

Cochrane Database of Systematic Reviews

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

da Costa BR, Nüesch E, Kasteler R, Husni E, Welch V, Rutjes AWS, Jüni P

da Costa BR, Nüesch E, Kasteler R, Husni E, Welch V, Rutjes AWS, Jüni P. Oral or transdermal opioids for osteoarthritis of the knee or hip. *Cochrane Database of Systematic Reviews* 2014, Issue 9. Art. No.: CD003115. DOI: 10.1002/14651858.CD003115.pub4.

www.cochranelibrary.com

TABLE OF CONTENTS

ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
SUMMARY OF FINDINGS	4
BACKGROUND	6
OBJECTIVES	6
METHODS	6
Figure 1.	8
RESULTS	10
Figure 2.	11
Figure 3	13
Figure 4.	15
Figure 5	16
Figure 6	17
Figure 7	18
Figure 8.	19
Figure 9	19
Figure 10	21
Figure 11	22
Figure 12	24
Figure 13	25
Figure 14	26
DISCUSSION	26
AUTHORS' CONCLUSIONS	27
ACKNOWLEDGEMENTS	27
REFERENCES	28
CHARACTERISTICS OF STUDIES	34
DATA AND ANALYSES	63
	65
Analysis 1.2. Comparison 1 Opioids versus placebo, Outcome 2 Function.	67
Analysis 1.3. Comparison 1 Opioids versus placebo, Outcome 3 Number of participants experiencing any adverse event 6	68
Analysis 1.4. Comparison 1 Opioids versus placebo, Outcome 4 Number of participants who withdrew because of adverse events.	69
Analysis 1.5. Comparison 1 Opioids versus placebo, Outcome 5 Number of participants experiencing any serious adverse event.	71
Analysis 1.6. Comparison 1 Opioids versus placebo, Outcome 6 Withdrawal symptoms.	72
ADDITIONAL TABLES	72
APPENDICES	75
WHAT'S NEW	79
HISTORY	79
CONTRIBUTIONS OF AUTHORS	79
DECLARATIONS OF INTEREST	79
SOURCES OF SUPPORT	79
DIFFERENCES BETWEEN PROTOCOL AND REVIEW	80
INDEX TERMS	80

[Intervention Review]

Oral or transdermal opioids for osteoarthritis of the knee or hip

Bruno R da Costa¹, Eveline Nüesch², Rahel Kasteler¹, Elaine Husni³, Vivian Welch⁴, Anne WS Rutjes¹, Peter Jüni¹

¹Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland. ²Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK. ³Department of Rheumatic and Immunologic Diseases, Cleveland Clinic: Orthopedic and Rheumatologic Institute, Cleveland, OH, USA. ⁴Bruyere Research Institute, University of Ottawa, Ottawa, Canada

Contact: Bruno R da Costa, Institute of Social and Preventive Medicine (ISPM), University of Bern, Finkenhubelweg 11, Bern, Bern, 3012, Switzerland. bdacosta@ispm.unibe.ch.

Editorial group: Cochrane Musculoskeletal Group. **Publication status and date:** New search for studies and content updated (no change to conclusions), published in Issue 9, 2014.

Citation: da Costa BR, Nüesch E, Kasteler R, Husni E, Welch V, Rutjes AWS, Jüni P. Oral or transdermal opioids for osteoarthritis of the knee or hip. *Cochrane Database of Systematic Reviews* 2014, Issue 9. Art. No.: CD003115. DOI: 10.1002/14651858.CD003115.pub4.

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Osteoarthritis is the most common form of joint disease and the leading cause of pain and physical disability in older people. Opioids may be a viable treatment option if people have severe pain or if other analgesics are contraindicated. However, the evidence about their effectiveness and safety is contradictory. This is an update of a Cochrane review first published in 2009.

Objectives

To determine the effects on pain, function, safety, and addiction of oral or transdermal opioids compared with placebo or no intervention in people with knee or hip osteoarthritis.

Search methods

We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and CINAHL (up to 28 July 2008, with an update performed on 15 August 2012), checked conference proceedings, reference lists, and contacted authors.

Selection criteria

We included randomised or quasi-randomised controlled trials that compared oral or transdermal opioids with placebo or no treatment in people with knee or hip osteoarthritis. We excluded studies of tramadol. We applied no language restrictions.

Data collection and analysis

We extracted data in duplicate. We calculated standardised mean differences (SMDs) and 95% confidence intervals (CI) for pain and function, and risk ratios for safety outcomes. We combined trials using an inverse-variance random-effects meta-analysis.

Main results

We identified 12 additional trials and included 22 trials with 8275 participants in this update. Oral oxycodone was studied in 10 trials, transdermal buprenorphine and oral tapentadol in four, oral codeine in three, oral morphine and oral oxymorphone in two, and transdermal fentanyl and oral hydromorphone in one trial each. All trials were described as double-blind, but the risk of bias for other domains was unclear in several trials due to incomplete reporting. Opioids were more beneficial in pain reduction than control interventions (SMD -0.28, 95% CI -0.35 to -0.20), which corresponds to a difference in pain scores of 0.7 cm on a 10-cm visual analogue scale (VAS) between opioids and placebo. This corresponds to a difference in improvement of 12% (95% CI 9% to 15%) between opioids (41% mean improvement from baseline) and placebo (29% mean improvement from baseline), which translates into a number needed to treat (NNTB) to cause one additional treatment response on pain of 10 (95% CI 8 to 14). Improvement of function was larger in opioid-treated participants compared with control groups (SMD -0.26, 95% CI -0.35 to -0.17), which corresponds to a difference in function scores of 0.6

units between opioids and placebo on a standardised Western Ontario and McMaster Universities Arthritis Index (WOMAC) disability scale ranging from 0 to 10. This corresponds to a difference in improvement of 11% (95% CI 7% to 14%) between opioids (32% mean improvement from baseline) and placebo (21% mean improvement from baseline), which translates into an NNTB to cause one additional treatment response on function of 11 (95% CI 7 to 14). We did not find substantial differences in effects according to type of opioid, analgesic potency, route of administration, daily dose, methodological quality of trials, and type of funding. Trials with treatment durations of four weeks or less showed larger pain relief than trials with longer treatment duration (P value for interaction = 0.001) and there was evidence for funnel plot asymmetry (P value = 0.054 for pain and P value = 0.011 for function). Adverse events were more frequent in participants receiving opioids compared with control. The pooled risk ratio was 1.49 (95% CI 1.35 to 1.63) for any adverse event (9 trials; 22% of participants in opioid and 15% of participants in control treatment experienced side effects), 3.76 (95% CI 2.93 to 4.82) for drop-outs due to adverse events (19 trials; 6.4% of participants in opioid and 1.7% of participants in control treatment dropped out due to adverse events), and 3.35 (95% CI 0.83 to 13.56) for serious adverse events (2 trials; 1.3% of participants in opioid and 0.4% of participants in control treatment experienced serious adverse events). Withdrawal symptoms occurred more often in opioid compared with control treatment (odds ratio (OR) 2.76, 95% CI 2.02 to 3.77; 3 trials; 2.4% of participants in opioid and 0.9% of participants control treatment experienced withdrawal symptoms).

Authors' conclusions

The small mean benefit of non-tramadol opioids are contrasted by significant increases in the risk of adverse events. For the pain outcome in particular, observed effects were of questionable clinical relevance since the 95% CI did not include the minimal clinically important difference of 0.37 SMDs, which corresponds to 0.9 cm on a 10-cm VAS.

PLAIN LANGUAGE SUMMARY

Opioids for osteoarthritis

This summary of a Cochrane review of 22 studies with 8275 participants (search update: 15 August 2012) presents what we know from research about the effect of opioids on osteoarthritis (OA). We searched scientific databases for clinical trials looking at pain, function, safety, and addiction of oral or transdermal opioids compared with placebo or no intervention in people with knee or hip osteoarthritis.

The review shows that in people with osteoarthritis:

- Opioids have a small effect on pain or physical function.
- Opioids probably cause side effects. However, we do not have precise information about rare but serious side effects.

What is osteoarthritis and what are opioids?

OA is a disease of the joints, such as your knee or hip. When the joint loses cartilage, the bone grows to try to repair the damage. Instead of making things better, however, the bone grows abnormally and makes things worse. For example, the bone can become misshapen and make the joint painful and unstable. This can affect your physical function or ability to use your knee.

Opioids are generally conceived as powerful pain-relieving substances that are used for the pain of cancer or osteoarthritis. Some examples of opioids are codeine-containing Tylenol[®] (1, 2, 3, and 4), hydromorphone (Dilaudid), oxycodone (Percocet, Percodan), morphine, and others. They can be taken in a pill form, as an injection, or as a patch placed on the painful area.

Best estimate of what happens to people with osteoarthritis who take opioids

Pain

- People who took opioids rated improvement in their pain to be about 3 points on a scale of 0 (no pain) to 10 (extreme pain) after one month. - People who took a placebo rated improvement in their pain to be about 2 points on a scale of 0 (no pain) to 10 (extreme pain) after one month.

Another way of saying this is:

- 41 people out of 100 who used opioids responded to treatment (41%).
- 31 people out of 100 who used placebo responded to treatment (31%).
- 10 more people responded to treatment with opioids than with placebo (difference of 10%). (High-quality evidence)

Physical function

- People who took opioids rated improvement in their physical function to be about 2 points on a scale of 0 (no disability) to 10 (extreme disability) after one month.

- People who took a placebo rated improvement in their physical function to be about 1 point on a scale of 0 (no disability) to 10 (extreme disability) after one month.

Another way of saying this is:

- 34 people out of 100 who used opioids responded to treatment (34%).

- 26 people out of 100 who used placebo responded to treatment (26%).
- 8 more people responded to treatment with opioids than with placebo (difference of 8%). (High-quality evidence)

Side effects

- 22 people out of 100 who used opioids experienced side effects (22%).
- 15 people out of 100 who used a placebo experienced side effects (15%).
- 7 more people experienced side effects with opioids than with placebo (difference of 7%). (Moderate-quality evidence)

Drop-outs because of side effects

- 64 people out of 1000 who used opioids dropped out because of side effects (6.4%).
- 17 people out of 1000 who used a placebo dropped out because of side effects (1.7%).
- 47 more people dropped out because of side effects with opioids than with placebo (difference of 4.7%). (High-quality evidence)

Side effects resulting in hospitalisation, persistent disability, or death

- 13 people out of 1000 who used opioids experienced side effects resulting in hospitalisation, persistent disability, or death (1.3%).
- 4 people out of 1000 who used a placebo experienced side effects resulting in hospitalisation, persistent disability, or deaths (0.4%).
- 9 more people experienced side effects resulting in hospitalisation, persistent disability, or death with opioids than with placebo (difference of 0.9%). (Low-quality evidence)

Withdrawal symptoms

- 24 people out of 1000 who used opioids experienced withdrawal symptoms (2.4%).
- 9 people out of 1000 who used a placebo experienced withdrawal symptoms (0.9%).
- 15 more people experienced withdrawal symptoms with opioids than with placebo (difference of 1.5%). (Moderate-quality evidence)

SUMMARY OF FINDINGS

Summary of findings for the main comparison. Oral or transdermal opioids compared with placebo for osteoarthritis of the knee or hip

Oral or transdermal opioids compared with placebo for osteoarthritis of the knee or hip

Patient or population: participants with osteoarthritis of the knee or hip

Settings: various orthopaedic or rheumatology clinics

Intervention: oral or transdermal opioids

Comparison: placebo

Outcomes	Illustrative comparat	ive risks* (95% CI)	Relative effect - (95% CI)	No of partici- pants	Quality of the evidence	Comments	
	Assumed risk	Corresponding risk	- (55% CI)	(studies)	(GRADE)		
	Placebo	Opioids					
Pain intensity Various pain scales.	-1.8 cm change on 10-cm VAS ¹	-2.5 cm change (Δ -0.7 cm, -0.9 to -0.5) ²	SMD -0.28 (-0.35 to -0.20)	8275 (22)	++++ high	NNTB 10 (95% CI 8 to 14) ⁴	
(median follow-up: 4 weeks)	29% improvement	41% improvement (Δ 12%, 9% to 15%) ³					
Function Various validated function scales. (median follow-up: 5 weeks)	 -1.2 units on WOMAC (range 0 to 10)¹ 21% improvement 	 -1.8 units on WOMAC (Δ -0.6, -0.8 to -0.4)⁵ 32% improvement (Δ 11%, 7% to 14%)⁶ 	SMD -0.26 (-0.35 to -0.17)	3553 (12)	++++ high	NNTB 12 (95% CI 10 to 18) ⁷	
Number of participants experienc- ing any adverse event (median follow-up: 8 weeks)	150 per 1000 partici- pant-years ⁸	224 per 1000 partici- pant-years (203 to 245)	RR 1.49 (1.35 to 1.63)	4898 (9)	+++O moderate ⁹	NNTH 14 (95% CI 11 to 19)	
Number of participants who with- drew because of adverse events (median follow-up: 6 weeks)	17 per 1000 partici- pant-years ⁸	64 per 1000 partici- pant-years (50 to 82)	RR 3.76 (2.93 to 4.82)	7712 (19)	++++ high	NNTH 21 (95% CI 15 to 30)	
Number of participants experienc- ing any serious adverse event (median follow-up: 8 weeks)	4 per 1000 partici- pant-years ⁸	13 per 1000 partici- pant-years (3 to 54)	RR 3.35 (0.83 to 13.56)	681 (3)	++00 low ¹⁰	Little evidence of harmful effect	

Oral or t							(NNTH not statis- tically significant)
rans:	Withdrawal symptoms	9 per 1000 partici-	24 per 100	OR 2.67 (2.02 to	1151	+++0	NNTH 65 (95% CI
dermal	(median follow-up: 16 weeks)	pant-years ¹¹	participant-years (18 to 33)	3.77)	(3)	moderate ¹²	42 to 110)

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: confidence interval; GRADE: GRADE Working Group grades of evidence (see explanations); NNTB: number needed to treat for an additional beneficial outcome; NNTH: number needed to treat for an additional harmful outcome; OR: odds ratio; RR: risk ratio; SMD: standardised mean difference; WOMAC: Western Ontario and McMaster Universities Arthritis Index.

GRADE Working Group grades of evidence

High quality (++++): Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality (+++O): Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality (++00): Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality (+OOO): We are very uncertain about the estimate.

¹ Median reduction as observed across placebo groups in large osteoarthritis trials (see methods section, Nüesch 2009).

² SMDs were back-transformed onto a 10-cm visual analogue scale (VAS) on the basis of a typical pooled standard deviation (SD) of 2.5 cm in large trials that assessed pain using a VAS and expressed as change based on an assumed standardised reduction of 0.72 |SD units in the control group.

³ Percentage of improvement was calculated based on median observed pain at baseline across control groups of large osteoarthritis trials of 6.1 cm on 10-cm VAS (Nüesch 2009). ⁴ Absolute response risks for pain in the control groups were assumed 31% (see methods section).

⁵ SMDs were back-transformed onto a standardised WOMAC disability score ranging from 0 to 10 on the basis of a typical pooled SD of 2.1 in trials that assessed function using WOMAC disability scores and expressed as change based on an assumed standardised reduction of 0.58 standard deviation units in the control group.

⁶ Percentage of improvement was calculated based on median observed WOMAC function scores at baseline across control groups of large osteoarthritis trials of 5.6 units (Nüesch 2009).

⁷ Absolute response risks for function in the control groups were assumed 26% (see methods section).

⁸ Median control risk across placebo groups in large osteoarthritis trials (see methods section, Nüesch 2009).

⁹ Downgraded (1 level) because: 9 out of 19 studies reported this outcome, possibly leading to selective outcome reporting bias.

¹⁰ Downgraded (2 levels) because: 3 out of 19 studies reported this outcome, possibly leading to selective outcome reporting bias, the CI of the pooled estimate is wide and crossed no difference.

¹¹ Median risk across control groups in included trials.

¹² Downgraded (1 level) because 3 out of 22 studies reported this outcome, possible leading to selective outcome reporting bias.

ochrane

BACKGROUND

Description of the condition

Osteoarthritis is the most common form of joint disease and the leading cause of pain, functional limitations, and loss of independence in older adults (Altman 1986). It is a progressive disease of synovial joints resulting from biomechanical and systemic effects, and is characterised by a breakdown of the joint cartilage accompanied by subchondral bone changes, deterioration of tendons and ligaments, and various degrees of inflammation of the synovium (Hochberg 2012).

Description of the intervention

Pharmacological therapy for osteoarthritis, as an alternative or in addition to other therapeutic options, consists mainly of analgesics and non-steroidal anti-inflammatory drugs (NSAIDs). However, paracetamol may be inadequate to treat more severe, long-term pain in osteoarthritis and chronic NSAID use may cause serious gastrointestinal and cardiovascular adverse events. Opioids could be a viable alternative if people have severe pain with insufficient response to conventional treatment or if other analgesics are contraindicated (Avouac 2007).

