selected the signals with a significant
ERP during both old and new trials. Then, we considered only the components with a local spatial distribution that was
maximal in the hippocampus, that is, those for which the ICAweights present a strong decay across contacts. To estimate
this decay, we computed the number of contacts with an ICA weight higher than half of the maximal weight for each
SEEG-IC. Therefore, we considered an SEEG-IC as locally generated in the hippocampus if the ICA weights outside
this structure had a decay of, at least, half of the maximum weight.
After visual inspection, we identified two components that had a similar ERP pattern across patients. We labeled these

components “Hc250-IC” and “Hc600-IC” based on the latencies of their responses. We only considered the time courses
of Hc250-IC and Hc600-IC for further analysis. As ICA does not ensure the correct polarity and amplitude of the sources,
we reversed the components when needed to match the same polarity across electrodes.

Spatial distribution across recording sites. To compare the spatial topographies of components Hc250-IC and
Hc600-IC, we selected the electrodes where both components were identified and measured the distance between the
peaks of the ICA weights in terms of number of contacts. If the peak of Hc250-IC weights was located in a deeper contact
than Hc600-IC, the distance was considered as negative, and positive if the contact was in a more lateral location. Then,
we compared with a t test whether this difference was significantly different from zero.
To test whether other brain regions were contributing to the SEEG-ICs components, we repeated the ICA now including

all the recording sites in each patient. The computation of a single ICA for all the recordings may affect the resultant time
courses. Low variance hippocampal components may not be singled out, as the addition of many signals far from the
hippocampus decreases the relative contribution of this source to the whole dataset. Moreover, the number of contacts
and locations strongly differs across patients, hindering the intersubject comparison. Therefore, we performed the anal-
ysis in an iterative manner, including only one additional contact at a time and evaluating its contribution to the SEEG-ICs.
At each iteration, we computed a new ICA on the combination of the original electrode (i.e., the electrode targeting the
hippocampus) and one extra contact. We then computed the zero-lag correlation between the original SEEG-IC signal
(only the hippocampal electrode) and the new SEEG-ICs (combination of the hippocampal electrode and an additional
contact), selecting the component with the highest correlation. This component would represent the same neuronal
source in both datasets. Then, we estimated the relative contribution of the additional contact to the component as the
ratio between the ICA weights at the new location divided by the highest ICA weight. A value close to 1 would imply
that the additional contact strongly contributes to the SEEG-IC, suggesting that the neuronal source is nearby, while a
value close to 0 would indicate that the additional contact is relatively far from the source. This allows the analysis of
the approximated spatial distribution of the components on the whole sampled brain while minimizing the impact of
including more contacts on the estimation of source time courses.

Group analysis of event-related potentials. In order to test for a significative response at the group level, either for
SEEG-ICs or for referential and bipolar montages, we performed a nonparametric permutation test corrected with cluster-
based statistics (Cohen, 2014). We computed the averaged ERP for each electrode and condition. Then, for each time
point, we computed a t test against zero between the ERP values across electrodes in each condition. We kept the
t-values of those points with a p-value <0.05. These are the uncorrected values of significance. To correct for multiple
comparisons, we selected clusters of significance, that is, group of consecutive time points with a significant p-value.
We assigned to each cluster the sum of the t-values inside the cluster (either positive or negative). We computed
N=2,000 surrogate datasets, by randomly shifting the starting time of the ERPs of each SEEG-IC. We selected circular
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ERPs of 2 s, including 500 ms of baseline. Thus, for each surrogated ERP, we chose a random value between −500 and
1,500 ms around the stimulus, which was considered as the starting point, and shifted it accordingly. This way, the ERP
signals remained the same, but the temporal alignment between ERPs was broken. We repeated the cluster procedure for
each surrogate, keeping both the clusters with maximal and minimal t-value at each iteration. Any significance found in
these surrogates would be by chance. Finally, we tested whether the t-values of our original clusters were significantly
higher than the maximal t-values of the surrogate analysis for positive effects or lower than the minimum for negative ef-
fects. The threshold of significance was set at the 97.5 percentile of the distribution of surrogate values (p-value <0.025).
The same procedure was followed to compare the amplitudes of the responses across conditions. In this case, the t test
was computed between conditions instead of against zero. To compare whether the responses were similar between
hemispheres or between the anterior and posterior hippocampus, we repeated the same approach but comparing
each component and condition between groups (left vs right or anterior vs posterior).

Raster plots. We analyzed the trial-to-trial variability of the responses using raster plots. We selected all trials across
electrodes and conditions and sorted them based on the RT to the stimulus. Then, we stacked them in a single matrix
with dimensions time× number of trials. To assess whether the ERP was related with the patients’ response times, we
correlated the latency of the ERP onset with the RT. First, we created supertrials of 50 trials pooled across electrodes
and conditions to improve the signal-to-noise ratio (Hebart et al., 2018; Despouy et al., 2020a). We tested supertrials of
different sizes (in numbers of trials) without observing noteworthy differences in the main result. The onset latency of
each super trial was estimated using the median rule, that is, as the first time point with an amplitude higher than the
median of the baseline plus 2.3 times the interquartile range (Letham and Raij, 2011). Finally, a Pearson’s correlation
was applied between the onset latency and the averaged response time of each supertrial.

Detection of slope change points. To better characterize the dynamics of the Hc600-IC response, we modeled the
averaged ERP for each electrode and condition as a combination of multiple linear segments. The locations of the inter-
sections between segments were automatically selected using the MATLAB (MathWorks) function findchangepts. This
function identifies the points where the mean and the slope of the signal change most abruptly (Haynes et al., 2017).
The total number of sections was given by a parametric threshold that imposes the minimum required improvement in
the residual error for each change point. The residuals are strongly related with the signal-to-noise of the ERP, which
was different for each electrode. Thus, we manually adjusted the threshold value between 0.5 and 3 for each ERP, until
the response was clearly modeled with aminimum number of change points. The same value was used in both conditions.
We determined the t2 value as the change point with maximum amplitude between 200 and 600 ms. Then, the t1 latency
was selected as the first change point with a local minimum in amplitude before t2.

Results
Behavioral performance
A recognition memory task, where patients were asked to differentiate between new items and images that were

presented before, was performed by 10 patients with drug-refractory epilepsy. The performance across subjects was
relatively high (d′ between 2.02 and 3.4; median =2.64), with a hit rate (correct “old” responses) between 0.88 and 0.97
(median =0.94) and a false alarm rate (incorrect “new” responses) between 0.05 and 0.27 (median = 0.12). After
removing artifacts and incorrect responses, between 61 and 80 “old” trials (median = 70) and between 62 and 78 “new”
trials (median = 71) were retained per patient for further analysis.