How the intervention might work

Opioids are potent analgesics that work by targeting mainly spinal and supraspinal opioid receptors. In addition, cellular studies suggest that there are peripheral opioid receptors in inflamed osteoarthritic synovial tissue, which may mediate analgesic effects (Stein 1996).

Why it is important to do this review

The American College of Rheumatology guidelines on management of osteoarthritis, updated in 2012, suggest that opioids can be used in people with osteoarthritis after having failed medical therapy who were not willing or had contraindications for total joint replacement (Hochberg 2012). British guidelines propose opioids as an alternative if inadequate pain relief is achieved with topical NSAIDs or paracetamol (Eccles 1998; NICE 2008). However, the use of strong opioids for the treatment of non-cancer pain remains controversial. Concerns have been expressed about long-term use of opioids for chronic non-cancer pain mainly due to the risks of addiction (Von Korff 2004; Zhang 2008).

OBJECTIVES

To determine the effects on pain, function, safety, and addiction of oral or transdermal opioids compared with placebo or no intervention in people with knee or hip osteoarthritis.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised or quasi-randomised controlled trials with a control group receiving placebo or no intervention.

Types of participants

At least 75% of participants with clinically or radiologically confirmed osteoarthritis of the knee or hip. We did not consider

trials exclusively including people with inflammatory arthritis, such as rheumatoid arthritis.

Types of interventions

Any type of opioid except tramadol, which is covered in a separate Cochrane Review (Cepeda 2006).

Types of outcome measures

Primary outcomes

The main outcomes were pain and function, as currently recommended for osteoarthritis trials (Altman 1996; Pham 2004). If data on more than one pain scale were provided for a trial, we referred to a previously described hierarchy of pain-related outcomes (Jüni 2006; Reichenbach 2007), and extracted data on the pain scale that was highest on this list:

- 1. global pain;
- 2. pain on walking;
- 3. Western Ontario and McMaster Universities Arthritis Index (WOMAC) osteoarthritis index pain subscore;
- 4. composite pain scores other than WOMAC;
- 5. pain on activities other than walking;
- 6. rest pain or pain during the night;
- 7. WOMAC global algofunctional score;
- 8. Lequesne osteoarthritis index global score;
- 9. other algofunctional scale;

10.participant's global assessment;

11.physician's global assessment.

If data on more than one function scale were provided for a trial, we extracted data according to the hierarchy:

- 1. global disability score;
- 2. walking disability;
- 3. WOMAC disability subscore;
- 4. composite disability scores other than WOMAC;
- 5. disability other than walking;
- 6. WOMAC global scale;
- 7. Lequesne osteoarthritis index global score;
- 8. other algofunctional scale;
- 9. participant's global assessment;

10.physician's global assessment.

If pain or function outcomes were reported at several time points, we extracted the measure at the end of the treatment period.

Secondary outcomes

Secondary outcomes were the number of participants who experienced any adverse event, withdrew because of adverse events, experienced any serious adverse events, and experienced symptoms of opioid dependence such as craving or physical withdrawal symptoms. We defined serious adverse events as events resulting in hospitalisation, prolongation of hospitalisation, persistent or significant disability, congenital abnormality or birth defect of offspring, life-threatening events, or death.

Search methods for identification of studies

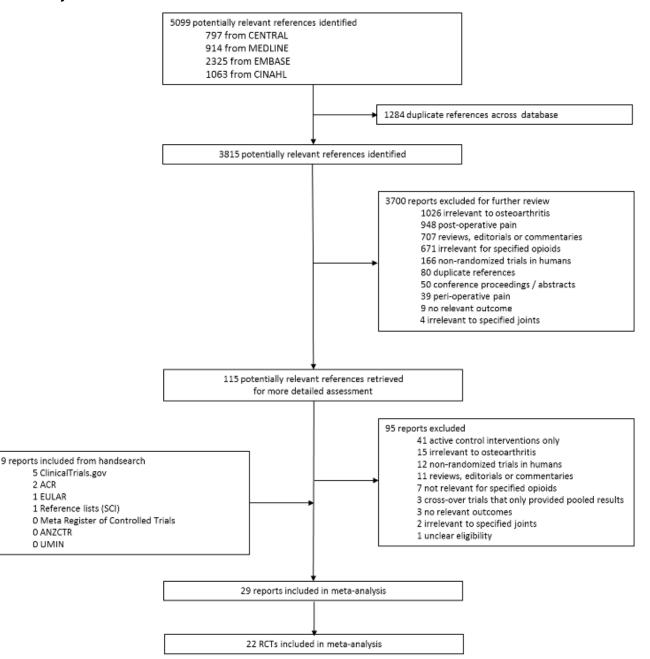
Electronic searches

We searched the electronic databases the Cochrane (CENTRAL) Central Register of Controlled Trials (mrw.interscience.wiley.com/cochrane/), MEDLINE and EMBASE through the Ovid platform (www.ovid.com), and CINAHL through EBSCOhost (all from implementation to July 28 2008) using truncated variations of preparation names including brand names combined with truncated variations of terms related to osteoarthritis, all as text words. We applied a validated methodological filter for controlled clinical trials (Dickersin 1994). The specific search algorithms are displayed in Appendix 1 and Appendix 2. We updated the search using CENTRAL, MEDLINE, and EMBASE up to 15 August 2012.

Searching other resources

We manually searched conference proceedings, used Science Citation Index to retrieve reports citing relevant articles, contacted content experts and trialists, and screened reference lists of all obtained articles. Finally, we searched several clinical trial registries (clinicaltrials.gov, metaRegister of Controlled Trials, Australian New Zealand Clinical Trials Registry, UMIN Clinical Trials Registry) to identify ongoing trials. We performed the last update of the search on 20 September 2012. We did not search OARSI conference proceedings for the update, as we no longer had access to this database.

Data collection and analysis


We used a generic protocol with instructions for data extraction, quality assessment, and statistical analyses, which was approved by the editorial board of the Cochrane Musculoskeletal Group. We applied the same protocol in our previous reviews (Rutjes 2009a; Rutjes 2009b; Reichenbach 2010; Rutjes 2010; da Costa 2012b).

Selection of studies

Two review authors independently evaluated all titles and abstracts for eligibility (originally EN and AR, BdC and RK for the update) (see Figure 1). We resolved disagreements by discussion. We applied no language restrictions. If multiple reports described the same trial, we considered all.

Figure 1. Study flow chart.

Data extraction and management

Two review authors (originally EN and AR, BdC and RK for the update) extracted trial information independently using a standardised, piloted extraction form accompanied by a codebook. We resolved disagreements by discussion. We extracted both the generic and trade name of the experimental intervention, the type of control used, dosage, frequency, route of administration, duration of treatment, participant characteristics (gender, mean age and duration of symptoms, types of joints affected), types of measures used and pain- and function-related outcomes, trial design, trial size, duration of follow-up, type and source of financial support, and publication status. When necessary, we approximated means and measures of dispersion from figures in the reports. For cross-over trials, we extracted data from the first period only. Whenever possible, we used results from an intention-to-treat analysis. If effect sizes could not be calculated, we contacted the authors for additional data.

Assessment of risk of bias in included studies

Two review authors (originally EN and AR, BdC and RK for the update) independently assessed randomisation, blinding, and adequacy of analyses (Jüni 2001). We resolved disagreements by consensus. We assessed two components of randomisation: generation of allocation sequences and concealment of allocation. We considered generation of sequences to be adequate if it resulted in an unpredictable allocation schedule; mechanisms considered adequate included random-number tables, computer-generated random numbers, minimisation, coin tossing, shuffling cards,

and drawing lots. We considered trials using an unpredictable allocation sequence to be randomised; we considered trials using potentially predictable allocation mechanisms, such as alternation or the allocation of participants according to date of birth, to be quasi-randomised. We considered concealment of allocation to be adequate if participants and investigators responsible for participant selection were unable to suspect before allocation which treatment was next. Methods considered adequate include central randomisation; pharmacy-controlled randomisation using identical pre-numbered containers; and sequentially numbered, sealed, opaque envelopes. We considered blinding of participants to be adequate if experimental and control preparations were explicitly described as indistinguishable or if a double-dummy technique was used. We considered analyses to be adequate if all randomised participants were included in the analysis according to the intention-to-treat principle. We further assessed the reporting of primary outcomes, sample size calculations, and funding source. Finally, we used GRADE to describe the quality of the overall body of evidence (Guyatt 2008; Higgins 2011), defined as the extent of confidence into the estimates of treatment benefits and harms.

Measures of treatment effect

We summarised continuous outcomes using standardised mean differences (SMD) with 95% confidence intervals (CI), with the differences in mean values at the end of treatment across treatment groups divided by the pooled standard deviation (SD). If differences in mean values at the end of the treatment were unavailable, we used differences in mean changes. If some of the required data were unavailable, we used approximations, as previously described (Reichenbach 2007). An SMD of -0.20 SD units can be considered a small difference between the experimental and control groups, an SMD of -0.50 a moderate difference, and -0.80 a large difference (Cohen 1988; Jüni 2006). SMDs can also be interpreted in terms of the per cent of overlap of the experimental group's scores with scores of the control group. An SMD of -0.20 indicates an overlap in the distribution of pain or function scores in about 85% of cases, an SMD of -0.50 in about 67%, and an SMD of -0.80 in about 53% of cases (Cohen 1988; Jüni 2006). On the basis of a median pooled SD of 2.5 cm, found in large-scale osteoarthritis trials that assessed pain using a 10-cm visual analogue scale (VAS) (Nüesch 2009), SMDs of -0.20 correspond to approximate differences in pain scores between experimental and control groups of 0.5 on a 10-cm VAS, -0.50 of 1.25 on a 10-cm VAS, and -0.80 of 2 on a 10-cm VAS. We back transformed SMDs for function to a standardised WOMAC disability score (Bellamy 1995), ranging from 0 to 10 on the basis of a median pooled SD of 2.1 units observed in large-scale osteoarthritis trials (Nüesch 2009). We expressed binary outcomes as risk ratios (RR) with 95% CI.

Data synthesis

We used a standard inverse-variance random-effects metaanalysis to combine the trials (DerSimonian 1986). We quantified heterogeneity between trials using the I² statistic (Higgins 2003), which describes the percentage of variation across trials that is attributable to heterogeneity rather than to chance. I² values of 25% may be interpreted as low, 50% as moderate, and 75% as high between-trial heterogeneity, although its interpretation depends on the size and number of trials included (Rücker 2008). The association between trial size and treatment effects was investigated in funnel plots, plotting effect sizes on the vertical axis against their standard errors on the horizontal axis (Sterne 2011). We assessed asymmetry by the asymmetry coefficient, the difference in effect size per unit increase in standard error (Sterne 2001), which is mainly a surrogate for sample size, and used univariable, meta-regression analysis to predict treatment effects in trials as large as the largest trials included in the meta-analysis using the standard error as the explanatory variable (Shang 2005). We then performed analyses of the primary outcomes, pain and function, stratified by the following trial characteristics: type of opioid, analgesic potency (strong versus weak), route of administration (oral versus transdermal), type of control (placebo versus no intervention), concealment of allocation (adequate versus inadequate or unclear), blinding of participants (adequate versus inadequate or unclear), analysis in accordance with the intention-to-treat principle (yes versus no or unclear), trial size, funding (funding by pharmaceutical industry or unclear versus no funding by pharmaceutical industry), duration of treatment, and type of osteoarthritis (hip only versus knee only versus mixed). We classified buprenorphine, fentanyl, morphine, oxycodone, oxymorphone, and tapentadol as strong opioids, and codeine and dextropropoxyphene as weak opioids. We used a cut-off of 200 allocated participants to distinguish between small-scale and large-scale trials. A sample size of 2 x 100 participants will yield more than 80% power to detect a small-to-moderate SMD of -0.40 at a two-sided P value of 0.05, which corresponds to a difference of 1 cm on a 10-cm VAS between the experimental and control intervention (Nüesch 2010). We used a cut-off of one month to distinguish between short-term and long-term trials. We used univariable, random-effects meta-regression models to determine whether treatment effects were affected by these factors (Thompson 1999). In addition, we included the following two continuous variables at trial level in univariable meta-regression: daily morphine equivalence dosage and treatment duration. We calculated morphine equivalence doses as previously described: oral morphine 10 mg was considered equivalent to oral codeine 65 mg, oral hydromorphone 2 mg, oral oxycodone 7.5 mg, and oral oxymorphone 10 mg and oral tapentadol 25 mg (Loeser 2001; Schug 2006). Patches of fentanyl 25 µg/hour was considered equivalent to oral morphine 90 mg per day and patches of buprenorphine 5, 10, and 20 μ g/hour equivalent to 10, 15, and 30 mg oral morphine per day (British Pain Society 2010).

We converted SMDs of pain intensity and function to odds ratios (OR) (Chinn 2000; da Costa 2012a) to derive numbers needed to treat to cause one additional treatment response on pain or function as compared with placebo (NNTB), and numbers needed to treat to cause one additional adverse outcome (NNTH). We defined treatment response as a 50% improvement in scores (Clegg 2006). With a median standardised pain intensity at baseline of 2.4 SD units, observed in large osteoarthritis trials (Nüesch 2009), this corresponds to a mean decrease in scores of 1.2 SD units. Based on the median standardised decrease in pain scores of 0.72 SD units (Nüesch 2009), we calculated that a median of 31% of participants in the placebo group would achieve an improvement of pain scores of 50% or more. This percentage was used as the control group response rate to calculate NNTBs for treatment response on pain. Based on the median standardised WOMAC function score at baseline of 2.7 SD units and the median standardised decrease in function scores of 0.58 SD units (Nüesch 2009), 26% of participants in the placebo group would achieve a reduction in function of 50% or more. Again, this percentage was used as the control group response rate to calculate NNTBs for treatment response on function. We used the median risks of 150 participants with

Cochrane Library

Trusted evidence. Informed decisions. Better health.

adverse events per 1000 participant-years, four participants with serious adverse events per 1000 participant-years, and 17 dropouts due to adverse events per 1000 participant-years as observed in placebo groups in large osteoarthritis trials (Nüesch 2009), to calculate NNTHs for safety outcomes. All P values were two-sided. We performed analyses using Review Manager 5 (RevMan 2012), and STATA version 11.2 (StataCorp, College Station, Texas).

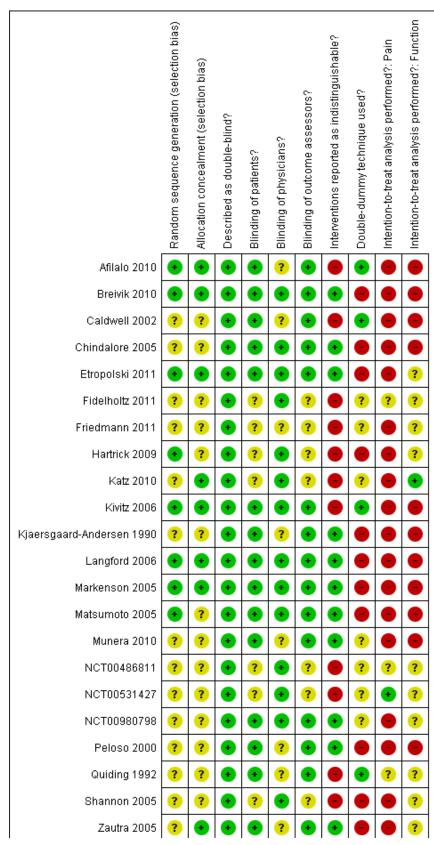
RESULTS

Description of studies

We identified 5099 potentially relevant references through our electronic searches (Figure 1); we excluded 4984 references after screening titles and abstracts and retrieved 115 potentially relevant references for full-text assessment. We included 22 randomised controlled trials in the review. Checking reference lists, trial registers, and handsearching of conference proceedings yielded five additional trials.

Three trials evaluated weak opioids. All three compared codeine with placebo (Kjaersgaard-Andersen 1990; Quiding 1992; Peloso 2000), one of these with paracetamol 3000 mg daily as analgesic co-intervention administered in both the experimental and control groups (Kjaersgaard-Andersen 1990), and another with ibuprofen 1200 mg daily administered in both groups (Quiding 1992). Strong opioids were compared with placebo in 19 trials. Hydromorphone was used in one trial (NCT00980798), morphine in two trials (Caldwell 2002; Katz 2010), oxymorphone in two trials (Matsumoto 2005; Kivitz 2006), oxycodone in 10 trials (Chindalore 2005; Markenson 2005; Matsumoto 2005; Zautra 2005; Hartrick 2009; Afilalo 2010; Etropolski 2011; Fidelholtz 2011; Friedmann 2011; NCT00486811), and tapentadol in four trials (Hartrick 2009; Afilalo 2010; Etropolski 2011; NCT00486811). Transdermal opioids were studied in five trials: buprenorphine in four trials (Shannon 2005; Breivik 2010; Munera 2010; NCT00531427), and fentanyl in one trial (Langford 2006). Opioids were administered at a median daily dose of 59-mg morphine equivalents (range 13 to 160 mg).

The median treatment duration was four weeks (range three days to six months). Trials randomised a median of 344 participants (range 27 to 10301 participants). Twenty trials (90%) were multicentre trials, 21 were parallel group, and one was a cross-over trial (Quiding 1992). Two trials exclusively included participants with hip osteoarthritis (Kjaersgaard-Andersen 1990; Quiding 1992), four trials included only participants with knee osteoarthritis (Zautra 2005; NCT0048681; Afilalo 2010 1; NCT00531427), and 16 trials included a mixed population of both knee and hip osteoarthritis (Peloso 2000; Caldwell 2002; Chindalore 2005; Markenson 2005; Matsumoto 2005; Shannon 2005; Kivitz 2006; Langford 2006; Hartrick 2009; Breivik 2010; Katz 2010; Munera 2010; Etropolski 2011; Fidelholtz 2011; Friedmann 2011; NCT00980798). In 17 studies, only participants with insufficient analgesic response to paracetamol, NSAIDs, or previous opioid treatment were included (NCT00980798; NCT00531427; Caldwell 2002; Chindalore 2005; Markenson 2005; Matsumoto 2005; Shannon 2005; Kivitz 2006; Langford 2006; Hartrick 2009; Afilalo 2010; Breivik 2010; Katz 2010; Munera 2010; Etropolski 2011; Friedmann 2011; NCT00486811). None of these trials provided detailed information about the dosage of the analgesic treatments before entering the trial. The three trials assessing codeine included participants with a need for analgesic treatment but without any requirement of previous insufficient treatment response (Kjaersgaard-Andersen 1990; Quiding 1992; Peloso 2000); two trials did not provide information about eligibility criteria concerning the previous analgesic therapy (Zautra 2005; Fidelholtz 2011).


The Characteristics of excluded studies table displays the reasons why we did not consider trials in this systematic review. Typical reasons were more than 25% of participants with rheumatoid arthritis in the sample, the use of active control interventions, or the use of cross-over designs without providing sufficient information on the first phase.

Risk of bias in included studies

Figure 2 summarises the methodological characteristics and sources of funding of included trials. Six trials (27%) reported both adequate sequence generation and adequate allocation concealment (Markenson 2005; Kivitz 2006; Langford 2006; Afilalo 2010; Breivik 2010; Etropolski 2011), two trials reported only adequate sequence generation (Matsumoto 2005; Hartrick 2009), and two trials reported adequate concealment but remained unclear about the generation of allocation sequence (Zautra 2005; Katz 2010). In the remaining 12 trials, low quality of reporting hampered any judgement regarding sequence generation and concealment of allocation. All 22 trials were described as double blind. Eleven trials reported the use of indistinguishable interventions to blind participants whereas another four trials used double-dummy techniques (Quiding 1992; Caldwell 2002; Kivitz 2006; Afilalo 2010). Fourteen trials explicitly reported adequate blinding of physicians. Seventeen trials described their analysis to be according to the intention-to-treat principle, but only one trial was considered to have an intention-to-treat analysis of pain (NCT00531427), and one trial of function outcomes at end of treatment (Katz 2010), according to our criteria. Exclusion of participants from the analysis of pain outcomes ranged from 0.6% to 52% in the experimental groups and from 0% to 33% in the control groups. For eight trials, no information was available on the proportion of excluded participants (NCT00980798; Quiding 1992; Caldwell 2002; Markenson 2005; Langford 2006; Hartrick 2009; Fidelholtz 2011; NCT00486811). For the analysis of function outcomes, exclusion of participants ranged from 1% to 73% in the experimental groups and from 0.6% to 53% in the control groups; in four trials, no information was available on the proportion of excluded patients (Caldwell 2002; Markenson 2005; Langford 2006; NCT00486811).

Figure 2. Methodological characteristics of included trials. (+) indicates low risk of bias, (?) unclear, and (-) a high risk of bias on a specific item.

Figure 2. (Continued)

All trials (95%) except for one (Quiding 1992) reported a primary outcome of which eight explicitly reported it to be prespecified in the protocol (Peloso 2000; Caldwell 2002; Markenson 2005; Matsumoto 2005; Langford 2006; Katz 2010; NCT00486811; NCT00531427), and 13 trials reported a sample size calculation for this primary outcome. Twenty trials received financial support from a commercial organisation, two were unclear about their source of funding (Kjaersgaard-Andersen 1990; Quiding 1992), whereas no trial was explicitly supported by a non-profit organisation. For the effectiveness outcomes pain and function, the quality of the evidence (Guyatt 2008) was classified as high in view of the low risk of bias in the included trials and the low heterogeneity between trials (Summary of findings for the main comparison). For adverse event and serious adverse event outcomes, the quality of the evidence (Guyatt 2008) was classified as moderate to low because of the small number of trials reporting the outcomes and the small number of serious adverse events, which resulted in imprecise estimates (Summary of findings for the main comparison).

Effects of interventions

See: Summary of findings for the main comparison Oral or transdermal opioids compared with placebo for osteoarthritis of the knee or hip

Primary outcomes

Knee or hip pain

Twenty-two trials including 5180 participants in experimental groups and 3095 participants in control groups contributed to the analyses of knee or hip pain. Figure 3 presents results of the analysis, overall and stratified according to type of opioid. In the overall analysis, combined oral and transdermal opioids were more effective in pain reduction than control interventions (SMD -0.28, 95% CI -0.35 to -0.20), which corresponds to a difference in pain scores of 0.7 cm on a 10-cm VAS between opioids and placebo. This corresponds to a difference in improvement of 12% (95% CI 9% to 15%) between opioids and placebo (Summary of findings for the main comparison), which translates into an NNTB to cause

one additional treatment response on pain of 10 (95% CI 8 to 14) (Summary of findings for the main comparison). An I² statistic of 58% indicated a moderate degree of between-trial heterogeneity (P for heterogeneity < 0.001). A visual inspection of the funnel plot suggested asymmetry (asymmetry coefficient -1.86, 95% CI -3.50 to -0.21) and the test for asymmetry indicated some evidence for asymmetry (P value = 0.054) (Figure 4). Benefits were moderate for codeine (SMD -0.51, 95% CI -1.01 to -0.01; 3 trials); small to moderate for oxycodone (SMD -0.31, 95% CI -0.47 to -0.15; 10 trials), oxymorphone (SMD -0.39, 95% CI -0.58 to -0.21; 2 trials), and tapentadol (SMD -0.31, 95% CI -0.46 to -0.16, 4 trials); and small for morphine (SMD -0.25, 95% CI -0.42 to -0.09; 2 trials) and transdermal opioids such as buprenorphine (SMD -0.19, 95% CI -0.30 to -0.09, 4 trials) and fentanyl (SMD -0.22, 95% CI -0.42 to -0.03; 1 trial). No benefit was observed for hydromorphone (SMD 0.04, 95% CI -0.19 to 0.28, 1 trial). The CIs were wide and a test for interaction between benefit and type of opioid was non-significant (P value = 0.66). Table 1 presents the results of stratified analyses. We found little evidence for an association of SMDs with analgesic potency, route of administration, type of control intervention, use of analgesic co-interventions, type of osteoarthritis, concealment of allocation, adequate blinding of participants, or intention-totreat analysis. Effects were similar in studies including participants with only knee osteoarthritis (SMD -0.22, 95% CI -0.41 to -0.04, 4 trials), with only hip osteoarthritis (SMD -0.33, 95% CI -0.93 to 0.28, 2 trials), and with knee or hip osteoarthritis (SMD -0.29, 95% CI -0.38 to -0.20, 16 trials, P value for interaction = 0.77). We found larger benefits in trials with 200 or fewer randomised participants (difference in SMD -0.23, 95% CI -0.49 to 0.02, P for interaction = 0.08) and in trials with a short treatment duration of one month or less (difference in SMD -0.25, 95% CI -0.37 to -0.13, P value for interaction = 0.001). The effect of treatment duration on treatment benefits was similar, when we restricted the analyses to large trials only (P value for interaction 0.001). Thirty-three comparisons from 22 trials contributed to the analysis of a linear association between equivalence dose and treatment benefit (Figure 5). We found little evidence for a linear association between daily equivalence doses and pain reduction (P value = 0.49).

Figure 3. Forest plot of 22 trials comparing the effects of any type of opioids and control (placebo or no intervention) on knee or hip pain. Values on x-axis denote standardised mean differences. The plot is stratified according to type of opioids. Matsumoto 2005, Hartrick 2009, Afilalo 2010, Etropolski 2011, and NCT00486811 contributed with two comparisons and the standard error was inflated and the number of participants in the placebo group was halved to avoid duplicate counting of participants when including both comparisons in the

overall meta-analysis. Data relating to the 3, 3, 3, 2, 2, and 2 active intervention arms in Caldwell 2002, Chindalore 2005, Kivitz 2006, Matsumoto 2005, Hartrick 2009, and Etropolski 2011, respectively, were pooled.

Study or Subgroup	Std. Mean Difference	OJ SE	pioids Co Total		s Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
1.1.1 Buprenorphine							
Breivik 2010	-0.242	0.144	95	99	3.5%	-0.24 [-0.52, 0.04]	
Munera 2010	-0.127		149	162	4.2%	-0.13 [-0.35, 0.10]	 +
NCT00531427		0.084	283	287	5.1%	-0.14 [-0.30, 0.02]	
Shannon 2005	-0.324		164	162	4.3%	-0.32 [-0.54, -0.10]	
Subtotal (95% CI)			691	710	17.2%	-0.19 [-0.30, -0.09]	•
Heterogeneity: Tau ² = 0.00; Cł Test for overall effect: Z = 3.60); I² = 0%					
1 1 2 Codoino							
1.1.2 Codeine							
Kjaersgaard-Andersen 1990	-0.143		40	57	2.3%	-0.14 [-0.55, 0.26]	
Peloso 2000	-0.783		31	35	1.7%	-0.78 [-1.28, -0.28]	
Quiding 1992	-0.844	0.525	8	8	0.5%	-0.84 [-1.87, 0.18]	
Subtotal (95% CI)			79	100	4.4%	-0.51 [-1.01, -0.01]	
Heterogeneity: Tau² = 0.10; Cł Test for overall effect: Z = 2.00); F= 55%)				
1.1.3 Fentanyl							
	-0.223	0.1	202	197	4.7%	-0.221.042.0021	
Langford 2006 Subtotal (95% CI)	-0.223	0.1	202 202	197 197	4.7% 4.7%	-0.22 [-0.42, -0.03] - 0.22 [-0.42, -0.03]	
			202	191	4.770	-0.22 [-0.42, -0.03]	•
Heterogeneity: Not applicable Test for overall effect: Z = 2.23							
1.1.4 Hydromorphone							
NCT00980798	0.044	0.121	132	143	4.1%	0.04 [-0.19, 0.28]	_ _
Subtotal (95% CI)	0.044	0.121	132	143	4.1%	0.04 [-0.19, 0.28]	•
Heterogeneity: Not applicable Test for overall effect: Z = 0.36							
1.1.5 Morphine	() = 0.127						
Caldwell 2002	-0.346	0.136	222	73	3.7%	-0.35 [-0.61, -0.08]	
Katz 2010	-0.195		170	173	4.4%	-0.20 [-0.41, 0.02]	
Subtotal (95% CI)	-0.155	0.100	392	246	8.1%	-0.25 [-0.42, -0.09]	▲
Heterogeneity: Tau² = 0.00; Cł Test for overall effect: Z = 3.00); I² = 0%					•
1.1.6 Oxycodone	· ····,						
	0.400	0.004	242	400	4.00	0 4 3 7 0 34 0 061	
Afilalo 2010 Obie de level 2005	-0.129		342	168	4.8%	-0.13 [-0.31, 0.06]	
Chindalore 2005	-0.316		309	51	3.3%	-0.32 [-0.61, -0.02]	
Etropolski 2011	-0.685		143	74	3.4%	-0.69 [-0.97, -0.40]	
Fidelholtz 2011		0.116	158	141	4.2%	0.00 [-0.23, 0.23]	
Friedmann 2011	-0.263		203	207	4.7%	-0.26 [-0.46, -0.07]	
Hartrick 2009		0.134	172	86	3.7%	-0.51 [-0.77, -0.25]	→
Markenson 2005	-0.431		56	51	2.4%	-0.43 [-0.82, -0.05]	———
Matsumoto 2005	-0.285		120	59	3.1%	-0.28 [-0.60, 0.03]	
NCT00486811	0.047		331	168	4.8%	0.05 [-0.14, 0.23]	+-
Zautra 2005	-0.807	0.204	55	49	2.3%	-0.81 [-1.21, -0.41]	
Subtotal (95% CI)			1889	1054	36.8%	-0.31 [-0.47, -0.15]	◆
Heterogeneity: Tau² = 0.05; Cł Test for overall effect: Z = 3.70		001); I² = 1	76%				
1.1.7 Oxymorphone							
<ivitz 2006<="" td=""><td>-0.391</td><td>0.124</td><td>270</td><td>87</td><td>4.0%</td><td>-0.39 [-0.63, -0.15]</td><td> </td></ivitz>	-0.391	0.124	270	87	4.0%	-0.39 [-0.63, -0.15]	
Matsumoto 2005 Subtotal (95% CI)	-0.395		228 498	60 147	3.4% 7.4%	-0.40 [-0.68, -0.11] - 0.39 [-0.58, -0.21]	•
Heterogeneity: Tau ² = 0.00; Cł Test for overall effect: Z = 4.14); I² = 0%				,	-
1.1.8 Tapentadol	. ,						
Afilalo 2010	-0.296	0.094	344	169	4.8%	-0.30 [-0.48, -0.11]	
Etropolski 2011	-0.250	0.034	304	74	4.8% 3.8%	-0.36 [-0.62, -0.11]	
Hartrick 2009		0.13	304	74 86	3.8% 4.0%	-0.51 [-0.75, -0.27]	_ _ _
Hannek 2009 NCT00486811			330 319	80 169	4.0% 4.8%		
Subtotal (95% CI)	-0.142	0.090	1297	169 498	4.8% 17.5%	-0.14 [-0.33, 0.04] - 0.31 [-0.46, -0.16]	
Heterogeneity: Tau² = 0.01; Cf Test for overall effect: Z = 4.09); I² = 50%		430	17.370	-0.51 [-0.40, -0.10]	•
restror overall effect. Z = 4.09	(= < 0.0001)						
Total (95% CI)			5180	3095	100.0%	-0.28 [-0.35, -0.20]	◆
	ni² = 62.17 df = 26 (P < 0	0001): I ^z =					<u> </u>
Heterogeneity: Tau ² = 0.021 CF							
Heterogeneity: Tau² = 0.02; Cł Test for overall effect: Z = 7.26		,					-2 -1 Ó Í Favours opicids Favours control

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Copyright @ 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Figure 4. Funnel plot for effects on knee or hip pain.

Numbers on x axis refer to standardised mean differences (SMDs), on y axis to standard errors of SMDs.

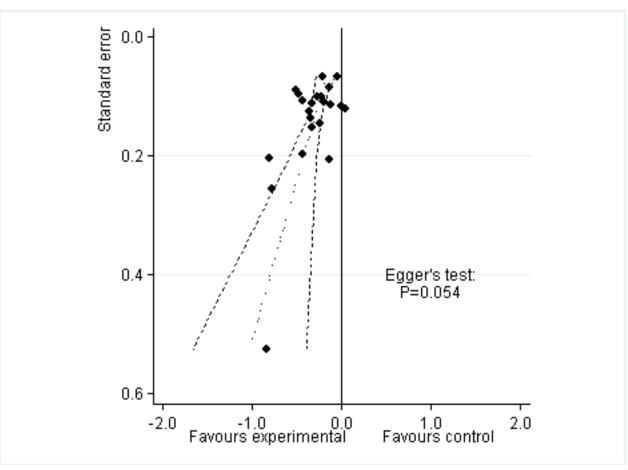
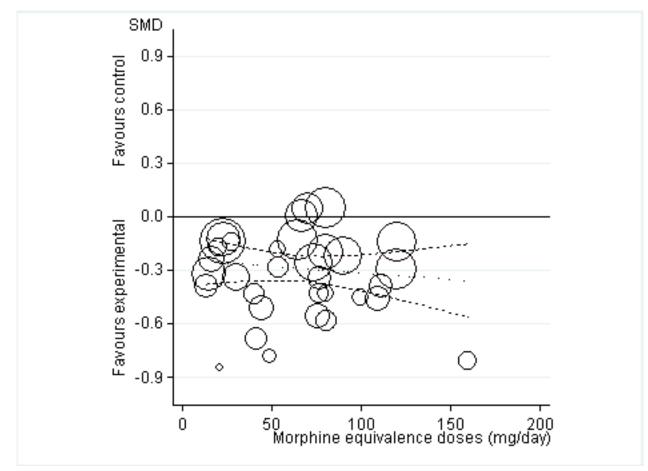



Figure 5. Standardised mean differences of knee or hip pain (y axis) are plotted against total daily dose of morphine equivalents (x axis). The size of the circles is proportional to the random-effects weights that were used in the meta-regression. The dotted line indicates predicted treatment effects (regression line) from univariable meta-regression by using daily morphine equivalence doses the explanatory variable, and dashed lines represent the 95% confidence intervals.