Segregation of SEEG time courses into current generators
We performed electrophysiological recordings from the hippocampus in 10 patients during a recognition memory task

(Fig. 1a; see Materials and Methods). We selected a total of 15 electrodes (N=15) implanted in this structure among all
participants. For each electrode, we applied the ICA source separation technique to segregate the recordings into the
main sources contributing to the SEEG activity. The general pipeline and the comparison between ICA and raw SEEG
for one patient are depicted in Figure 1. Four different types of independent components (SEEG-ICs) were identified in
most of the electrodes. The spatial profile of each component (Fig. 1c) reflects its contribution to each SEEG contact,
allowing to infer the location of the component’s source. The first component (labeled “Cort-IC”) was present in 13 out
of 15 electrodes, and it was mainly visible on the lateral contacts of the electrode with a progressive reduction toward
deeper structures (between three and seven contacts with an ICA weight higher than half of the maximum, median:
4) and presumably reflects a source located in the lateral temporal cortex. Two components had their maximal contribution
inside the hippocampus and were labeled as “Hc250-IC” and “Hc600-IC” based on the latency of the ERP (Fig. 1d). The
former had its highest amplitude at ∼250 ms, while the latter, with a peak at ∼400 ms, may be related with the “hippocam-
pal P600” commonly identified in visual recognition tasks (Trautner et al., 2004; Barbeau et al., 2017). Both components
presented a narrow spatial profile. They had between one and three contacts with an ICA weight higher than half of the
maximum (median: 1), all of them within the hippocampus, strongly suggesting that these components represent local
sources inside this structure. The fourth component probably represents a remote source far from the electrode
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(“Rem-IC”). It was present in 13 out of 15 electrodes, with similar contribution to all the contacts (between 4 and 15 con-
tacts with an ICA weight higher than half of the maximum, median: 9).
The spatial profiles in Figure 1c show that the contribution of the different sources to the SEEG signals present an over-

lap, indicating that each contact contains information from several components simultaneously. This is most noticeable in
the hippocampus, where a single contact records activities from Rem-IC, Hc250-IC, and Hc600-IC (Fig. 1c, channel 3).
ICA separates the time courses associated with the sources, removing the contribution from other areas. For sources
that are sufficiently separated in space, differences between SEEG-IC and SEEG may seem minor in the averaged
ERPs (Fig. 1d). However, these differences are remarkable in the continuous traces, where a response to the stimulus
that is apparent in the SEEG-IC is hidden in the SEEG (Fig. 1e, arrow). This contrast between SEEG-IC and SEEG is
most prominent when the sources overlapped in space (Extended Data Figure 1-2). In this case, the activity of each source
cannot be inferred from raw SEEG recordings (not even with bipolar montages; Extended Data Figure 1-2), and source
separation methods are required to disentangle the time courses of the different components (Michelmann et al., 2018).

Location and modulation of hippocampal sources
The number and responses of cortical and remote sources retrieved with ICA varied across patients, as it strongly

depends on the specific implantation scheme and the number of contacts per electrode. Thus, we focused our study
on the two main hippocampal sources (Hc250-IC and Hc600-IC), which were relatively stable across patients.
Hc250-IC was present in 12 electrodes, and its contribution to the dataset was small (explained variance across elec-
trodes, 4.5%, SD±3.2%). All patients had, at least, one electrode with the Hc250-IC source. Hc600-IC was identified
in 13 of the 15 electrodes included in the analysis (9 out of 10 patients) and represented an important contribution to
the total variance of the data (mean explained variance, 29.2%; standard deviation, SD±14.2%). These components
had a similar spatial distribution across patients; their maximal contribution was in contacts located inside the hippocam-
pus, with little contribution from other contacts (Fig. 2a). Within the hippocampus, the spatial profiles of both components
presented were slightly different. Hc250-IC was recorded in contacts deeper than Hc600-IC in the electrodes placed in the
anterior hippocampus (the peaks of the ICA weights were separated by 0–3 contacts toward the same direction; median,
1; t test against zero, p=0.025; t=3.16; df = 5; Fig. 2a, left). Intriguingly, this location was reversed in electrodes placed in
the posterior hippocampus, where Hc250-IC appeared preferentially in more superficial sites (peaks separated by 0–1
contacts toward the same direction; median, 1; t test against zero, p=0.037; t=3.09; df = 4; Fig. 2a, right). This reversal
may reflect rostral to caudal anatomical differences of the human hippocampus, well stratified in its anterior part and with
complex folds of its substructures in more posterior sections (Andersen et al., 2006). Conversely, we did not observe
differences neither in the spatial (t test between peak distances in the left and right electrodes, p=0.90; t=0.13; df = 9)
nor in the ERP between electrodes implanted in the left and right hemispheres (p>0.05, permutation test between old
responses in the left vs right components, both for Hc250-IC and Hc600-IC).
Although the spatial distributions of the SEEG-ICs presented a clear peak inside the hippocampus, this does not

completely exclude the possibility that they reflect sources from a nearby region. To further test whether the sources

Figure 1. Separation of brain sources in SEEG with ICA in one patient. a, MRI (3D T1) with reconstruction of SEEG electrode for Patient 1. The points
represent the location of each recording site. In orange, channels with a significant ERP for “old” (i.e., previously seen) items. See Extended Data
Figure 1-1 for the location of all the electrodes and Extended Data Figure 1-2 for another representative patient. b, Averaged ERP for “old” items at
each recording site (referential montage). c, Spatial profile of the SEEG-ICs across the electrode, representing the contribution of the SEEG-ICs to
each contact. d, Averaged ERP of each SEEG-IC for “old” responses (color-coded traces; *p<0.05, t test across trials against zero) superimposed
with the SEEG channel (panel b) with maximal contribution from each SEEG-IC (black traces). e, Example of single-trial response for SEEG-IC and SEEG
at the peak of the ICA weight. The arrow indicates a response to the stimulus that can be identified in SEEG-IC traces, but not in the original SEEG data.
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were truly located in the hippocampus, we repeated the ICA now including all the contacts available in each patient in an
iterative manner (see Materials and Methods). For both Hc250-IC and Hc600-IC, the spatial distribution was in all cases
maximal in the contacts within the hippocampus, followed by the amygdala (ICA weights between 0.006 and 0.27 times
the peak value, median: 0.16) and the rhinal cortex (ICA weights in contacts within the rhinal cortex were between 0.02 and
0.18 times the peak value in the hippocampus, median: 0.042), but with negligible contributions (Fig. 2b). This result
reinforces the interpretation of the hippocampus as the origin of the components.
The temporal profile of the components presented similar ERPs across electrodes (Fig. 3a). There were no differences