Function

Twelve studies including 2124 participants in experimental groups and 1429 participants in control groups contributed to the analysis of function. Improvement of function was larger in opioid-treated participants compared with control groups (SMD -0.26, 95% CI -0.35 to -0.17) (Figure 6), which corresponds to a difference in function scores of 0.6 units between opioids and placebo on a standardised WOMAC disability scale ranging from 0 to 10. This corresponds to a difference in improvement of 11% (95% CI 7% to 14%) between opioids and placebo (Summary of findings for the main comparison), which translates into an NNTB to cause one additional treatment response on function of 11 (95% CI 7 to 14) (Summary of findings for the main comparison). An I² statistic of 32% indicated a low degree of between-trial heterogeneity (P value for heterogeneity = 0.12). We found a moderate benefit for codeine (SMD -0.42, 95% CI -0.74 to -0.10; 2 trials) and oxymorphone (SMD -0.38, 95% CI -0.56 to -0.19, 2 trials) and small benefits for morphine (SMD -0.20, 95% CI -0.38 to -0.02, 2 trials), oxycodone (SMD -0.30, 95% CI -0.58 to -0.01, 4 trials), tapentadol (SMD -0.15, 95% CI -0.45 to 0.16, 2 trials), and for transdermal opioids such as buprenorphine (SMD -0.23, 95% CI -0.40 to -0.05, 2 trials) and fentanyl (SMD -0.28, 95% CI -0.48 to -0.09; 1 trial). As was the case for

pain, CIs of estimates were wide and a test for interaction between benefit and type of opioid was non-significant (P value = 0.87). Heterogeneity between trials was low with an I² statistic estimate of 32% (P value for heterogeneity = 0.12). The funnel plot (Figure 7) appeared asymmetrical (asymmetry coefficient -3.33, 95% CI -5.76 to -0.89, P value for asymmetry = 0.011). Table 2 presents the results of the stratified analyses. We found little evidence for an association of SMDs with analgesic potency, route of administration, type of control intervention, treatment duration, use of analgesic cointerventions, type of osteoarthritis, allocation concealment, and intention-to-treat analysis. Effects were similar in studies including participants with only knee osteoarthritis (SMD -0.16, 95% CI -0.43 to 0.11, 2 trials), only hip OA (SMD -0.29, 95% CI -0.68 to 0.11, 1 trial), and knee or hip OA (SMD -0.31, 95% CI -0.41 to -0.20, 9 trials, P value for interaction 0.45). Adequately powered trials with 200 or more randomised participants tended to show smaller improvements of function (difference in SMD 0.23, 95% CI -0.06 to 0.52, P value for interaction = 0.11) and trials with adequate participant blinding larger benefits of function (difference in SMD -0.25, 95% CI -0.41 to -0.09, P value for interaction = 0.008). Eighteen comparisons from 12 trials contributed to the analysis of a linear association between equivalence dose and treatment benefit for function (Figure 8). We

found no evidence for an association between daily equivalence doses and improvement of function (P value = 0.48).

Figure 6. Forest plot of 12 trials comparing the effects of any type of opioids and control (placebo or no intervention) on function. Values on x axis denote standardised mean differences. The plot is stratified according to type of opioids. Matsumoto 2005 contributed with two comparisons and the standard error was inflated and the number of participants in the placebo group was halved to avoid duplicate counting of participants when including both comparisons in the overall meta-analysis. Data relating to the 3, 3, and 2 active intervention arms in Caldwell 2002, Kivitz 2006, and Matsumoto 2005, respectively, were pooled.

Study or Subgroup	Std. Mean Difference	SE ()pioids Total		Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
.2.1 Buprenorphine							
Breivik 2010	-0.241	0.146	94	96	6.4%	-0.24 [-0.53, 0.05]	
lunera 2010	-0.219	0.114	149	162	8.8%	-0.22 [-0.44, 0.00]	
Subtotal (95% CI)			243	258	15.2%	-0.23 [-0.40, -0.05]	◆
Heterogeneity: Tau² = 0.00; C Test for overall effect: Z = 2.53); I² = 0%					
.2.2 Codeine							
(jaersgaard-Andersen 1990	-0.288	0.201	43	60	3.9%	-0.29 [-0.68, 0.11]	
Peloso 2000	-0.621	0.253	31	35	2.6%	-0.62 [-1.12, -0.13]	
Subtotal (95% CI)			74	95	6.5%	-0.42 [-0.74, -0.10]	
Heterogeneity: Tau² = 0.00; C Test for overall effect: Z = 2.58); I² = 6%					
.2.3 Fentanyl							
angford 2006.	-0.283	0.101	202	197	10.1%	-0.28 [-0.48, -0.09]	
Subtotal (95% CI)			202	197	10.1%	-0.28 [-0.48, -0.09]	◆
Heterogeneity: Not applicable Test for overall effect: Z = 2.80							
.2.4 Morphine							
Caldwell 2002	-0.311	0.136	222	73	7.0%	-0.31 [-0.58, -0.04]	
(atz 2010	-0.127	0.108	171	173	9.4%	-0.13 [-0.34, 0.08]	
Subtotal (95% CI)			393	246	16.4%	-0.20 [-0.38, -0.02]	◆
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.22); I ^z = 11'	%				
.2.5 Oxycodone							
Milalo 2010	-0.292		92	79	5.9%	-0.29 [-0.59, 0.01]	
Aarkenson 2005	-0.798		56	51	3.9%	-0.80 [-1.19, -0.40] =	
/latsumoto 2005	-0.141		120	59	5.6%	-0.14 [-0.45, 0.17]	
VCT00486811	-0.047	0.134	114	109	7.2%	-0.05 [-0.31, 0.22]	
Subtotal (95% CI)			382	298	22.6%	-0.30 [-0.58, -0.01]	
Heterogeneity: Tau² = 0.06; C Test for overall effect: Z = 2.00		2); I² = 71	1%				
.2.6 Oxymorphone							
(ivitz 2006	-0.395		270	87	7.9%	-0.40 [-0.64, -0.15]	_
1atsumoto 2005	-0.358	0.146	228	60	6.4%	-0.36 [-0.64, -0.07]	
Subtotal (95% CI)			498	147	14.3%	-0.38 [-0.56, -0.19]	-
leterogeneity: Tau² = 0.00; C est for overall effect: Z = 4.02); I² = 0%					
.2.7 Tapentadol							
vfilalo 2010	-0.308	0.14	149	79	6.8%	-0.31 [-0.58, -0.03]	
VCT00486811	0	0.121	183	109	8.2%	0.00 [-0.24, 0.24]	
Subtotal (95% CI)			332	188	14.9%	-0.15 [-0.45, 0.16]	
Heterogeneity: Tau² = 0.03; C Test for overall effect: Z = 0.95); l² = 64'	%				
otal (95% CI)			2124	1429	100.0%	-0.26 [-0.35, -0.17]	◆
Heterogeneity: Tau ² = 0.01; C	hi ² = 20.50, df = 14 (P = 0.1	12); I ² = 3	32%				
est for overall effect: Z = 5.91							-1 -0.5 Ó 0.5 1 Favours opioids Favours control

Figure 7. Funnel plot for effects on functioning of the knee or hip. Numbers on x axis refer to standardised mean differences (SMDs), on y axis to standard errors of SMDs

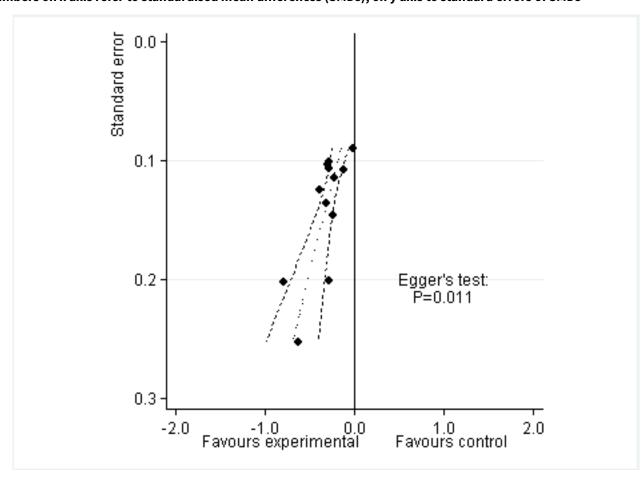
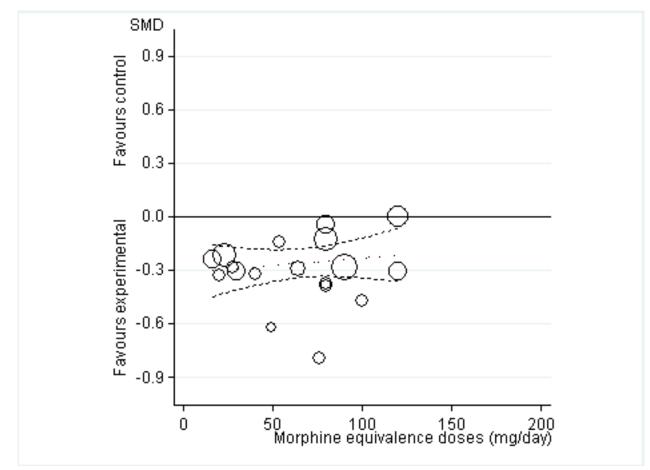



Figure 8. Standardised mean differences of function (y axis) are plotted against total daily dose of morphine equivalents (x axis). The size of the circles is proportional to the random-effects weights that were used in the meta-regression. The dotted line indicates predicted treatment effects (regression line) from univariable meta-regression by using daily morphine equivalence doses the explanatory variable, and dashed lines represent the 95% confidence intervals.

Secondary outcomes

Ten trials reported the occurrence of any adverse event in 2490 out of 3222 participants in experimental groups and 891 of 1676 participants in control groups (Figure 9). Participants were 49% more likely to experience adverse events in experimental groups compared with placebo (RR 1.49, 95% CI 1.35 to 1.63). The NNTH to cause one additional participant to experience an adverse event, as compared to placebo, was 14 (95% CI 11 to 19) (Summary of

findings for the main comparison). We found high heterogeneity between different studies ($I^2 = 71\%$, P value for heterogeneity < 0.001), but no evidence that RRs differed between different types of opioids (P value for interaction = 0.47) or length of treatment duration (P value = 0.09). Eighteen comparisons in nine trials contributed to the analysis of the association between equivalence dose and log relative risk (Figure 10). We found little evidence for a relationship (P value = 0.24).

Figure 9. Forest plot of 10 trials comparing participants experiencing any adverse event between any opioid and control (placebo or no intervention). Values on x axis denote risks ratios. The plot is stratified according to type of opioid. Matsumoto 2005, Hartrick 2009, Afilalo 2010, Etropolski 2011, and NCT00486811 contributed with

two comparisons and the number of participants in the placebo group was halved to avoid duplicate counting of participants when including both comparisons in the overall meta-analysis.

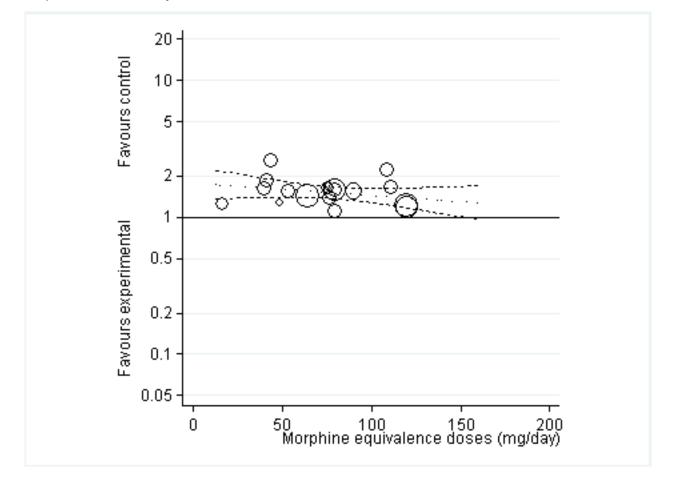

Study or Subgroup	Opioio Events		Contr Events		Weight	Risk Ratio IV, Random, 95% Cl	Risk Ratio IV, Random, 95% Cl
1.3.1 Buprenorphine							
Breivik 2010 Subtotal (95% CI)	92	100 100	73	99 99	8.5% 8.5 %	1.25 [1.09, 1.42] 1.25 [1.09, 1.42]	
Total events Heterogeneity: Not ap	92 nlicable		73				
Test for overall effect:	•	P = 0.0	009)				
1.3.2 Codeine							
Peloso 2000 Subtotal (95% CI)	25	31 31	22	35 35	4.8% 4.8 %	1.28 [0.94, 1.75] 1.28 [0.94, 1.75]	
Total events	25		22				
Heterogeneity: Not ap Test for overall effect:		P = 0.1	1)				
1.3.3 Fentanyl							
_angford 2006 Subtotal (95% CI)	169	216 216	101	200 200	8.0% 8.0 %	1.55 [1.33, 1.81] 1.55 [1.33, 1.81]	
Total events	169		101				
Heterogeneity: Not ap Test for overall effect:	•	[P < 0.0	0001)				
1.3.4 Morphine							
<atz 2010<br="">Subtotal (95% CI)</atz>	91	171 171	84	173 173	6.8% 6.8 %	1.10 (0.89, 1.35) 1.10 (0.89, 1.35)	-
Total events	91		84				
Heterogeneity: Not ap Test for overall effect:	•	P = 0.3	9)				
1.3.5 Oxycodone							
Afilalo 2010	299	342	103	169	8.6%	1.43 [1.26, 1.63]	
Etropolski 2011	114	143	31	74	5.3%	1.90 [1.44, 2.52]	
Hartrick 2009	144	172	27	85	4.6%	2.64 [1.92, 3.62]	
Markenson 2005	52	56	28	51	5.7%	1.69 [1.31, 2.19]	
Matsumoto 2005	110	125	35	62	6.3%	1.56 [1.24, 1.96]	
NCT00486811	294	331	95	169	8.4%	1.58 [1.38, 1.81]	
Subtotal (95% CI)	4040	1169	24.0	610	38.9%	1.69 [1.47, 1.95]	-
Fotal events Heterogeneity: Tau² =	1013 0.02 [.] Chi	² = 13 9	319 39 df=5	(P = 0	02) [,] I ² = 6	4%	
Fest for overall effect:				(i – 0.	02),1 = 0	4.0	
1.3.6 Oxymorphone							
Matsumoto 2005 Subtotal (95% CI)	223	242 242	36	62 62	6.6% 6.6 %	1.59 [1.28, 1.97] 1.59 [1.28, 1.97]	
Total events	223		36				
Heterogeneity: Not ap	•		0.043				
Test for overall effect:	∠=4.22(۳ < ۵.0	001)				
1.3.7 Tapentadol							
Afilalo 2010	261	344	103	169	8.4%	1.24 [1.09, 1.42]	
Etropolski 2011	199	305	31	74	5.3%	1.56 [1.18, 2.06]	
Hartrick 2009	201	325	27	85	4.6%	1.95 [1.41, 2.69]	
NCT00486811 Subtotal (95% CI)	216	319 1293	95	169 497	8.0% 26.3 %	1.20 [1.03, 1.40] 1.39 [1.17, 1.66]	
Total events	877	1200	256	451	20.070	nov [n n, nov]	
Heterogeneity: Tau ² = Test for overall effect:	0.02; Chi		4, df = 3 (P = 0.0	3); I² = 66	%	
Fotal (95% CI)		3222		1676	100.0%	1.49 [1.35, 1.63]	•
10(11(00/00))							•

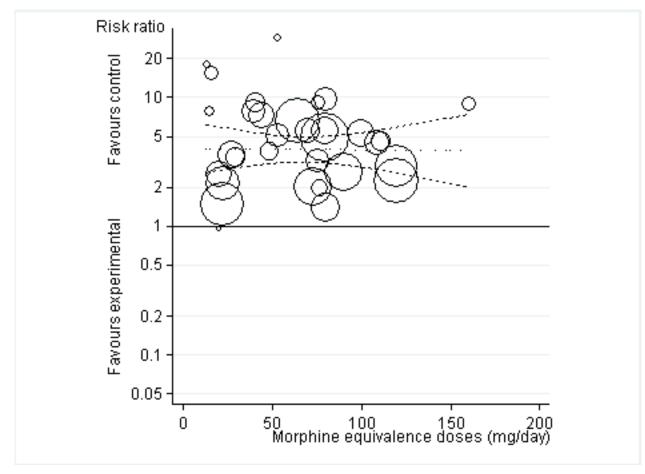
Figure 9. (Continued)

Total (95% CI)	3222	1676	100.0%	1.49 [1.35, 1.63]			•	
Total events	2490	891						
Heterogeneity: Tau ² = 0	0.02; Chi ^z = 47.91,	df=14 (P ≤ 0).0001); I ^z =	71%			1 15	<u>+</u>
Test for overall effect: Z	Z = 8.38 (P < 0.000	01)			0.5 F:	o.r avours onioids	Favours control	2
Test for subgroup diffe	rences: Chi ² = 18.4	44. df = 6 (P =	: 0.005), I ² =	67.5%				

Figure 10. Risk ratios of participants experiencing any adverse event between opioids and control groups (y axis) are plotted against total daily dose of morphine equivalents (x axis). The size of the circles is proportional to the random-effects weights that were used in the meta-regression. The dotted line indicates predicted treatment effects (regression line) from univariable meta-regression by using daily morphine equivalence doses the explanatory variable, and dashed lines represent the 95% confidence intervals.