between components in the anterior and posterior hippocampus (p>0.05, permutation test between old responses in the
left and right components, both for Hc250-IC and Hc600-IC). The earliest response was in Hc250-IC, with a single peak at
∼260 ms (mean, 257± 42 ms across patients) poststimulus during “old” items (Fig. 3a, left) that was significantly different
from zero in all electrodes (t test across trials against zero, corrected with LFDR). The response to “new” items presented a
similar timing as to recognized elements, but with significant differences in amplitude between both conditions in 6 out of
12 electrodes (old/new contrast; Extended Data Figure 3-1; t test across trials between conditions, corrected with LFDR).
However, there were no differences at the group level (p>0.05, permutation test). The response of Hc600-IC elicited by
old itemswas characterized by two peaks of opposite polarity at 405 and 610 ms poststimulus onset (Fig. 3a, right), similar
to the standard hippocampal response in other memory tasks (Trautner et al., 2004; Barbeau et al., 2008, 2017).
Comparing the responses between conditions, Hc600-IC presented different amplitudes for “old” and “new” conditions
∼400 and 500 ms at the group level (Fig. 3a; p<0.05, permutation test). This difference was also present at the single
electrode level in 12 out of 13 cases (Extended Data Figure 3-2).
We then examined the ERPs using two traditional approaches: referential and bipolar montages. For each electrode, we

selected the contact in the hippocampus with the earliest significant response, or the contact with the highest response in
amplitude to “old” images (Fig. 3b,c). In 6 out of 15 electrodes, both conditions were fulfilled by the same contact in the
referential montage (7 out of 15 in bipolar), hindering the direct identification of an early response different from the main
P600 activity. Although both strategies and montages revealed significant responses to “old” items at ∼400 and 600 ms
(p<0.05, permutation test), similar to those identified in Hc600-IC, we did not identify any significant response at∼250 ms
(as in Hc250-IC) at the group level (p>0.05, permutation test). These results suggest that, while the main dynamics can be
identifiedwith classical approaches, close sources cannot be easily separated, due tomixing of their activities, making the
detection of responses with low signal-to-noise ratio problematic.
To test whether the SEEG-ICs were exclusively reflecting the predictability of the task (fixed intertrial interval), we

measured the ERP of each component by selecting only those trials that could not been predicted (i.e., the first trial of

Figure 2. Two hippocampal sources during recognition memory. a, Spatial profile of the two hippocampal SEEG-ICs across electrodes located in the
anterior or posterior hippocampus. Dashed and solid traces represent the individual electrodes and their averaged value, respectively. Electrodes from
different patients have been aligned based on the peak of Hc600-IC. Arrows indicate the location of the maximal value for the averaged profiles.
b, MRI (3D T1) and reconstruction of SEEG electrodes for Patient 1, where the rhinal cortex and the amygdala were both sampled with SEEG. The color
of the contact represents the spatial distribution of Hc250-IC (top) andHc600-IC (bottom). Themaximal contribution is in the hippocampus, with low values
in all the other contacts.
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each block). Both components exhibited a significant response at the group level (Fig. 3d; p<0.05, permutation test),
suggesting that the SEEG-ICs were active even in the absence of any temporal anticipation to the trials.

Analysis of hippocampal dynamics
The results of Figure 3a and Extended Data Figure 3-2 suggested that the temporal dynamics of Hc600-ICwere different

between conditions, with an earlier activation time associated with the familiar items. Therefore, we further explored the
modulation of this component. First, to confirm that the differences in responses between conditions were related to
the memory paradigm, we selected all the single trials for both “old” and “new” conditions and reordered them based
on the behavioral RT, either for all the electrodes together (Fig. 4a) or for each electrode separately (Fig. 4b). To quantify
whether the hippocampal response was related to the RT, we grouped the data into supertrials and computed the corre-
lation between the evoked onset time and the averaged RT of each supertrial (see Materials and Methods), with no sig-
nificant relation between the timing of the Hc600-IC response and the RT (Fig. 4c; correlation test, N=24; supertrials,
r2 = 0.006; p=0.71). This null result is in good agreement with previous studies, where the RT did relate to the latency
of the response of the perirhinal cortex and the motor cortex, but had no discernable effect on the hippocampal response
(Despouy et al., 2020a).
Second, to better analyze the properties of the temporal response, wemodeled the averaged ERP of each condition and

electrode as a combination of multiple linear sections (Fig. 4d). The juncture between sections was statistically defined as
the time points where themean and the slope of the signal changedmost abruptly (seeMaterials andMethods). We tested
if the timing of these change points differed between conditions. Two points of the ERP were selected for each electrode:
the latency at which amplitude starts to increase (t1) and the latency of themaximal response (t2). Responses to “old” images
exhibited significantly earlier latencies at both t1 (mean latency ± standard error of the mean; SEM, 287± 16.1 ms and
314±17.9 ms for old and new responses, respectively; paired t test across electrodes, p=0.011; t=−2.98; df = 12) and
t2 (mean latency ±SEM, 431± 21 ms and 490±28.7 ms for old and new responses, respectively; paired t test across elec-
trodes, p=0.007; t=−3.25; df = 12; Fig. 4e). As some patients hadmore than one electrode implanted, whichmay bias the
results, we repeated the analysis averaging the response time across electrodes in patients with higher spatial coverage,
without affecting the results of t1 (294 ± 21.4 ms and 318± 22.7 ms for old and new responses, respectively; paired t test
between conditions across patients, p=0.028; t=−2.68; df = 8) and t2 (439 ± 27.6 ms and 494±33.8 ms for old and new
responses, respectively; paired t test between conditions across patients, p=0.003; t=−4.2; df = 8). This implies that the
hippocampal processes related to recognition memory start as soon as 290 ms poststimulus onset, ∼120 ms before the
latency of its maximal response.

Figure 3. Group-level analysis of hippocampal responses. a, Grand average IC-ERP across electrodes contrasting “old” (solid traces) and “new” (dashed
traces) items for Hc250-IC and Hc600-IC. For all panels, shaded areas illustrate the intervals where the response to “old” trials is significantly different from
zero, while the green line indicates the interval with differences between conditions (p<0.05, permutation test; NS, not significant). See Extended Data
Figures 3-1 and 3-2 for single-case analysis. b, Grand average ERP using a referential montage. For panels b and c: on the left, the contacts in the
hippocampus with the earliest activation (first time sample significantly different from zero) were selected for each electrode. On the right, the contacts
with the highest response in amplitude to “old” images were chosen. c, Grand average ERP when selecting a single pair of contacts per electrode with
a bipolar configuration. d, Grand average between SEEG-ICs without predictive effects. For each component, only the first trial of each block was selected,
that is, images that did not immediately precede a previous trial.
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Discussion
We described two different hippocampal sources recorded during a recognition memory task in humans. Patients with

intracerebral electrodes implanted for focal drug-resistant epilepsy monitoring were asked to classify images as “old” or
“new.” Using ICA on the SEEG recordings, we disentangled two hippocampal components (i.e., the spatial distribution
maximum was inside the hippocampus) from other cortical and remote sources. The first source (Hc250-IC) had a low
contribution to the total variance and presented an early response to the stimulus, with significant differences between
memory conditions in 6 out of 12 electrodes. The second one (Hc600-IC) had a higher contribution to the total variance
and was modulated by the memory condition in all cases, with faster responses for known images compared with “new”

items. The earliest differencewas found in Hc600-IC at 290 ms, confirming that the hippocampus has an early involvement
in recognition memory (Staresina et al., 2012).

Identification of two hippocampal sources in SEEG
In this work, we have identified two different hippocampal neural generators and, thanks to the use of ICA, separated

their corresponding electrophysiological activity. The presence of several memory-related sources in the hippocampal
formation has been previously reported (Ludowig et al., 2010; Barbeau et al., 2017). Ludowig et al. (2010), describing
two different generators, in the subiculum and in the posterior hippocampus, during an oddball task. These structures pre-
sented a similar ERP with the characteristic P300, but with different voltage gradients along the contacts, which indicated
a local origin of the activities. It is unlikely that they are the components of our study, which we found in both the anterior
and posterior parts of the hippocampus. Moreover, Hc250-IC and Hc600-IC had very different response time, in contrast
with the generators identified by Ludowig and colleagues.
Previous studies have suggested the presence of an early response (∼250 ms) from the hippocampus, modulated by

stimuli repetition (James et al., 2009; Nahum et al., 2011; Raynal et al., 2020). This response would coincide in time
with the one in Hc250-IC. However, they are unlikely to be generated by the same source. While in these studies the
activity was related to memory encoding, we did not observe such changes for new elements. On the contrary, our results
have the opposite tendency, with higher amplitudes during recognition memory (Extended Data Figure 3-1). Moreover, the
variance of Hc250-IC was quite low in the intracerebral recordings (4.5%), making its fingerprint on the surface likely to be
negligible on raw EEG recordings (James et al., 2009; Raynal et al., 2020).
In Barbeau et al. (2017), they observed that the evoked responses during memory and novelty detection had opposite

polarities, raising the possibility of different sources for each response. It is possible that both sources were always
present, but with one predominating over the other for each task. In this scenario, Hc600-IC would be the main
generator modulated by recognition memory, while Hc250-IC could be related to a hippocampal source also involved
in novelty detection. This would explain its faster activation (the response to novelty is believed to be faster
than recognition: Norman and O’Reilly, 2003; Barbeau et al., 2017). However, the lack of a clear difference at the
group level in Hc250-IC hinders this interpretation. In one of the patients of Barbeau et al. (2017), the authors
described an early activation at ∼200 ms during both tasks that were not present at the group level. It is possible
that this early activation corresponds to a different source within the hippocampus related to Hc250-IC, which could
not be identified in most patients due to its low explained variance. Together with the absence of differences in this
activation between novelty and recognition memory, this component may be reflecting a visual input to the

Figure 4.Comparison of Hc600-IC for old and new responses. a, Raster plot with single-trial ERP for old and new conditions across electrodes. Trials from
all patients were ordered based on the response time (black curve). b, Raster plot for Subject #5. c, Correlation between the evoked onset time and the RT.
Each dot represents data grouped across trials (supertrial, see Materials and Methods). d, Example of change point detection in the averaged ERP for old
responses of one electrode. The ERP (purple trace) is modeled by several linear segments (green lines). The intersections between segments (vertical black
lines) represent the time points with the highest change in mean and slope. Two change points are selected: t1 where the amplitude starts rising and t2
where the amplitude is maximal. e, Comparison between t1 and t2 latencies across electrodes (*/**p<0.05/0.01, paired t test between conditions,N=13).
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hippocampus from other cortical structures (Sehatpour et al., 2008). Further studies combining memory and novelty
tasks will address this question.

Early recognition memory system of the hippocampus
It has been suggested that the existence of two different recognition memory systems in the brain (Despouy et al.,

2020a): one fast, linked to familiarity processes, and the other slow, more related to memory recollection (Yonelinas,
2002; but see Wixted and Stretch, 2004; Gimbel and Brewer, 2011 for reports where recollection-based responses are
faster than familiarity-based responses). According to this theory, the fast system would respond between 200 and
300 ms after stimulus onset, and it would involve a number of areas in the frontal, temporal, and parietal lobes, led by
the perirhinal cortex (Gonzalez et al., 2015; Despouy et al., 2020a). This system may reflect our interaction with the envi-
ronment, allowing us to rapidly react to any stimulus. The second systemwould be triggered at∼450 ms after the stimulus,
when the hippocampus and other areas of the medial temporal lobe are activated (Despouy et al., 2020a). At this stage,
more elaborated memories are retrieved with additional information.
An early hippocampal responsewas reported in Staresina et al. (2012) at∼250 ms for “sourcememory” effects, followed

by an “item recognition” modulation starting at ∼800 ms. The former effect coincides in time with the Hc250-IC main
response. However, as the source memory was not measured in our experiment, it could also be an early modulation
of the Hc600-IC source, or even belong to a third component. The later effect (∼800 ms) during item recognition may
be comparable with our old/new paradigm, with a similar response in both cases. The analysis of Hc600-IC, based on
delays, suggests that the differences between item recognition and correct rejections may be much earlier than those
based solely on voltage differences.
As most of previous studies have focused their analysis on the main hippocampal response, the so-called hippocampal

P600 (Trautner et al., 2004; Dietl et al., 2005; Barbeau et al., 2008, 2017; Despouy et al., 2020a), it has been suggested that
this structure cannot be involved in fast memory processing, which would occur much earlier. However, thanks to the use
of ICA in SEEG recordings, we have found that the hippocampal dynamics during recognition memory are very complex,
with at least two different generators contributing to the response. Our results, with Hc600-IC presenting the earliest
differential activity at 290 ms, challenge the vision of the hippocampus as a “late” structure.
We propose that both components (Hc250-IC and Hc600-IC) represent two steps of processing. The earliest compo-

nent, Hc250-IC, presents similar delays as the N240 component evoked in the EC and in other mesial structures (Barbeau
et al., 2017). Thus, it may reflect the input from the EC, the main entrance pathway to the hippocampus (Fernández-Ruiz
et al., 2021; López-Madrona and Canals, 2021). This activity may already contain a preidentification of known elements,
performed in the perirhinal cortex (Despouy et al., 2020a). The preprocessed information from EC may trigger the internal
hippocampal circuit (linked to Hc600-IC), facilitating memory recollection of those elements already recognized
(Yonelinas, 2002). This neuronal facilitation would be reflected in the ERP, with earlier latencies for old items (Fig. 4e). A
similar facilitation pattern was found inMEGduring the same task (López-Madrona et al., 2022). In that work, the combined
activity of the hippocampus and the rhinal cortex presented earlier latencies for old items, although the onset time of the
differential activity was not measured. Our findings extend previous results with a detailed characterization of the hippo-
campal dynamics and further confirm the contribution of Hc600-IC to the MEG activity.
Hc250-IC presented a significant modulation to recognition memory only in 6 out of 12 electrodes. Although it is not a