Twenty-one trials with 8128 participants contributed to the metaanalysis of participants withdrawn or dropped out because of adverse events (Figure 11). Participants receiving opioid therapy were 3.8 times as likely as participants receiving placebo to be withdrawn or drop-out due to adverse events (RR 3.76, 95% CI 2.93 to 4.82), with moderate between-trial heterogeneity (I² = 59%, P value for heterogeneity < 0.001). The NNTH to cause one additional drop-out or withdrawal due to adverse events compared with placebo was 21 (95% CI 15 to 30) (Summary of findings for the main comparison). We found the highest pooled RR for oxycodone versus placebo (RR 5.55, 95% CI 3.47 to 8.87, 9 trials) and the lowest pooled RR for morphine versus placebo (RR 2.12, 95% CI 0.87 to 5.15, 2 trials) but CIs were wide and a test for interaction between type of opioids and relative risk of being withdrawn or dropping out because of adverse events negative gave a P value for interaction of 0.41. We found no evidence for an association between treatment duration and risk of withdrawals or drop-outs due to adverse events (P value for interaction 0.78). Thirty-two comparisons in 22 trials contributed to the analysis of the association between equivalence dose and log relative risk (Figure 12). We found little evidence for a relationship (P value = 0.94).

Figure 11. Forest plot of 21 trials comparing participants withdrawn or dropped out because of adverse events between any opioid and control (placebo or no intervention). Values on x axis denote risks ratios. The plot is stratified according to type of opioid. Matsumoto 2005, Hartrick 2009, Afilalo 2010, Etropolski 2011, and NCT00486811 contributed with two comparisons and the number of participants in the placebo group was halved to avoid duplicate counting of participants when including both comparisons in the overall meta-analysis. The risk


ratio in one trial could not be estimated because no withdrawals or drop-outs because of adverse events occurred in
either group.

21 31 36	10tal		lotal	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
	100					
	100					
36		2	99	2.3%	15.35 [3.77, 62.39]	
	152	18	163	5.9%	2.14 [1.27, 3.61]	_
44	282	30	285	6.4%	1.48 [0.96, 2.29]	
8	164	1	162	1.2%	7.90 [1.00, 62.47]	
	698		709	15.8%	3.10 [1.38, 6.94]	
119		51				
		(P = 0.00)	B); I ² = 1	74%		
40	83	10	75	5.3%	3.61 [1.95, 6.71]	
15	51	4	52	3.4%	3.82 [1.36, 10.74]	
0	8	0	8		Not estimable	
	142		135	8.7%	3.67 [2.16, 6.24]	•
55		14				
		° = 0.93);	I² = 0%)		
54	202	20	197	6.2%	2.63 [1.64, 4.23]	
	202		197	6.2%	2.63 [1.64, 4.23]	•
54		20				
(P < 0.000	1)					
36	139	7	149	4.5%	5.51 [2.54, 11.98]	
	139		149	4.5%	5.51 [2.54, 11.98]	
	1)	7				
<i>c</i>	222	_	70		2 10 14 15 0 201	
18		13				
	282		240	9.0%	2.12 [0.87, 5.15]	
i² = 2.58, d	f=1(F		l² = 61	%		
146	342	11	169	5.5%	6.56 [3.66, 11.77]	
79	309	0	51	0.7%		————
35	143	2	74	2.3%	9.06 [2.24, 36.61]	
43	201	22	207	6.2%	2.01 [1.25, 3.24]	— -
52	172	3	85	3.0%	8.57 [2.75, 26.63]	
20	56	2	51	2.3%	9.11 [2.24, 37.05]	
31	125	3	62	3.0%	5.13 [1.63, 16.11]	
135	333	14	169	5.9%		_
20	55	2	49	2.3%		
	1736	-	917	31.1%	5.55 [3.47, 8.87]	•
561		59				
		(P = 0.02)); I ² = 5	6%		
122	279	9	91	5.3%	4.42 [2.34, 8.34]	│ — -
103	242	3	62	3.1%	8.80 [2.89, 26.79]	
	521		153	8.3%	5.32 [2.93, 9.68]	-
225		12				
	$ \vec{r} = 11.70$, (P = 0.006) 40 15 0 55 $ \vec{r} = 0.01$, d (P < 0.000) 54 54 54 54 (P < 0.000) 36 36 (P < 0.000) 53 18 (P < 0.000) 53 18 (P = 2.58, d) (P = 0.10) 146 79 35 43 52 20 31 135 20 561 $ \vec{r} = 18.39$, (P < 0.000) 122 103 225	P = 11.70, df = 3 (P = 0.006) 40 83 15 51 0 8 142 55 P = 0.01, df = 1 (F (P < 0.00001) 54 202 202 54 (P < 0.0001) 53 222 18 171 393 36 (P < 0.0001) 53 222 18 171 393 (P < 0.0001) 53 222 18 171 393 (P < 0.0001) 146 342 79 309 35 143 43 201 52 172 20 56 31 125 135 333 20 55 176 561 P = 18.39, df = 8 (P < 0.00001) 122 279 103 242 521 225	P = 11.70, df = 3 (P = 0.003) $P = 0.006)$ $40 = 83 = 10$ $15 = 51 = 4$ $0 = 8 = 0$ 142 $55 = 14$ $P = 0.01, df = 1 (P = 0.93);$ $P < 0.00001)$ $54 = 202 = 202$ $54 = 20$ $(P < 0.0001)$ $36 = 139 = 7$ $(P < 0.0001)$ $53 = 222 = 5$ $18 = 171 = 13$ 393 $71 = 18$ $P = 2.58, df = 1 (P = 0.11);$ $(P = 0.10)$ $146 = 342 = 11$ $79 = 309 = 0$ $35 = 143 = 2$ $43 = 201 = 22$ $52 = 172 = 3$ $20 = 56 = 2$ $31 = 125 = 3$ $135 = 333 = 14$ $20 = 56 = 2$ $31 = 125 = 3$ $135 = 333 = 14$ $20 = 56 = 2$ $31 = 125 = 3$ $135 = 333 = 14$ $20 = 56 = 2$ $31 = 18.39, df = 8 (P = 0.02);$ $(P < 0.00001)$ $122 = 279 = 9$ $103 = 242 = 3$ $521 = 225 = 12$	P = 11.70, df = 3 (P = 0.008); P = 100000; P = 0.0000; P = 0.00000; P = 0.0000; P = 0.000;	P = 11.70, df = 3 (P = 0.008); P = 74% $(P = 0.006)$ $40 83 10 75 5.3%$ $15 51 4 52 3.4%$ $0 8 0 8$ $142 135 8.7%$ $55 14$ $P = 0.01, df = 1 (P = 0.93); P = 0%$ $(P < 0.0001)$ $54 202 20 197 6.2%$ $202 197 6.2%$ $54 20$ $(P < 0.0001)$ $36 139 7 149 4.5%$ $139 149 4.5%$ $36 7$ $(P < 0.0001)$ $53 222 5 73 4.0%$ $18 171 13 173 5.0%$ $393 246 9.0%$ $71 18$ $P = 2.58, df = 1 (P = 0.11); P = 61%$ $(P = 0.10)$ $146 342 11 169 5.5%$ $79 309 0 51 0.7%$ $35 143 2 74 2.3%$ $43 201 22 207 6.2%$ $52 172 3 85 3.0%$ $20 56 2 51 2.3%$ $31 125 3 62 3.0%$ $125 333 14 169 5.9%$ $20 55 2 49 2.3%$ $135 333 14 169 5.9%$ $20 55 2 49 2.3%$ $135 333 14 169 5.9%$ $20 55 2 49 2.3%$ $135 333 14 169 5.9%$ $P = 18.39, df = 8 (P = 0.02); P = 56%$ $(P < 0.00001)$ $122 279 9 91 5.3%$ $103 242 3 62 3.1%$ $122 279 9 91 5.3%$ $103 242 3 62 3.1%$ $122 279 9 91 5.3%$ $103 242 3 62 3.1%$	$P = 11.70, df = 3 (P = 0.008); P = 74\%$ $(P = 0.006)$ $\frac{40}{(P = 0.006)}$ $\frac{80}{(P = 0.0001)}$ $\frac{51}{(P = 0.0001)}$ $\frac{54}{(P = 0.0001)}$ $\frac{53}{(P = 0.101)}$ $\frac{146}{(P = 0.11)}$ $\frac{146}{(P = 0.01)}$ $\frac{146}{(P = 0.$

Figure 11. (Continued)

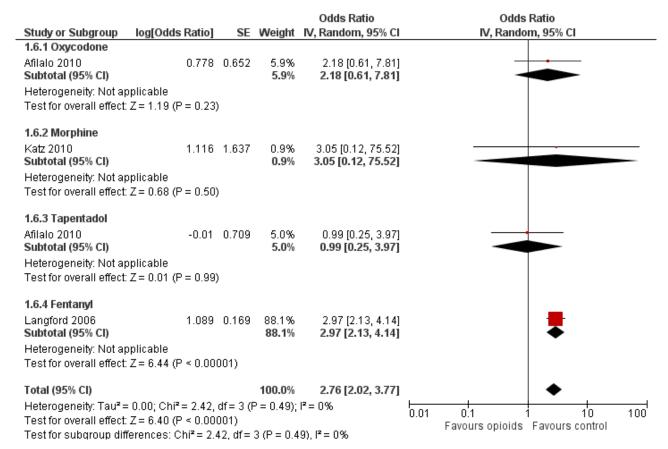
10101 676113	22J	14						
Heterogeneity: Tau ² = 0.02;			10%					
Test for overall effect: Z = 5.		- 0.23),1 -	10.0					
Testilor overall ellect. Z = 5.	40 (F < 0.00001)							
1.4.8 Tapentadol								
Afilalo 2010	66 344	11 1	69 5.4%	2.95 [1.60, 5.43]				
Etropolski 2011	27 305	2	74 2.2%	3.28 [0.80, 13.47]		-	<u> </u>	
Hartrick 2009	52 325	3	85 3.0%	4.53 [1.45, 14.16]				
NCT00486811	60 320	14 1	69 5.7%	2.26 [1.30, 3.93]				
Subtotal (95% CI)	1294	4	97 16.3%	2.76 [1.90, 4.00]			•	
Total events	205	30						
Heterogeneity: Tau ² = 0.00;	Chi ² = 1.33, df = 3 (P	= 0.72); l ² =	0%					
Test for overall effect: Z = 5.	35 (P < 0.00001)							
Total (95% CI)	5125	30	03 100.0%	3.76 [2.93, 4.82]			•	
Total events	1326	211						
Heterogeneity: Tau ² = 0.20;	Chi ² = 58.60, df = 24	(P = 0.0001); I² = 59%			01	1 10	50
Test for overall effect: Z = 10	0.43 (P < 0.00001)				0.02		Favours control	50
Test for subgroup differenc	es: Chi² = 11.20, df =	7 (P = 0.13)	, I² = 37.5%			r avours opioids	ravours control	

Figure 12. Risk ratios of participants withdrawn or dropped out because of adverse events between opioids and control groups (y axis) are plotted against total daily dose of morphine equivalents (x axis). The size of the circles is proportional to the random-effects weights that were used in the meta-regression. The dotted line indicates predicted treatment effects (regression line) from univariable meta-regression by using daily morphine equivalence doses the explanatory variable, and dashed lines represent the 95% confidence intervals.

Three trials with 681 participants contributed to the analysis of participants experiencing any serious adverse event (Figure 13). One trial reported one death in the oxycodone group, but no other serious adverse events and was not included in the analysis (Afilalo 2010). Of the three trials included, one trial reported that no participant experienced a serious adverse event (Kjaersgaard-Andersen 1990). Overall data from the remaining two trials indicated that participants receiving opioids tended be

more likely to experience a serious adverse event (RR 3.35, 95% CI 0.83 to 13.56). Due to the low number of trials and events, we neither performed an analysis of the association between treatment duration or equivalence dose and log relative risk for this outcome, nor a calculation of NNTH to cause one additional participant to experience a serious adverse event compared with placebo.

Figure 13. Forest plot of three trials comparing participants experiencing any serious adverse event between any opioid and control (placebo or no intervention). Values on x axis denote risks ratios. The plot is stratified according to type of opioid. The risk ratio in one trial could not be estimated because no serious adverse event occurred in either group.


	Opioi	ls	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.5.1 Codeine							
Kjaersgaard-Andersen 1990 Subtotal (95% CI)	0	83 83	0	75 75		Not estimable Not estimable	
Total events	0		0				
Heterogeneity: Not applicable							
Test for overall effect: Not application	able						
1.5.2 Fentanyl							
Langford 2006 Subtotal (95% CI)	6	216 216	2	200 200	77.4% 77. 4%	2.78 [0.57, 13.60] 2.78 [0.57, 13.60]	
Total events	6		2				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.26 (F	P = 0.21)						
1.5.3 Oxycodone							
Markenson 2005	3	56	0	51	22.6%	6.39 [0.34, 120.71]	
Subtotal (95% Cl)		56		51	22.6%	6.39 [0.34, 120.71]	
Total events	3		0				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.24 (F	P = 0.22)						
Total (95% CI)		355		326	100.0%	3.35 [0.83, 13.56]	
Total events	9		2				
Heterogeneity: Tau ² = 0.00; Chi ²	= 0.24, 0	∦f = 1 (ł	P = 0.63);	l ² = 0%	6		
Test for overall effect: Z = 1.70 (F	? = 0.09)						0.005 0.1 1 10 200 Favours opioids Favours control
Test for subgroup differences: C	; hi² = 0.2	4. df =	1 (P = 0.6)	33), I ² =	0%		

Three trials reported symptoms of opioid dependency (Langford 2006; Afilalo 2010; Katz 2010). Two studies reported 25 of 397 participants with withdrawal symptoms in oral opioids and five of 255 in control groups (Afilalo 2010; Katz 2010). One study assessed opiate withdrawal symptoms after eight weeks of transdermal fentanyl therapy, using the Short Opiate Withdrawal

Scale questionnaire (Gossop 1990; Langford 2006). On average, participants in the opioids groups had a 2.8-fold increased risk of withdrawal symptoms compared with control groups with a pooled OR of 2.76 (95% CI 2.02 to 3.77) (Figure 14). The NNTH to cause one additional participant to experience withdrawal symptoms, as compared with control, was 65 (95% CI 42 to 110).

Figure 14. Forest plot of 4 comparisons in three trials comparing participants experiencing withdrawal symptoms between any opioid and control (placebo or no intervention). Values on x axis denote odds ratios. The plot is stratified according to type of opioid. Afilalo 2010 contributed with two comparisons and the number of participants in the placebo group was halved to avoid duplicate counting of participants when including both comparisons in the overall meta-analysis.

DISCUSSION

Summary of main results

In this update of our systematic review and meta-analysis, we found only small benefits of oral or transdermal opioids being more effective compared with placebo in terms of pain relief and improvement of function in people with osteoarthritis. If participants received opioids for more than four weeks, benefits on pain relief were even further reduced. The occurrence of adverse events often caused participants to stop taking the opioids, which is likely to limit the usefulness of opioids in the long term. The potentially higher risk of serious adverse events and substance addiction might further limit their use. The reporting of safety outcomes was incomplete and adverse events were reported in only about half of the trials, and serious adverse events in three trials only. Trials that did report safety outcomes consistently observed a significant increase in the risk of adverse events with opioid use.