negligible value, it cannot confirm that this source is involved in a fast recognition memory system. Instead, it could reflect
a cortical input to the hippocampus from the stimulus presentation (Sehatpour et al., 2008), or it may be related to the
visual perception system (Turk-Browne, 2019). In a word recognition task, Mormann et al. (2005) found an early
(∼200 ms) hippocampal phase and amplitude reset produced by an unspecific mechanism which does not distinguish
between mnemonic functions. Therefore, such resetting may be captured by Hc250-IC. Another possibility is that
Hc250-IC reflected the predictability of the task structure. The human hippocampusmay predict the temporal organization
of our task, with a fixed intertrial interval (Umbach et al., 2020; Reddy et al., 2021), or even the task structure, as no more
than three consecutive old or new items were presented. While we cannot exclude an effect of the implicit structure learn-
ing (Turk-Browne et al., 2010), Hc250-IC responds to every image presentation, even on the first trial (Fig. 3d), suggesting
that it is present even in the absence of task predictability.
Overall, our results support the role of the hippocampus in memory recollection and show that it is not a late responding

structure, but it is activated relatively fast (∼290 ms) during recognition memory. This delay is within the range of the ERP
responses that reflect familiarity (Brown and Aggleton, 2001; Besson et al., 2012) and the fastmemory system described in
Despouy et al. (2020a). However, thememory task in this work cannot differentiate between different cognitive processes,
limiting any direct link between the hippocampus and familiarity. Further work is required, for example, pushing the
participants to their quickest answer and exploring the hippocampus together with other areas involved in the task.

Relationship with scalp ERP components
There are two scalp ERP memory components that have been widely studied (Rugg and Curran, 2007). The FN400, a

midfrontal negative ERP observed ∼400 ms after stimulus onset, is closely associated with familiarity. When individuals
encounter a previously seen stimulus, the FN400 shows reduced amplitude, without necessarily retrieving detailed
contextual information. On the other hand, the late positive component (LPC), a late positive-going ERP occurring
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between 500 and 800 ms poststimulus, has been linked to memory recollection. This component reflects the retrieval of
specific details and contextual information. While the LPC component is believed to be hippocampus-dependent (Düzel
et al., 2001), this structure does not contribute to the FN400 (Hoppstädter et al., 2015).
An important question is to what extent Hc250-IC and Hc600-IC may be related to these classical scalp ERP compo-

nents. Previous studies with simultaneous recordings on the same task have not identified any hippocampal response at
∼250 ms neither in EEG (Barborica et al., 2023) nor in MEG (López-Madrona et al., 2022). Therefore, it is unlikely that the
Hc250-IC potential can be detected from the scalp. Together with the absence of clear amplitude differences and the
midfrontal topography of the FN400, our results cannot support any major role of Hc250-IC in the scalp ERP.
Otherwise, the Hc600-IC potential is visible at the surface in MEG recordings (López-Madrona et al., 2022) and may
directly contribute to the LPC component, as both have similar activation time. Our results, with earlier delays for recog-
nition memory in Hc600-IC, indicate that the hippocampus could be also indirectly involved in the generation of the FN400
by activating other areas. However, this can be also the role of the perirhinal cortex, triggering the FN400 component
independently of the hippocampal activity. Further studies combining intracerebral recordings from the hippocampus
and the perirhinal cortex with simultaneous scalp recordings (Barborica et al., 2023) may give us new insights in the neural
mechanism of the dual process of recognition memory.

Anatomical considerations of hippocampal current generators
The activity recorded at each contact with SEEG reflects the summation of several close and distant sources (Buzsáki

et al., 2012). The main features that determine the field potential of one region are the geometry and the degree of
synchronization of the current sources (Herreras, 2016). Blind source separation methods such as ICA have been
proposed as solutions to recover the time courses associated with specific current generators (Herreras et al., 2015,
2022). Due to its versatility, ICA has been used to remove the reference signal in intracerebral EEG (Hu et al., 2007) and
to separate neural sources in EEG (Tang et al., 2002; Onton et al., 2006), MEG (Malinowska et al., 2014; Barborica
et al., 2021), and local field potentials in rats (Makarov et al., 2010; Torres et al., 2019; Fernández-Ruiz et al., 2021). In
this work, we innovatively used ICA to disentangle multiple generators in SEEG (Michelmann et al., 2018).
Several hippocampal generators have been described in animal studies (Korovaichuk et al., 2010; Benito et al., 2014;

López-Madrona et al., 2020; Fernández-Ruiz et al., 2021), reflecting the inputs to different layers of CA1 and the DG.
These two structures present a suitable anatomy to generate electric fields. In CA1, the most dominant generators are
located in the stratum radiatum, with the input from CA3 through the Schaffer collateral (Korovaichuk et al., 2010;
Benito et al., 2014) and in the stratum lacunosum-moleculare (Benito et al., 2014), where are located the synaptic outputs
of layer III of the EC. In the DG, the highest potential is generated by the projections from layer II of the EC to the granular
cells (Korovaichuk et al., 2010;Makarova et al., 2011; Benito et al., 2014).We speculate that the current generators in these
two structures might be the origin of our components, with Hc250-IC related with the input of EC to the DG and Hc600-IC
reflecting the computations in CA1.
The anatomy of the hippocampus differs from rostral to caudal (Andersen et al., 2006). The anterior section presents a

relative clear distribution of the different layers, with the subiculum, CA1, and CA3 in the lateral part, surrounding the DG in
between (Amaral, 1999). This results in well-localized components, with similar topographies across electrodes (Fig. 2a,
anterior hippocampus). In good agreement with our hypothesis, the spatial profiles of Hc600-IC are deeper than those of
Hc250-IC, which may relate Hc250-IC with lateral areas (but see below). On the contrary, the posterior section of the
hippocampus has a different anatomy, with several folds of the granular layer, forming small “dents.” This geometry
impacts the spatial distribution of its current sources, with summation and cancelation of currents caused by the opposite
orientation of the cells through the gyrus (Buzsáki et al., 2012). Our results reflect the complexity of this area, with a huge
variety in the shape and location of the topographies of the two identified hippocampal sources across electrodes/patients
(Fig. 2a, posterior hippocampus).
It is important to note the complexity of the hippocampal circuit to avoid simplistic interpretations. For example, the DG

includes a dense inhibitory network, back projections from CA3, and several inputs from the lateral and medial EC with
different information (Andersen et al., 2006). Therefore, the identified generators cannot be linked to a single pathway
or process. Moreover, the location of the maximal evoked potential may not coincide with the origin of the current source
(Herreras, 2016; Herreras et al., 2022). Due to the curvature of CA1, a synchronized synaptic input to the whole coronal
layer (i.e., from the boundary with CA3 to the subiculum) would generate field potentials across the layer, whose sum
would be maximal in the center of the curve. In this situation, an activation of CA1 could be detected inside the DG.
This effect has been described in the DG, where the synaptic input of the EC was in the molecular layer, but its field
potential was dominant in the hilar region (Fernández-Ruiz et al., 2013). Further information of the gradients of the field
potentials across the hippocampus may help to identify the true origin of the components, for example, using microelec-
trodes to improve the resolution across SEEG contacts (Ulbert et al., 2001). Ultimately, a realistic computational model of
the human hippocampus is necessary to understand the origin of the multiple source generators (Herreras et al., 2015).

Limitations
One aspect that remains to be studied is the dynamics of each hippocampal component associated with incorrect

responses. In this work, the experiment was designed to maximize the number of correct responses, resulting in relatively
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high subjects’ performance (hit rate between 88 and 97%). On average, there were <15 incorrect trials per patient across
all the conditions, a low number to perform a proper performance-based analysis. A second limitation in our work is the
fixed intertrial interval, which may result in anticipatory responses related to trial timing. Applying a jitter to trials is a good
practice both for brain responses and statistical models. We have tested whether both components have a significant
activation on the first trial of each block (Fig. 3d). Our results suggest that the components respond to the stimuli before
the anticipation processes could intervene, although we cannot completely exclude an effect of the fixed time interval in
the ERP.
It has been shown that ICA is an optimal methodology to disentangle overlapping sources with microelectrodes in

rodents (Makarov et al., 2010; Herreras et al., 2022) and close and distant sources in humans (Michelmann et al., 2018;
López-Madrona et al., 2023). However, its efficacy to separate close sources may be limited in macroelectrodes. We
assumed that the resolution of the current macroelectrodes allows capturing the differences in spatial profiles between
relatively large substructures, such as the hippocampus. Microscale local field potentials provided with the new genera-
tion of microelectrodes (Despouy et al., 2020b) would be interesting for gaining access to a finer scale or single-unit
activity, but this would require a larger spatial sampling, (e.g., Utah Array-like, Cody et al., 2018) than the typical sampling
of current electrodes.
ICA does not ensure the correct polarity and amplitude of the sources. It is possible to project back the IC activity to the

contacts by multiplying a single SEEG-IC signal by its ICA weights. By doing so, we can measure the amplitude (in volts)
generated by one single source at each recording site (also referred to as virtual SEEG). The amplitude of the virtual SEEGs
would be equivalent to those obtained with a referential montage. However, it should be noted that the true amplitude of
the source (both with ICA or standard approaches) depends on other technical factors as the size of the contacts or the DC
component, commonly rejected by modern amplifiers (Martín-Vázquez et al., 2013). To avoid this limitation, our analyses
of SEEG-ICs rely on relative amplitudes (Fig. 3a), either one condition different from zero or differences between conditions
(“old” and “new”). This relative amplitude is unaffected by ICA.

Concluding remarks
The brain circuit of memory encoding and retrieval is an open question in neuroscience (Thompson and Kim, 1996;

Ferguson et al., 2019). Our results provide new insights about the role of the hippocampus in recognition memory, linking
the hippocampal activity to early stages of recognition memory (∼290 ms). However, it remains unknown which is the
specific contribution of the hippocampus to these fast processes. Future investigations will explore the role of the
identified hippocampal sources in different memory processes, as well as the specific substructures contributing to
the recorded activity. In addition, we have proved the efficacy of ICA to disentangle neuronal generators in SEEG. This
opens new possibilities, not only in the analysis of the human hippocampus, but for all intracerebral studies. The use of
ICA in other brain structures may reveal the dynamics of different but spatially overlapped structures, overcoming the
limitations of traditional montages (Herreras et al., 2015, 2022). Importantly, it can be used in clinical applications with,
for example, the potential to identify and separate the generators involved in epileptic networks (Malinowska et al.,
2014; Barborica et al., 2021). Further research is granted.

References
Allison T, Puce A, Spencer DD, McCarthy G (1999)

Electrophysiological studies of human face perception. I: poten-
tials generated in occipitotemporal cortex by face and non-face sti-
muli. Cereb Cortex 9:415–430.

Amaral DG (1999) Introduction: what is where in the medial temporal
lobe? Hippocampus 9:1–6.

Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippo-
campus book, Oxford neuroscience series. New York: Oxford
University Press.

Artoni F, Delorme A, Makeig S (2018) Applying dimension reduction to
EEGdata by principal component analysis reduces the quality of its
subsequent independent component decomposition. NeuroImage
175:176–187.

Barbeau EJ, Chauvel P, Moulin CJA, Regis J, Liégeois-Chauvel C
(2017) Hippocampus duality: memory and novelty detection are
subserved by distinct mechanisms. Hippocampus 27:405–416.

Barbeau EJ, Taylor MJ, Regis J, Marquis P, Chauvel P, Liégeois-
Chauvel C (2008) Spatiotemporal dynamics of face recognition.
Cereb Cortex 18:997–1009.

Barborica A, Mindruta I, López-Madrona VJ, Alario F-X, Trébuchon A,
DonosC, Oane I, Pistol C,Mihai F, Bénar CG (2023) Studyingmem-
ory processes at different levels with simultaneous depth and
surface EEG recordings. Front Hum Neurosci 17:1154038.

Barborica A, Mindruta I, Sheybani L, Spinelli L, Oane I, Pistol C, Donos
C, López-Madrona VJ, Vulliemoz S, Bénar C-G (2021) Extracting
seizure onset from surface EEGwith independent component anal-
ysis: insights from simultaneous scalp and intracerebral EEG.
NeuroImage Clin 32:102838.

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to
blind separation and blind deconvolution. Neural Comput 7:1129–
1159.

Benito N, Fernández-Ruiz A, Makarov VA,Makarova J, Korovaichuk A,
Herreras O (2014) Spatial modules of coherent activity in pathway-
specific LFPs in the hippocampus reflect topology and different
modes of presynaptic synchronization. Cereb Cortex 24:1738–
1752.

Benito N, Martín-Vázquez G, Makarova J, Makarov VA, Herreras O
(2016) The right hippocampus leads the bilateral integration of
gamma-parsed lateralized information. eLife 5:e16658.

Benjamini Y, Heller R (2007) False discovery rates for spatial signals. J
Am Stat Assoc 102:1272–1281.

BessonG, Ceccaldi M, Didic M, Barbeau EJ (2012) The speed of visual
recognition memory. Vis Cogn 20:1131–1152.

Brown MW, Aggleton JP (2001) Recognition memory: what are the
roles of the perirhinal cortex and hippocampus? Nat Rev
Neurosci 2:51–61.

Research Article: New Research 13 of 15

April 2024, 11(4). DOI: https://doi.org/10.1523/ENEURO.0183-23.2023. 13 of 15

https://doi.org/10.1523/ENEURO.0183-23.2023


Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular
fields and currents—EEG, ECoG, LFP and spikes. Nat Rev
Neurosci 13:407–420.

Cody PA, Eles JR, Lagenaur CF, Kozai TDY, Cui XT (2018) Unique
electrophysiological and impedance signatures between encapsu-
lation types: an analysis of biological Utah array failure and benefit
of a biomimetic coating in a rat model. Biomaterials 161:117–128.

Cohen MX (2014) Analyzing neural time series data: theory and prac-
tice. MIT Press.