Quality of the evidence

Most of the trials were funded by the pharmaceutical industry and we did not have enough data to explore whether the type of funding was associated with the estimated treatment effects. We found larger benefits on pain relief in studies with opioid use for less than four weeks compared with longer treatments, but not dependence of benefits on function or safety outcomes according to treatment duration. Thus, the effectiveness of opioids may drop during chronic use as the analgesic effects of opioids are mediated through opioids receptors, but safety concerns were not affected by this. The relatively low dose of morphine equivalents (median daily dose 67 mg) administered in the included trials might provide an explanation of the small benefits observed as compared with other studies (Maier 2002). Our ability to provide a reliable assessment of dose dependency might have been hampered by the generally low morphine equivalent doses used and the lack of individual participant data. The generally used distinction between weak and strong opioids can be misleading, because the analgesic potency depends also on the dosage. Thus, we calculated morphine equivalence doses to be able to compare different opioids, but found no evidence for dose-dependent effects. We found little evidence that stronger opioid agents or higher doses of these agents will result in larger treatment effects. However, it is possible that type of opioids interacts with dosage. For instance, higher doses could have larger treatment effects for stronger but not for weaker opioids. The characteristics of the trials included in our review did not allow us to explore such interaction properly.

Data on risks of addiction due to opioid therapy is scarce, and currently available trials are not designed to evaluate these

issues. There is a clear need for additional randomised trials and observational studies using longer follow-up times to address the risks of substance dependence associated with different opioids. In this systematic review, only three out of 22 trials reported measures of withdrawal symptoms (Langford 2006; Afilalo 2010; Katz 2010). Similar to previous systematic reviews of randomised trials on opioids therapy for non-cancer pain (Kalso 2004; Furlan 2006), we found that most of the trials included in our review had a treatment duration of several days or a few weeks only. Although some of the newer trials in the update had slightly longer treatment durations (Afilalo 2010; Breivik 2010; NCT00486811; NCT00980798), in none of the trials did participants receive opioids for longer than six months. This is still too short to address the impact of opioid treatment on routine clinical practice in the treatment of a chronic condition such as osteoarthritis. While no evidence of long-term effects is available from randomised trials, observational studies indicate that long-term treatment with opioids of chronic conditions such as osteoarthritis may have deleterious effects and do not seem to improve pain relief (Eriksen 2006).

Potential biases in the review process

We based our review on a broad literature search. Even though we cannot exclude potential publication bias, it seems rather unlikely that we missed relevant trials (Egger 2003). Two review authors independently performed selection of trials and data extraction to minimise bias and transcription errors (Egger 2001; Gøtzsche 2007). The most recent systematic review on opioids for osteoarthritis (Avouac 2007), updated in October 2006, considered 18 studies that compared opioids with placebo. We included data from six of these in our meta-analysis and data from four additional trials (Kjaersgaard-Andersen 1990; Quiding 1992; Matsumoto 2005; Kivitz 2006). We excluded six trials with tramadol as the experimental intervention and one trial that was likely to have included only a minority of people with osteoarthritis. In our update, we identified 12 additional trials, of which three are unpublished. In conclusion, we are likely to have included all relevant trials in our systematic review.

Agreements and disagreements with other studies or reviews

We excluded tramadol from our review to avoid overlap with another Cochrane review that focused on this specific opioid in osteoarthritis (Cepeda 2006). Extracted pain and function outcomes and follow-up time in the previous systematic review about opioids for osteoarthritis (Avouac 2007) were similar to our systematic review. Comparing opioids with placebo controls, Avouac 2007 found a large pooled effect for pain intensity (SMD -0.79, 95% CI -0.98 to -0.59) and a moderate pooled effect for function (SMD -0.31, 95% CI -0.39 to -0.24). These effects are consistent with our results for function but are substantially larger for pain reduction. This discrepancy might be due to the exclusion of some trials in our systematic review and to inclusion of newer trials in our update in 2012. Avouac 2007 reported moderate-to-large effects of tramadol for pain, between -0.36 to -0.93 SD units, in several large trials and unrealistically large beneficial effects on pain intensity in an oxycodone trial that was excluded from our review due to the likely very low percentage of participants with knee or hip osteoarthritis (Roth 2000). These trials often did not report function outcomes and could not, therefore, contribute to the pooled analysis, or they reported considerably smaller effects for function than for pain (Avouac 2007). In line with other studies, we found that adverse events occurring in participants treated with opioids often caused withdrawals and drop-outs (Kalso 2004; Furlan 2006; Avouac 2007; Gehling 2011). Tramadol may be similar to, or even more effective than, the opioids evaluated in our review in reducing pain and improving function, but safety concerns have to be addressed further (Cepeda 2006).

AUTHORS' CONCLUSIONS

Implications for practice

Opioids decrease pain intensity and improve function but the benefits observed are small. Dose increases do not appear to result in further pain reduction, while prolongation of treatment duration resulted in even smaller pain reduction. Observed effects for pain were of questionable clinical relevance since the 95% confidence intervals did not include the minimal clinically important difference of 0.37 standardised mean differences (SMDs), which corresponds to 0.9 cm on a 10-cm visual analogue scale (VAS) (Wandel 2010; Rutjes 2012). The occurrence of adverse events caused one in 20 participants to stop taking the preparations, which is likely to limit their usefulness in the long-term treatment of osteoarthritis of the hip or knee. The higher risk of serious adverse events and the occurrence of addiction to opioid therapy might further limit their clinical use, although evidence is limited by the short duration of follow-up of the studies assessing these outcomes. Nevertheless, use of opioids might be warranted in special situations, such as for short-term treatment of later stage osteoarthritis awaiting surgery. However, clinicians should inform participants about the substantial risks and only small benefits of opioid treatment and therapeutic alternatives.

Implications for research

The effectiveness and safety of opioid and non-opioid analgesics in participants with inadequate pain relief should be directly compared in appropriately powered randomised controlled trials accompanied by separate Cochrane reviews or reviews of reviews including network meta-analyses, which integrate direct and indirect evidence in one single analysis while maintaining randomisation (Caldwell 2005). The evidence of the effectiveness and safety of opioid therapy is mainly from a few short-term trials, despite the fact that the underlying condition is chronic and requires safe, long-term treatments (Kalso 2004; Furlan 2006). Further long-term observational studies would increase our understanding of their long-term effectiveness, safety, and the potential for addiction. In addition, future trials might be performed in participants with clear failures of previous analgesic therapies with non-steroidal anti-inflammatory drugs or opioids and might target special subgroups, such as separately study and report participants with knee or hip osteoarthritis to acknowledge the different mechanisms resulting in pain in these two phenotypes, or participants with and without pain sensitisation.

ACKNOWLEDGEMENTS

We thank the Cochrane Musculoskeletal editorial team for valuable comments and Malcolm Sturdy for database support. The authors are grateful to Hans Quiding for providing us with additional information concerning design and outcome data.

REFERENCES

References to studies included in this review

Afilalo 2010 {published data only}

* Afilalo M, Etropolski MS, Kuperwasser B, Kelly K, Okamoto A, Van Hove I, et al. Efficacy and safety of tapentadol extended release compared with oxycodone controlled release for the management of moderate to severe chronic pain related to osteoarthritis of the knee: a randomized, double-blind, placeboand active-controlled phase III study. *Clinical Drug Investigation* 2010;**30**(8):489-505.

Grünenthal GmbH. A study to evaluate the efficacy and safety of cg5503 prolonged release (PR) in subjects with moderate to severe chronic pain due to osteoarthritis of the knee. clinicaltrials.gov/show/NCT00486811 (accessed 16 August 2014).

Kelly K, Etropolski M, Kuperwasser B, Okamoto A, Steup A, vanHove I, et al. Similar analgesic effect and improved tolerability of tapentadol extended release versus oxycodone controlled release for the management of chronic osteoarthritis knee pain: results from a randomized, double-blind, phase3 trial. Proceedings of the Annual EULAR Conference; 2009 Jun 10-13; Copenhagen, Denmark.

Kelly K, Lange B, Etropolski M, Kuperwasser B, Okamoto A, vanHove I, et al. Dose stability of tapentadol extended release (ER) for the relief of moderate-to-severe chronic osteoarthritic knee pain. Proceedings of the 26th Annual Meeting of the American Academy of Pain Medicine; 2010 Feb 3-6; San Antonio, TX.

Lange B, Kuperwasser B, Okamoto A, Häufel T, Ashworth J. Efficacy and safety of tapentadol prolonged release (PR) based on prior experience in patients with chronic osteoarthritis knee pain. *Annals of Rheumatic Diseases* 2010;**69**:287.

Lange R, Lange B, Greene A, Okamoto A, Etropolski M, Ashworth J. Short Form-36 (SF-36) and EUROQOL-5 Dimension (EQ-5D) results from randomized, double-blind phase 3 studies of tapentadol prolonged release (PR) in patients with moderate to severe chronic nociceptive and neuropathic pain. *Osteoarthritis and Cartilage* 2010;**18**:S147-8.

Breivik 2010 {published data only}

Breivik H, Ljosaa TM, Stengaard-Pedersen K, Persson J, Aro H, Villumsen J, et al. A 6-months, randomised, placebocontrolled evaluation of efficacy and tolerability of a lowdose 7-day buprenorphine transdermal patch in osteoarthritis patients naive to potent opioids. *Scandinavian Journal of Pain* 2010;**1**:122-41.

Caldwell 2002 {published data only}

Caldwell JR, Rapoport RJ, Davis JC, Offenberg HL, Marker HW, Roth SH, et al. Efficacy and safety of a once-daily morphine formulation in chronic, moderate-to-severe osteoarthritis pain: results from a randomized, placebo-controlled, double-blind trial and an open-label extension trial. *Journal of Pain and Symptom Management* 2002;**23**(4):278-91.

Chindalore 2005 {published data only}

Chindalore VL, Craven RA, Yu KP, Butera PG, Burns LH, Friedmann N. Adding ultra low-dose naltrexone to oxycodone enhances and prolongs analgesia: a randomized, controlled trial of oxytrex. *Journal of Pain* 2005;**6**(6):392-9.

Etropolski 2011 {published data only}

* Etropolski M, Kelly K, Okamoto A, Rauschkolb C. Comparable efficacy and superior gastrointestinal tolerability (nausea, vomiting, constipation) of tapentadol compared with oxycodone hydrochloride. *Advances in Therapy* 2011;**28**(5):401-17.

Johnson, Johnson. A study to compare the frequency of constipation symptoms with tapentadol immediate release (IR) treatment versus oxycodone IR treatment in patients with end-stage joint disease. clinicaltrials.gov/show/NCT00784277 (accessed 16 August 2014).

Fidelholtz 2011 {published data only}

* Fidelholtz J, Tark M, Spierings E, Wolfram G, Annis K, Smith MD, et al. A phase 3 placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis. Proceedings of the ACR/ARHP Scientific Meeting; 2011 Nov 9-11; Chicago.

Pfizer. Tanezumab in osteoarthritis of the hip or knee. clinicaltrials.gov/show/NCT00985621 (accessed 16 August 2014).

Friedmann 2011 {published data only}

Friedmann N, Klutzaritz V, Webster L. Efficacy and safety of an extended-release oxycodone (Remoxy[®]) formulation in patients with moderate to severe osteoarthritic pain. *Journal of Opioid Management* 2011;**7**(3):193-202.

Hartrick 2009 {published data only}

* Hartrick C, Van Hove I, Stegmann JU, Oh C, Upmalis D. Efficacy and tolerability of tapentadol immediate release and oxycodone HCl immediate release in patients awaiting primary joint replacement surgery for end-stage joint disease: a 10day, phase III, randomized, double-blind, active- and placebocontrolled study. *Clinical Therapeutics* 2009;**31**(2):260-71.

Johnson, Johnson. A study to evaluate the effectiveness and safety of multiple doses of tapentadol (CG5503) in patients awaiting joint replacement surgery. clinicaltrials.gov/show/ NCT00361582 (accessed 16 August 2014).

Katz 2010 {published data only}

Alpharma. A study of embeda (Kadian NT, ALO-01) in subjects with pain due to osteoarthritis of the hip or knee. clinicaltrials.gov/show/NCT00420992 (accessed 16 August 2014).

Jones JB, Wagner G, Morris D, Stauffer J. Efficacy of morphine sulfate extended-release with sequestered naltrexone hydrochloride (ALO-01) in patients with chronic, moderate to severe pain of osteoarthritis of the hip or knee. Proceedings of the American College of Rheumatology Annual Scientific Meeting; 2008 Oct 24-29; San Francisco.

* Katz N, Hale M, Morris D, Stauffer J. Morphine sulfate and naltrexone hydrochloride extended release capsules in patients with chronic osteoarthritis pain. *Postgraduate Medicine* 2010;**122**(4):112-28.

Katz N, Setnik B, Webster L. Safety profile of EMBEDA[™] (morphine sulfate and naltrexone hydrochloride) Extended Release Capsules in older patients. Proceedings of the 29th Annual Scientific Meeting of the American Pain Society; 2010 May 6-8; Baltimore, MD.

Kivitz 2006 {published data only}

Kivitz A, Ma C, Ahdieh H, Galer BS. A 2-week, multicenter, randomized, double-blind, placebo-controlled, dose-ranging, phase III trial comparing the efficacy of oxymorphone extended release and placebo in adults with pain associated with osteoarthritis of the hip or knee. *Clinical Therapeutics* 2006;**28**(3):352-64.

Kjaersgaard-Andersen 1990 {published data only}

Kjaersgaard-Andersen P, Nafei A, Skov O, Madsen F, Andersen HM, Kroner K, et al. Codeine plus paracetamol versus paracetamol in longer-term treatment of chronic pain due to osteoarthritis of the hip. A randomised, double-blind, multicentre study. *Pain* 1990;**43**(3):309-18.

Langford 2006 {published data only}

Langford R, McKenna F, Ratcliffe S, Vojtassak J, Richarz U. Transdermal fentanyl for improvement of pain and functioning in osteoarthritis: a randomized, placebo-controlled trial. *Arthritis and Rheumatism* 2006;**54**(6):1829-37.

Markenson 2005 {published data only}

Markenson JA, Croft J, Zhang PG, Richards P. Treatment of persistent pain associated with osteoarthritis with controlled-release oxycodone tablets in a randomized controlled clinical trial. *Clinical Journal of Pain* 2005;**21**(6):524-35.

Matsumoto 2005 {published data only}

Matsumoto AK, Babul N, Ahdieh H. Oxymorphone extendedrelease tablets relieve moderate to severe pain and improve physical function in osteoarthritis: results of a randomized, double-blind, placebo- and active-controlled phase III trial. *Pain Medicine* 2005;**6**(5):357-66.

Munera 2010 {published data only}

* Munera C, Drehobl M, Sessler NE, Landau C. A randomized, placebo-controlled, double-blinded, parallel-group, 5-week study of buprenorphine transdermal system in adults with osteoarthritis. *Journal of Opioid Management* 2010;**6**(3):193-202.

Purdue. Safety and efficacy of the buprenorphine transdermal delivery system in subjects with osteoarthritis pain. clinicaltrials.gov/show/NCT00314652 (accessed 16 August 2014).

NCT00486811 {published data only}

Grünenthal. A study to evaluate the efficacy and safety of CG5503 prolonged release (PR) in subjects with moderate to severe chronic pain due to osteoarthritis of the knee. clinicaltrials.gov/show/NCT00486811 (accessed 16 August 2014).

NCT00531427 {published data only}

Purdue. A study to evaluate the efficacy and safety of CG5503 prolonged release (PR) in subjects with moderate to severe chronic pain due to osteoarthritis of the knee. clinicaltrials.gov/ show/NCT00531427 (accessed 16 August 2014).

NCT00980798 {published data only}

Janssen-Cilag. Placebo-controlled trial with OROS hydromorphone hydrochloride to treat patients with moderate to severe pain induced by osteoarthritis of the hip or the knee. clinicaltrials.gov/show/NCT00980798 (accessed 16 August 2014).

Peloso 2000 {published data only}

Peloso PM, Bellamy N, Bensen W, Thomson GTD, Harsanyi Z, Babul N, et al. Double blind randomized placebo control trial of controlled release codeine in the treatment of osteoarthritis of the hip or knee. *Journal of Rheumatology* 2000;**27**(3):764-71.

Quiding 1992 {published data only}

* Quiding H, Grimstad J, Rusten K, Stubhaug A, Bremnes J, Breivik H. Ibuprofen plus codeine, ibuprofen, and placebo in a single- and multidose cross-over comparison for coxarthrosis pain. *Pain* 1992;**50**(3):303-7.

Öhrvik, J. Nonparametric methods in crossover trials. *Biometrical Journal* 1998;**7**:771-89.

Shannon 2005 {published data only}

Landau CJ, Shannon M, Kivitz AJ, Sessler NE, Xia Y, Ripa SR. Buprenorphine transdermal system in chronic pain due to osteoarthritis. *Arthritis and Rheumatism* 2008;**58**(Suppl 9):866.

Purdue. Safety and efficacy of buprenorphine transdermal system in subjects with moderate to severe osteoarthritis of hip or knee. clinicaltrials.gov/show/NCT00313846 (accessed 16 August 2014).

* Shannon MJ, Kivitz AJ, Landau CJ, Sessler NE, Xia Y, Ripa SR. Buprenorphine transdermal system in chronic pain due to osteoarthritis. *Archives of Physical Medicine and Rehabilitation* 2005;**86**:E32.