DelormeA,Makeig S (2004) EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent compo-
nent analysis. J Neurosci Methods 134:9–21.

Despouy E, et al. (2020b) Recording local field potential and neuronal
activity with tetrodes in epileptic patients. J Neurosci Methods
341:108759.

Despouy E, Curot J, DeudonM, Gardy L, Denuelle M, Sol J-C, Lotterie
J-A, Valton L, Barbeau EJ (2020a) A fast visual recognition memory
system in humans identified using intracerebral ERP. Cereb Cortex
30:2961–2971.

Dietl T, Trautner P, Staedtgen M, Vannucci M, Vannuchi M, Mecklinger
A, Grunwald T, Clusmann H, Elger CE, KurthenM (2005) Processing
of famous faces and medial temporal lobe event-related potentials:
a depth electrode study. NeuroImage 25:401–407.

Duñabeitia JA, Crepaldi D, Meyer AS, New B, Pliatsikas C, Smolka E,
Brysbaert M (2018) MultiPic: a standardized set of 750 drawings
with norms for six European languages. Q J ExpPsychol 71:808–816.

Düzel E, Vargha-Khadem F, Heinze HJ, Mishkin M (2001) Brain activity
evidence for recognition without recollection after early hippocam-
pal damage. Proc Natl Acad Sci U S A 98:8101–8106.

FergusonMA, LimC, Cooke D, Darby RR,WuO, Rost NS, CorbettaM,
Grafman J, Fox MD (2019) A human memory circuit derived from
brain lesions causing amnesia. Nat Commun 10:3497.

Fernández-Ruiz A, Herreras O (2013) Identifying the synaptic origin of
ongoing neuronal oscillations through spatial discrimination of
electric fields. Front Comput Neurosci 7:5.

Fernández-Ruiz A, Muñoz S, Sancho M, Makarova J, Makarov VA,
Herreras O (2013) Cytoarchitectonic and dynamic origins of giant
positive local field potentials in the dentate gyrus. J Neurosci
33:15518–15532.

Fernández-Ruiz A, Oliva A, Soula M, Rocha-Almeida F, Nagy GA,
Martin-Vazquez G, Buzsáki G (2021) Gamma rhythm communica-
tion between entorhinal cortex and dentate gyrus neuronal assem-
blies. Science 372:eabf3119.

Fernández G, Effern A, Grunwald T, Pezer N, Lehnertz K, Dümpelmann
M, Van Roost D, Elger CE (1999) Real-time tracking of memory for-
mation in the human rhinal cortex and hippocampus. Science
285:1582–1585.

Gimbel SI, Brewer JB (2011) Reaction time, memory strength, and
fMRI activity during memory retrieval: hippocampus and default
network are differentially responsive during recollection and famil-
iarity judgments. Cogn Neurosci 2:19–26.

Gonzalez A, Hutchinson JB, Uncapher MR, Chen J, LaRocque KF,
Foster BL, Rangarajan V, Parvizi J, Wagner AD (2015)
Electrocorticography reveals the temporal dynamics of posterior
parietal cortical activity during recognition memory decisions.
Proc Natl Acad Sci U S A 112:11066–11071.

Haynes K, Fearnhead P, Eckley IA (2017) A computationally efficient
nonparametric approach for changepoint detection. Stat Comput
27:1293–1305.

Hebart MN, Bankson BB, Harel A, Baker CI, Cichy RM (2018) The rep-
resentational dynamics of task and object processing in humans.
Elife 7:e32816.

Herreras O (2016) Local field potentials: myths and misunderstand-
ings. Front Neural Circuits 10:101.

Herreras O, Makarova J, Makarov VA (2015) New uses of LFPs:
pathway-specific threads obtained through spatial discrimination.
Neuroscience 310:486–503.

Herreras O, Torres D, Martín-Vázquez G, Hernández-Recio S,
López-Madrona VJ, Benito N, Makarov VA, Makarova J (2022)

Site-dependent shaping of field potential waveforms. Cereb
Cortex 33:3636–3650.

Hirsch LJ, Brenner RP (2010) EEG basics. In: atlas of EEG in critical
care. John Wiley & Sons, Ltd. pp 1–37.

Hoppstädter M, Baeuchl C, Diener C, Flor H, Meyer P (2015)
Simultaneous EEG-fMRI reveals brain networks underlying recog-
nition memory ERP old/new effects. NeuroImage 116:112–122.

Hsu S-H, Lin Y, Onton J, Jung T-P, Makeig S (2022) Unsupervised
learning of brain state dynamics during emotion imagination using
high-density EEG. NeuroImage 249:118873.

Hu S, SteadM,Worrell GA (2007) Automatic identification and removal
of scalp reference signal for intracranial EEGs based on indepen-
dent component analysis. IEEE Trans Biomed Eng 54:1560–1572.

James C, Morand S, Barcellona-Lehmann S, Michel CM, Schnider A
(2009) Neural transition from short- to long-term memory and the
medial temporal lobe: a human evoked-potential study.
Hippocampus 19:371–378.

Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V,
Sejnowski TJ (2000) Removing electroencephalographic artifacts
by blind source separation. Psychophysiology 37:163–178.

Korovaichuk A, Makarova J, Makarov VA, Benito N, Herreras O (2010)
Minor contribution of principal excitatory pathways to hippocampal
LFPs in the anesthetized rat: a combined independent component
and current source density study. J Neurophysiol 104:484–497.

Letham B, Raij T (2011) Statistically robust measurement of evoked
response onset latencies. J Neurosci Methods 194:374–379.

López-Madrona VJet al. (2022) Magnetoencephalography can reveal
deep brain network activities linked to memory processes. Hum
Brain Mapp 43:4733–4749.

López-Madrona VJ, Canals S (2021) Functional interactions between
entorhinal cortical pathways modulate theta activity in the hippo-
campus. Biology 10:692.

López-Madrona VJ, Pérez-Montoyo E, Álvarez-Salvado E, Moratal D,
Herreras O, Pereda E, Mirasso CR, Canals S (2020) Different theta
frameworks coexist in the rat hippocampus and are coordinated
during memory-guided and novelty tasks. Elife 9:e57313.

López-Madrona VJ, Villalon SM, Velmurugan J, Semeux-Bernier A,
Garnier E, Badier J-M, Schön D, Bénar C-G (2023) Reconstruction
and localization of auditory sources from intracerebral SEEG using
independent component analysis. NeuroImage 269:119905.

Ludowig E, Bien CG, Elger CE, Rosburg T (2010) Two P300 generators
in the hippocampal formation. Hippocampus 20:186–195.

Makarova J, Ibarz JM, Makarov VA, Benito N, Herreras O (2011)
Parallel readout of pathway-specific inputs to laminated brain
structures. Front Syst Neurosci 5:77.

Makarov VA, Makarova J, Herreras O (2010) Disentanglement of local
field potential sources by independent component analysis. J
Comput Neurosci 29:445–457.