Zautra 2005 {published data only}

Zautra AJ, Smith BW. Impact of controlled-release oxycodone on efficacy beliefs and coping efforts among osteoarthritis patients with moderate to severe pain. *Clinical Journal of Pain* 2005;**21**(6):471-7.

References to studies excluded from this review

Adams 2006 {published data only}

Adams EH, Breiner S, Cicero TJ, Geller A, Inciardi JA, Schnoll SH, et al. A comparison of the abuse liability of tramadol, NSAIDs, and hydrocodone in patients with chronic pain. *Journal of Pain and Symptom Management* 2006;**31**(5):465-76.

Andrei 1984 {published data only}

Andrei A, Schiaroli G, Algeri R, Valentini P. Recent data on antiinflammatory and analgesic treatment of degenerative

arthropathies. Double-blind controlled clinical trial. [Italian]. Archivio di Medicina Interna 1984;**36**(4):245-56.

Boureau 1990 {published data only}

Boureau F, Delecoeuillerie G, Orvain J. Comparative study of the efficacy and tolerance of 2 dosages of the paracetamol 400 mg codeine 25 mg association versus paracetamol 1000 mg in non-inflammatory rheumatic pain. *Rhumatologie Revue International de Rhumatologie* 1990;**20**(1):41-7.

Boyer 2012 {published data only}

Boyer KA, Angst MS, Asay J, Giori NJ, Andriacchi TP. Sensitivity of gait parameters to the effects of anti-inflammatory and opioid treatments in knee osteoarthritis patients. *Journal of Orthopaedic Research* 2012;**30**(7):1118-24.

Brooks 1982 {published data only}

Brooks PM, Dougan MA, Mugford S, Meffin E. Comparative effectiveness of 5 analgesics in patients with rheumatoid arthritis and osteoarthritis. *Journal of Rheumatology* 1982;**9**(5):723-6.

Burch 2004 {published data only}

Burch F, Codding C, Patel N, Sheldon E. Lidocaine patch 5% improves pain, stiffness, and physical function in osteoarthritis pain patients. A prospective, multicenter, open-label effectiveness trial. *Osteoarthritis and Cartilage* 2004;**12**(3):253-5.

Caldwell 1999 {published data only}

Caldwell JR, Hale ME, Boyd RE, Hague JM, Iwan T, Shi M, et al. Treatment of osteoarthritis pain with controlled release oxycodone or fixed combination oxycodone plus acetaminophen added to nonsteroidal antiinflammatory drugs: a double blind, randomized, multicenter, placebo controlled trial. *Journal of Rheumatology* 1999;**26**(4):862-9.

Choquette 2008 {published data only}

Choquette D, McCarthy TG, Rodrigues JFN, Kelly AJ, Camacho F, Horbay GLA, et al. Transdermal fentanyl improves pain control and functionality in patients with osteoarthritis: an open-label Canadian trial. *Clinical Rheumatology* 2008;**27**(5):587-95.

Conaghan 2011 {published data only}

Conaghan PG, O'Brien CM, Wilson M, Schofield, JP. Transdermal buprenorphine plus oral paracetamol vs an oral codeineparacetamol combination for osteoarthritis of hip and/or knee: a randomised trial. *Osteoarthritis & Cartilage* 2011;**19**(8):930-8.

Corsinovi 2009 {published data only}

Corsinovi L, Martinelli E, Fonte G, Astengo M, Sona, A, Gatti A, et al. Efficacy of oxycodone/acetaminophen and codeine/ acetaminophen vs. conventional therapy in elderly women with persistent, moderate to severe osteoarthritis-related pain. *Archives of Gerontology & Geriatrics* 2009;**49**(3):378-82.

Doak 1992 {published data only}

Doak W, Hosie J, Hossain M, James IGV, Reid I, Miller AJ. A novel combination of ibuprofen and codeine phosphate in the treatment of osteoarthritis: a double-blind placebo controlled study. *Journal of Drug Development* 1992;**4**(4):179-87.

Fancourt 1984 {published data only}

Fancourt GJ, Flavell Matts SG. A double-blind comparison of meptazinol versus placebo in chronic rheumatoid arthritis and osteoarthritis. *Current Medical Research and Opinion* 1984;**9**(3):184-91.

Friedmann 2011b {published data only}

Friedmann N, Klutzaritz V, Webster L. Long-term safety of Remoxy[®] (extended-release oxycodone) in patients with moderate to severe chronic osteoarthritis or low back pain. *Pain Medicine* 2011;**12**(5):755-60.

Gazi 2005 {published data only}

Gazi MCB, Machado Issy A, Kimiko Sakata R. Intra-articular bupivacaine and morphine for knee osteoarthritis analgesia. Comparative study. *Revista Brasileira de Anestesiologia* 2005;**55**(5):491-9.

Hale 2007 {published data only}

Hale M, Tudor IC, Khanna S, Thipphawong J. Efficacy and tolerability of once-daily OROS hydromorphone and twice-daily extended-release oxycodone in patients with chronic, moderate to severe osteoarthritis pain: results of a 6-week, randomized, open-label, noninferiority analysis. *Clinical Therapeutics* 2007;**29**(5):874-88.

James 2010 {published data only}

James IGV, O'Brien CM, McDonald CJ. A randomized, doubleblind, double-dummy comparison of the efficacy and tolerability of low-dose transdermal buprenorphine (BuTrans seven-day patches) with buprenorphine sublingual tablets (Temgesic) in patients with osteoarthritis pain. *Journal of Pain & Symptom Management* 2010;**40**(2):266-78.

Katz 2010b {published data only}

Katz N, Sun S, Johnson F, Stauffer J. ALO-01 (morphine sulfate and naltrexone hydrochloride) extended-release capsules in the treatment of chronic pain of osteoarthritis of the hip or knee: pharmacokinetics, efficacy, and safety. *Journal of Pain* 2010;**11**(4):303-11.

Le Loet 2005 {published data only}

Le Loet X, Pavelka K, Richarz U. Transdermal fentanyl for the treatment of pain caused by osteoarthritis of the knee or hip: an open, multicentre study. *BMC Musculoskeletal Disorders* 2005;**6**(31):1-10.

McIlwain 2005 {published data only}

McIlwain H, Ahdieh H. Safety, tolerability, and effectiveness of oxymorphone extended release for moderate to severe osteoarthritis pain: a one-year study. *American Journal of Therapeutics* 2005;**12**(2):106-12.

Mitchell 1984 {published data only}

Mitchell H, Cunningham TJ, Mathews JD, Muirden KD. Further look at dextropropoxyphene with or without paracetamol in the treatment of arthritis. *Medical Journal of Australia* 1984;**140**(4):224-5.

Neubauer 1983 {published data only}

Neubauer M, Bach GL. Short-term therapy of painful muscular disorders. Results of a multicenter double-blind test of 2 new suppository preparations with and without codeine. *Fortschritte der Medizin* 1983;**101**(21):1009-13.

Rosenthal 2007 {published data only}

Rosenthal M, Moore P, Groves E, Iwan T, Greenberg Schlosser L, Dziewanowska Z, et al. Sleep improves when patients with chronic OA pain are managed with morning dosing of once a day extend-release morphine sulfate (AVINZA): findings from a pilot study. *Journal of Opioid Management* 2007;**3**(3):145-53.

Roth 2000 {published data only}

Roth SH, Fleischmann RM, Burch FX, Dietz F, Bockow B, Rapoport RJ, et al. Around-the-clock, controlled-release oxycodone therapy for osteoarthritis-related pain: placebocontrolled trial and long-term evaluation. *Archives of Internal Medicine* 2000;**160**(6):853-60.

Salzman 1983 {published data only}

Salzman RT, Brobyn RD. Long-term comparison of suprofen and propoxyphene in patients with osteoarthritis. *Pharmacology* 1983;**27 Suppl 1**:55-64.

Tassain 2003 {published data only}

Tassain V, Attal N, Fletcher D, Brasseur L, Degieux P, Chauvin M, et al. Long term effects of oral sustained release morphine on neuropsychological performance in patients with chronic non-cancer pain. *Pain* 2003;**104**(1-2):389-400.

Torres 2001 {published data only}

Torres Huerta JC, Hernandez Santos JR, Tenopala Villegas S. Transdermal fentanyl in patients with nononcological chronic pain [Spanish]. *Revista Mexicana de Anestesiologia* 2001;**24**(2):65-8.

Vignon 1999 {published data only}

Vignon E, Bannwarth B, Conrozier T, Derobert E, Verdoncq B. Multicenter, double-blind, clinical trial comparing two tablets bid to one tablet qid of the same acetaminophendextropropoxyphen-caffeine combination in patients with osteoarthritis [French]. *Semaine des Hopitaux* 1999;**75**(13-14):419-25.

Vlok 1987 {published data only}

Vlok GJ, van Vuren JP. Comparison of a standard ibuprofen treatment regimen with a new ibuprofen/paracetamol/codeine combination in chronic osteo-arthritis. *South African Medical Journal* [*Suid Afrikaanse Tydskrif vir Geneeskunde*] 1987;**Suppl**:1, 4-6.

Vorsanger 2011 {published data only}

Vorsanger G, Xiang J, Biondi D, Upmalis D, Delfgaauw J, Allard R, et al. Post hoc analyses of data from a 90-day clinical trial evaluating the tolerability and efficacy of tapentadol immediate release and oxycodone immediate release for the relief of moderate to severe pain in elderly and nonelderly patients. *Pain Research & Management* 2011;**16**(4):245-51.

Wallace 1994 {published data only}

Wallace WA, Elliott CA, Price VH. A combination of ibuprofen and codeine phosphate provides superior analgesia to ibuprofen alone in osteoarthritis. *British Journal of Clinical Research* 1994;**5**:33-46.

Wang 1965 {published data only}

Wang RI. Analgesic effectiveness of new propoxyphene preparations. *Journal of New Drugs* 1965;**5**(3):171-6.

Wild 2010 {published data only}

Wild JE, Grond S, Kuperwasser B, Gilbert J, McCann B, Lange B, et al. Long-term safety and tolerability of tapentadol extended release for the management of chronic low back pain or osteoarthritis pain. *Pain Practice* 2010;**10**(5):416-27.

References to studies awaiting assessment

Kroner 1991 {published data only}

Kroner K, Hansen TB, Harving S, Hvass I, Madsen F, Nafei A, et al. Individually dosed codeine plus paracetamol versus paracetamol in long-term treatment of chronic pain due to arthrosis of the hip - a randomised, double blind, multicenter study. *Acta Orthopaedica Scandinavica, Supplement* 1991;**62**(246):43.

Additional references

Altman 1986

Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. *Arthritis and Rheumatism* 1986;**29**:1039-49.

Altman 1996

Altman R, Brandt K, Hochberg M, Moskowitz R, Bellamy N, Bloch DA, et al. Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. *Osteoarthritis and Cartilage* 1996;**4**(4):217-43.

Avouac 2007

Avouac J, Gossec L, Dougados M. Efficacy and safety of opioids for osteoarthritis: a meta-analysis of randomized controlled trials. *Osteoarthritis and Cartilage* 2007;**15**(8):957-65.

Bellamy 1995

Bellamy N. Outcome measurement in osteoarthritis clinical trials. *Journal of Rheumatology Supplement* 1995;**43**:49-51.

British Pain Society 2010

British Pain Society. Opioids for persistent pain: good practice, 2010. www.britishpainsociety.org/book_opioid_main.pdf (accessed 16 August 2014).

Caldwell 2005

Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. *BMJ* 2005;**331**(7521):897-900.

Cepeda 2006

Cepeda MS, Camargo F, Zea C, Valencia L. Tramadol for osteoarthritis. *Cochrane Database of Systematic Reviews* 2006, Issue 3. [DOI: 10.1002/14651858.CD005522.pub2]

Chinn 2000

Chinn S. A simple method for converting an odds ratio to effect size for use in meta-analysis. *Statistics in Medicine* 2000;**19**(22):3127-31.

Clegg 2006

Clegg DO, Reda DJ, Harris CL, Klein MA, O'Dell JR, Hooper MM, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. *New England Journal of Medicine* 2006;**354**(8):795-808.

Cohen 1988

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

da Costa 2012a

da Costa BR, Rutjes AWS, Johnston BC, Reichenbach S, Nüesch E, Tonia T, et al. Methods to convert continuous outcomes into odds ratios of treatment response and numbers needed to treat: meta-epidemiological study. *International Journal of Epidemiology* 2012;**41**(5):1445-59.

da Costa 2012b

da Costa BR, Nüesch E, Reichenbach S, Jüni P, Rutjes AWS. Doxycycline for osteoarthritis of the knee or hip. *Cochrane Database of Systematic Reviews* 2012, Issue 11. [DOI: 10.1002/14651858.CD007323.pub3]

DerSimonian 1986

DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled Clinical Trials* 1986;**7**(3):177-88.

Dickersin 1994

Dickersin K, Scherer R, Lefebvre C. Identifying relevant studies for systematic reviews. *BMJ* 1994;**309**(6964):1286-91.

Eccles 1998

Eccles M, Freemantle N, Mason J. North of England Evidence Based Guidelines Development Project: summary guideline for non-steroidal anti-inflammatory drugs versus basic analgesics in treating of pain of degenerative arthritis. *BMJ* 1998;**317**:526-30.

Egger 2001

Egger M, Smith GD. Principles of and procedures for systematic reviews. In: Egger M, Smith GD, Altman DG editor(s). Systematic Reviews in Health Care: Meta-Analysis in Context. London: BMJ Books, 2001:23-42.

Egger 2003

Egger M, Juni P, Bartlett C, Holenstein F, Sterne J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. *Health Technology Assessment (Winchester, England)* 2003;**7**(1):1-76.

Eriksen 2006

Eriksen J, Sjøgren P, Bruera E, Ekholm O, Rasmussen NK. Critical issues on opioids in chronic non-cancer pain: an epidemiological study. *Pain* 2006;**125**(1-2):172-9.

Furlan 2006

Furlan AD, Sandoval JA, Mailis-Gagnon A, Tunks E. Opioids for chronic noncancer pain: a meta-analysis of effectiveness and side effects. *Canadian Medical Association Journal* 2006;**1**(11):1589-94.

Gehling 2011

Gehling M, Hermann B, Tryba M. Meta-analysis of dropout rates in randomized controlled clinical trials: opioid analgesia for osteoarthritis pain. *Schmerz* 2011;**25**(3):296-305.

Gossop 1990

Gossop M. The development of a Short Opiate Withdrawal Scale (SOWS). *Addictive Behaviors* 1990;**15**(5):487-90.

Guyatt 2008

Guyatt G, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008;**336**(7650):924-6.

Gøtzsche 2007

Gøtzsche PC, Hróbjartsson A, Maric K, Tendal B. Data extraction errors in meta-analyses that use standardized mean differences. *JAMA* 2007;**298**(4):430-7.

Higgins 2003

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003;**327**(7414):557-60.

Higgins 2011

Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Hochberg 2012

Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. *Arthritis Care and Research* 2012;**64**(4):465-74.

Jüni 2001

Jüni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. *BMJ* 2001;**323**(7303):42-6.

Jüni 2006

Jüni P, Reichenbach S, Dieppe P. Osteoarthritis: rational approach to treating the individual. *Best Practice & Research. Clinical Rheumatology* 2006;**20**(4):721-40.

Kalso 2004

Kalso E, Edwards JE, Moore RA, McQuay HJ. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. *Pain* 2004;**112**(3):372-80.

Loeser 2001

Loeser JD, Butler SH, Chapman CR, Turk DC. Bonica's Management of Pain. 3rd Edition. Philadelphia, PA: Lippincott Williams & Wilkins, 2001.

Maier 2002

Maier C, Hildebrandt J, Klinger R, Henrich-Eberl C, Lindena G, MONTAS Study Group. Morphine responsiveness, efficacy and tolerability in patients with chronic non-tumor associated pain - results of a double-blind placebo-controlled trial (MONTAS). *Pain* 2002;**97**(3):223-33.

NICE 2008

NICE clinical guideline 59. Osteoarthritis - the care and management of osteoarthritis in adults. www.nice.org.uk/ nicemedia/pdf/CG59NICEguideline.pdf (accessed 16 August 2014).

Nüesch 2009

Nüesch E, Trelle S, Reichenbach S, Rutjes AWS, Bürgi E, Scherer M, et al. The effects of the exclusion of patients from the analysis in randomised controlled trials: meta-epidemiological study. *BMJ* 2009;**339**:b3244.

Nüesch 2010

Nüesch E, Trelle S, Reichenbach S, Rutjes AW, Tschannen B, Altman DG, et al. Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. *BMJ* 2010;**341**:c3515.

Pham 2004

Pham T, van der Heijde D, Altman RD, Anderson JJ, Bellamy N, Hochberg M, et al. OMERACT-OARSI initiative: Osteoarthritis Research Society International set of responder criteria for osteoarthritis clinical trials revisited. *Osteoarthritis and Cartilage* 2004;**12**(5):389-99.