Malinowska U, Badier J-M, GavaretM, Bartolomei F, Chauvel P, Bénar
C-G (2014) Interictal networks in magnetoencephalography. Hum
Brain Mapp 35:2789–2805.

Martín-Vázquez G, Makarova J, Makarov VA, Herreras O (2013)
Determining the true polarity and amplitude of synaptic currents
underlying gamma oscillations of local field potentials. PLoS One
8:e75499.

Michelmann S, et al. (2018) Data-driven re-referencing of intracranial
EEG based on independent component analysis (ICA). J
Neurosci Methods 307:125–137.

Mitzdorf U (1985) Current source-density method and application in
cat cerebral cortex: investigation of evoked potentials and EEG
phenomena. Physiol Rev 65:37–100.

Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger CE,
Fernández G (2005) Phase/amplitude reset and theta-gamma in-
teraction in the human medial temporal lobe during a continuous
word recognition memory task. Hippocampus 15:890–900.

Nahum L, Gabriel D, Spinelli L, Momjian S, Seeck M, Michel CM,
Schnider A (2011) Rapid consolidation and the human hippocam-
pus: intracranial recordings confirm surface EEG. Hippocampus
21:689–693.

Research Article: New Research 14 of 15

April 2024, 11(4). DOI: https://doi.org/10.1523/ENEURO.0183-23.2023. 14 of 15

https://doi.org/10.1523/ENEURO.0183-23.2023


New B, Pallier C, Brysbaert M, Ferrand L (2004) Lexique 2: a new
French lexical database. Behav Res Methods Instrum Comput
36:516–524.

Nicholson C, Freeman JA (1975) Theory of current source-density
analysis and determination of conductivity tensor for anuran cere-
bellum. J Neurophysiol 38:356–368.

Norman KA, O’Reilly RC (2003) Modeling hippocampal and neocorti-
cal contributions to recognition memory: a complementary-
learning-systems approach. Psychol Rev 110:611–646.

Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human
EEG dynamics using independent component analysis. Neurosci
Biobehav Rev 30:808–822.

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput Intell Neurosci 2011:156869.

Pizzo F, et al. (2019) Deep brain activities can be detected with mag-
netoencephalography. Nat Commun 10:971.

Raynal E, Schnider A, Manuel AL (2020) Early signal from the hippo-
campus for memory encoding. Hippocampus 30:114–120.

Reddy L, Zoefel B, Possel JK, Peters J, Dijksterhuis DE, Poncet M, van
Straaten ECW, Baayen JC, Idema S, Self MW (2021) Human
hippocampal neurons track moments in a sequence of events.
J Neurosci 41:6714–6725.

Rugg MD, Curran T (2007) Event-related potentials and recognition
memory. Trends Cogn Sci 11:251–257.

Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt
DC, Stanton PK, Foxe JJ (2008) A human intracranial study of long-
range oscillatory coherence across a frontal–occipital–hippocam-
pal brain network during visual object processing. Proc Natl
Acad Sci U S A 105:4399–4404.

Staresina BP, Fell J, Do Lam ATA, Axmacher N, Henson RN (2012)
Memory signals are temporally dissociated in and across human
hippocampus and perirhinal cortex. Nat Neurosci 15:1167–1173.

Talairach J, Tournoux P, Musolino A, Missir O (1992) Stereotaxic ex-
ploration in frontal epilepsy. Adv Neurol 57:651–688.

Tang AC, Pearlmutter BA, Malaszenko NA, Phung DB (2002)
Independent components of magnetoencephalography: single-
trial response onset times. NeuroImage 17:1773–1789.

Thompson RF, Kim JJ (1996) Memory systems in the brain and local-
ization of a memory. Proc Natl Acad Sci U S A 93:13438–13444.

Torres D, Makarova J, Ortuño T, Benito N, Makarov VA, Herreras O
(2019) Local and volume-conducted contributions to cortical field
potentials. Cereb Cortex 29:5234–5254.

Trautner P, Dietl T, Staedtgen M, Mecklinger A, Grunwald T, Elger CE,
Kurthen M (2004) Recognition of famous faces in the medial tem-
poral lobe: an invasive ERP study. Neurology 63:1203–1208.

Turk-Browne NB (2019) The hippocampus as a visual area organized
by space and time: a spatiotemporal similarity hypothesis. Vis
Res 165:123–130.

Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM (2010) Implicit
perceptual anticipation triggered by statistical learning. J
Neurosci 30:11177–11187.

Ulbert I, Halgren E, Heit G, Karmos G (2001) Multiple microelectrode-
recording system for human intracortical applications. J Neurosci
Methods 106:69–79.

Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE, Sperling M,
Lega B (2020) Time cells in the human hippocampus and entorhinal
cortex support episodic memory. Proc Natl Acad Sci U S A
117:28463–28474.

van Casteren M, Davis MH (2006) Mix, a program for pseudorandomi-
zation. Behav Res Methods 38:584–589.

Velmurugan J, Badier J-M, Pizzo F, Medina Villalon S, Papageorgakis
C, López-Madrona V, Jegou A, Carron R, Bartolomei F, Bénar C-G
(2022) Virtual MEG sensors based on beamformer and indepen-
dent component analysis can reconstruct epileptic activity asmea-
sured on simultaneous intracerebral recordings. NeuroImage
264:119681.

Warburton EC, Brown MW (2015) Neural circuitry for rat recognition
memory. Behav Brain Res 285:131–139.

Whitmore NW, Lin S-C (2016) Unmasking local activity within local
field potentials (LFPs) by removing distal electrical signals using in-
dependent component analysis. NeuroImage 132:79–92.

Wixted JT, Stretch V (2004) In defense of the signal detection interpre-
tation of remember/know judgments. PsychonBull Rev 11:616–641.

Yonelinas AP (2002) The nature of recollection and familiarity: a review
of 30 years of research. J Mem Lang 46:441–517.

Research Article: New Research 15 of 15

April 2024, 11(4). DOI: https://doi.org/10.1523/ENEURO.0183-23.2023. 15 of 15

https://doi.org/10.1523/ENEURO.0183-23.2023

	 Introduction
	 Materials and Methods
	Outline placeholder
	Outline placeholder
	 Participants
	 Experimental paradigm
	 SEEG recordings
	 ICA
	 Analysis of event-related potentials
	 Referential and bipolar montages
	 Response without prediction
	 Identification of hippocampal components
	 Spatial distribution across recording sites
	 Group analysis of event-related potentials
	 Raster plots
	 Detection of slope change points



	 Results
	 Behavioral performance
	 Segregation of SEEG time courses into current generators
	 Location and modulation of hippocampal sources
	 Analysis of hippocampal dynamics

	 Discussion
	 Identification of two hippocampal sources in SEEG
	 Early recognition memory system of the hippocampus
	 Relationship with scalp ERP components
	 Anatomical considerations of hippocampal current generators
	 Limitations
	 Concluding remarks

	 References