Reichenbach 2007

Reichenbach S, Sterchi R, Scherer M, Trelle S, Burgi E, Burgi U, et al. Meta-analysis: chondroitin for osteoarthritis of the knee or hip. *Annals of Internal Medicine* 2007;**146**(8):580-90.

Reichenbach 2010

Reichenbach S, Rutjes AW, Nüesch E, Trelle S, Jüni P. Joint lavage for osteoarthritis of the knee. *Cochrane Database of Systematic Reviews* 2010, Issue 5. [DOI: 10.1002/14651858.CD007320.pub2]

RevMan 2012 [Computer program]

The Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager (RevMan). Version 5.2. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2012.

Rutjes 2009a

Rutjes AW, Nüesch E, Sterchi R, Kalichman L, Hendriks E, Osiri M, et al. Transcutaneous electrostimulation for osteoarthritis of the

knee. *Cochrane Database of Systematic Reviews* 2009, Issue 4. [DOI: 10.1002/14651858.CD002823.pub2]

Rutjes 2009b

Rutjes AW, Nuesch E, Reichenbach S, Juni P. S-Adenosylmethionine for osteoarthritis of the knee or hip. *Cochrane Database of Systematic Reviews* 2009, Issue 4. [DOI: 10.1002/14651858.CD007321.pub2]

Rutjes 2010

Rutjes AW, Nuesch E, Sterchi R, Juni P. Therapeutic ultrasound for osteoarthritis of the knee or hip. *Cochrane Database of Systematic Reviews* 2010, Issue 1. [DOI: 10.1002/14651858.CD003132.pub2]

Rutjes 2012

Rutjes AW, Jüni P, da Costa BR, Trelle S, Nüesch E, Reichenbach S. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. *Annals of Internal Medicine* 2012;**157**(3):180-91.

Rücker 2008

Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. *BMC Medical Research Methodology* 2008;**8**(1):79.

Schug 2006

Schug SA, Gandham N. Opioids: clinical use. In: McMahon S, Klotzenburg M editor(s). Wall and Melzack's Textbook of Pain. 5th Edition. Oxford: Elsevier Limited, 2006:443-57.

Shang 2005

Shang A, Huwiler-Muntener K, Nartey L, Juni P, Dorig S, Sterne JA, et al. Are the clinical effects of homoeopathy placebo effects? Comparative study of placebo-controlled trials of homoeopathy and allopathy. *Lancet* 2005;**366**(9487):726-32.

Stein 1996

Stein C, Pfluger M, Yassouridis A, Hoelzl J, Lehrberger K, Welte C, et al. No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. *Journal of Clinical Investigation* 1996;**98**:793-9.

Sterne 2001

Sterne JA, Egger M. Funnel plots for detecting bias in metaanalysis: guidelines on choice of axis. *Journal of Clinical Epidemiology* 2001;**54**(10):1046-55.

Sterne 2011

Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ* 2011;**343**:d4002.

Thompson 1999

Thompson SG, Sharp SJ. Explaining heterogeneity in metaanalysis: a comparison of methods. *Statistics in Medicine* 1999;**18**(20):2693-708.

Von Korff 2004

Von Korff M, Deyo RA. Potent opioids for chronic musculoskeletal pain: flying blind?. Pain 2004;109(3):207-9.

Wandel 2010

Wandel S, Jüni P, Tendal B, Nüesch E, Villiger PM, Welton NJ, et al. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis. BMJ 2010;**341**(16):c4675.

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Zhang 2008

Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis. Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and Cartilage 2008;16(2):137-62.

* Indicates the major publication for the study

filalo 2010								
Methods	Randomised controlled trial 3-arm parallel group design Trial duration: 17 weeks Randomisation stratified according by centre Multicentre trial with 112 centres Power calculation reported							
Participants	dissatisfied with their of 1030 participants were	knee osteoarthritis were reported at baseline Iees						
Interventions	Experimental intervent	ons						
	Oral extended-release tapentadol, 100-250 mg twice daily							
	Oral controlled-release	oxycodone, 20-50 mg twice daily						
	Control intervention Placebo, twice daily							
	Treatment duration: 15 weeks Analgesics other than study drugs allowed, but it was unclear whether intake was similar between groups							
Outcomes	Extracted function out	e: global pain after 17 weeks come: WOMAC disability subscore after 17 weeks nge in mean pain intensity						
Notes	Sponsor: Johnson & Jo	hnson, Grünenthal						
Risk of bias								
Bias	Authors' judgement Support for judgement							
Random sequence genera- tion (selection bias)	Low risk Quote: "Randomization was based on a computer-generated randomization list, balanced using permuted blocks, and stratified by study site"							
Allocation concealment (selection bias)	Low risk Quote: "Randomization was implemented through an interactive voice re- sponse system (IVRS) to dispense blinded study medication. Placebo tablets and capsules (one for each active treatment) were used to maintain blinded							

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Copyright @ 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Afilalo 2010 (Continued)

Antato 2010 (continued)		treatments. Investigators were not provided with the randomization codes, and the schedule was maintained with the IVRS. The blinding was not broken until all participants had completed the trial, except in the case of a suspect- ed unexpected serious adverse reaction or if emergency treatment required knowledge of a patient's treatment status"
Described as dou- ble-blind?	Low risk	Quote: "This was a randomized, double-blind, active- and placebo controlled, parallel-arm, multicentre, phase III study"
Blinding of patients?	Low risk	Because the study was described as a double-dummy, we considered participants to be blinded
		Quote: "Placebo tablets and capsules (one for each active treatment) were used to maintain blinded treatments"
Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	High risk	Quote: "Placebo tablets and capsules (one for each active treatment)"
Double-dummy technique used?	Low risk	Quote: "Placebo tablets and capsules (one for each active treatment) were used to maintain blinded treatments"
Intention-to-treat analysis performed? Pain	High risk	2 of 346 participants excluded in experimental group. 171 of 339 participants excluded in control group
Intention-to-treat analysis performed? Function	High risk	197 of 346 participants excluded in experimental group, 260 of 339 participants excluded in control group

Breivik 2010

Methods	Randomised controlled trial
	2-arm parallel group design
	Trial duration: 28 weeks
	Multicentre trial with 19 centres
	Power calculation reported
Participants	Participants with insufficient relief of moderate-to-severe osteoarthritis pain using NSAIDs or COXIBs
·	and without previous exposure to opioids were eligible.
	199 participants were randomised
	199 participants with knee or hip osteoarthritis were reported at baseline
	Affected joints: 126 knees, 73 hips
	Number of females: 136 of 199 (68%)
	Mean age: 63 years
Interventions	Experimental intervention
	Transdermal buprenorphine (Norspan; BuTrans), 5-20 μg/hour
	Control intervention
	Placebo, change of patch every 7 days

Breivik 2010 (Continued)	Treatment duration: 24	ł weeks
	No analgesics other the	an study drugs allowed
Outcomes	Extracted pain outcome: WOMAC pain subscore after 28 weeks Extracted function outcome: WOMAC disability subscore after 28 weeks Primary outcome: WOMAC pain	
Notes	Sponsor: Norpharma, I	Aundipharma
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Randomisation was performed using a validated computer system that automates the random assignment of subjects to randomisation numbers"
Allocation concealment (selection bias)	Low risk	Quote: Coded-drugs of identical appearance: drugs "were identical in appear- ance, packed in a labelled foil pouch, containing coded treatment group iden- tification. The medication codes were not available until the completion of the study and clinical database lock, except in case of emergency." Also: "The randomisation schedule was filed in a secure location in a manner such that blinding was properly maintained throughout the study"
Described as dou- ble-blind?	Low risk	Quote: "This was a 6 months (24 weeks; 168 days), randomised, double-blind, placebo-controlled, parallel-group, multicentre study"
Blinding of patients?	Low risk	Because medication was described as identical and participants were explicit ly described as blinded, we considered participants to be blinded
		Quote: "All patients, investigators, and study centre and Sponsor personnel were blinded to the medication codes"
Blinding of physicians?	Low risk	Quote: "All patients, investigators, and study centre and Sponsor personnel were blinded to the medication codes"
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: drugs "were identical in appearance, packed in a labelled foil pouch, containing coded treatment group identification. The medication codes were not available until the completion of the study and clinical database lock, ex- cept in case of emergency"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	5 of 100 participants excluded in experimental group, 0 of 99 participants ex- cluded in control group
Intention-to-treat analysis performed? Function	High risk	6 of 100 participants excluded in experimental group, 3 of 99 participants ex- cluded in control group

Caldwell 2002			
Methods	Randomised controlled trial 4-arm parallel group design Trial duration: 4 weeks Multicentre trial No power calculation reported		
Participants	Participants with prior suboptimal analgesic response to NSAIDs/paracetamol or previous intermittent opioid therapy were eligible 295 participants with knee or hip (or both) osteoarthritis were reported at baseline Number of females: 184 of 295 (62%) Mean age: 62 years		
Interventions	Oral morphine (Avinza	ions), 30 mg once daily in the morning), 30 mg once daily in the evening :e (Contin), 15 mg twice daily	
	<i>Control intervention</i> Placebo, twice daily		
	Treatment duration: 4 weeks No analgesics other than study drugs allowed		
Outcomes	Extracted pain outcome: global pain after 4 weeks Extracted function outcome: WOMAC disability subscore after 4 weeks Primary outcome: WOMAC OA index		
Notes	Sponsor: Elan		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	The authors' description of the randomisation process does not explain how they generated the random sequence of allocation	
		Quote: "Eligible participants entered a washout period of up to seven days and were subsequently randomized to one of four treatments"	
Allocation concealment (selection bias)	Unclear risk	The authors' description of the randomisation process does not explain whether the random sequence of allocation was concealed from study person- nel responsible for participant recruitment	
		Quote: "Eligible participants entered a washout period of up to seven days and were subsequently randomized to one of four treatments"	
Described as dou- ble-blind?	Low risk	Quote: "The double-blind trial was a 4-week, multicenter, randomized, dou- ble-blind, double-dummy, placebo controlled, parallel trial"	
Blinding of patients?	Low risk	Because the study was described as a double-dummy, we considered participants to be blinded	
		Quote: "Placebo Avinza and placebo MSC [morphine sulphate controlled-re- lease] matched the appearance of the respective active treatments. Avinza capsules and encapsulated MSC tablets did not look identical; therefore, to maintain the study blind, all participants consumed two capsules (one each representing Avinza and MSC) every morning and evening (Table 1)"	

Caldwell 2002 (Continued)

Cochrane

Library

Trusted evidence. Informed decisions.

Better health.

Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	High risk	Quote: "Placebo Avinza and placebo MSC matched the appearance of the re- spective active treatments. Avinza capsules and encapsulated MSC tablets did not look identical; therefore, to maintain the study blind, all participants con- sumed two capsules (one each representing Avinza and MSC) every morning and evening"
Double-dummy technique used?	Low risk	Quote: "Placebo Avinza and placebo MSC matched the appearance of the re- spective active treatments. Avinza capsules and encapsulated MSC tablets did not look identical; therefore, to maintain the study blind, all participants con- sumed two capsules (one each representing Avinza and MSC) every morning and evening"
Intention-to-treat analysis	High risk	Not all participants randomised were analysed
performed? Pain		Quote: "Efficacy and safety analyses for both trials were performed on all pa- tients who received at least one dose of study medication"
Intention-to-treat analysis	High risk	Not all participants randomised were analysed
performed? Function		Quote: "Efficacy and safety analyses for both trials were performed on all pa- tients who received at least one dose of study medication"

Chindalore 2005

Methods	Randomised controlled trial
	4-arm parallel group design
	Trial duration: 4 weeks
	Randomisation stratified according to gender
	Multicentre trial with 37 centres
	No power calculation reported
Participants	Participants with moderate to severe hip or knee pain while taking ≥1 oral analgesic medication were eligible
	362 participants were randomised
	360 participants with hip or knee osteoarthritis were reported at baseline
	Number of females: 249 of 360 (69%)
	Average age: 54 years
Interventions	Experimental interventions
	Oral oxycodone, 10 mg 4 times daily
	Oral oxycodone, 2.5 mg 4 times daily, plus naltrexone 0.001 mg 4 times daily (Oxytrex)
	Oral oxycodone, 2.5 mg 4 times daily, plus natronex 0.001 mg twice daily (Oxytrex)
	Control intervention
	Placebo, twice daily
	Treatment duration: 3 weeks
	Analgesics other than study drugs allowed, but it was unclear whether intake was similar between
	groups
	Extracted pain outcome: global pain after 4 weeks

Chindalore 2005 (Continued)

Extracted function outcome: WOMAC disability subscore after 4 weeks Primary outcome: pain intensity during the past 24 hours

Notes

Sponsor: Pain Therapeutics For WOMAC disability, insufficient data were reported to calculate standardised mean differences and it was, therefore, not included in the meta-analysis

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Insufficient information provided
tion (selection bias)		Quote: "Qualifying patients were randomly assigned and stratified by sex to 1 of 4 treatments for 3 weeks"
Allocation concealment (selection bias)	Unclear risk	No information provided
Described as dou- ble-blind?	Low risk	Quote: "This study was a randomized, double-blind, placebo and active-con- trolled dose escalation trial"
Blinding of patients?	Low risk	Because the interventions were described as indistinguishable, we considered participants to be blinded
		Quote: "All study medications were identical in appearance, and patients, site personnel, and study monitors were blinded to treatment assignments"
Blinding of physicians?	Low risk	Quote: "All study medications were identical in appearance, and patients, site personnel, and study monitors were blinded to treatment assignments"
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "All study medications were identical in appearance, and patients, site personnel, and study monitors were blinded to treatment assignments"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	1 of 310 participants (0.3%) excluded in experimental groups, 1 of 52 participants (1.9%) excluded in control group
Intention-to-treat analysis performed? Function	High risk	1 of 310 participants (0.3%) excluded in experimental groups, 1 of 52 participants (1.9%) excluded in control group

Etropolski 2011

Methods	Randomised controlled trial 4-arm parallel group design Trial duration: 8 weeks Randomisation stratified according to study centre
	Multicentre trial with 84 centres No power calculation reported

tropolski 2011 (Continued)				
Participants	mens were eligible 598 participants were r	nee or hip osteoarthritis reported at baseline		
Interventions	Oral immediate-release	ions e tapentadol, 50 mg 3-6 times daily e tapentadol, 75 mg 3-6 times daily e oxycodone, 10 mg 3-6 times daily		
	<i>Control intervention</i> Placebo, 3-6 times dail	у		
	Treatment duration: 2 weeks Analgesics other than study drugs allowed and intake was similar between groups			
Outcomes	No function outcome r	Extracted pain outcome: global pain after 8 weeks No function outcome reported Primary outcome: change in pain intensity		
Notes	Sponsor: Johnson & Jo	hnson		
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote: "Randomization was based on a computer-generated randomization schedule, stratified by study center, and implemented using an interactive voice response system"		
Allocation concealment (selection bias)	Low risk	Quote: "Randomization was based on a computer-generated randomization schedule, stratified by study center, and implemented using an interactive voice response system"		
Described as dou- ble-blind?	Low risk	Quote: "In this double-blind study, patients with end-stage joint disease were randomized to tapentadol IR (50 mg or 75 mg), oxycodone HCL IR 10 mg, or placebo"		
Blinding of patients?	Low risk	Quote: "All study drugs were provided as overencapsulated tablets or capsules and were identical in shape, color, and size"		
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Masking: Double Blind (Subject, Caregiver, In- vestigator, Outcomes Assessor)"		
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low		
Interventions reported as indistinguishable?	Low risk	Quote: "All study drugs were provided as overencapsulated tablets or capsules and were identical in shape, color, and size"		
Double-dummy technique used?	High risk	No double-dummy technique used		
Intention-to-treat analysis performed? Pain	High risk	2 of 306 participants excluded in experimental group, 74 of 148 participants excluded in control group		

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Etropolski 2011 (Continued)

Intention-to-treat analysis Unclear risk performed? Function

Not applicable, no function outcome reported

Methods	Randomised controlled trial 4-arm parallel group design Trial duration unclear Multicentre trial with 99 centres No power calculation reported			
Participants	Participants with mode	erate-to-severe osteoarthritis pain of knees or hips were eligible		
Interventions	<i>Experimental intervent</i> Oral oxycodone, 10-40			
	Control intervention			
	Placebo			
	Treatment duration: not reported Unclear whether analgesics other than study drugs allowed			
Outcomes	Extracted pain outcom No function outcome r Primary outcome: WON			
Notes	Sponsor: Pfizer, Pain Solutions 2 trial arms excluded from review			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear		
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear		
Described as dou- ble-blind?	Low risk	Quote: "A randomized, double-blind, placebo (PBO)- & active-controlled study"		
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate		
Blinding of physicians?	Low risk	Quote from ClinicalTrial.gov: "Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor)"		
Blinding of outcome as- sessors?	Unclear risk	Because outcomes were self reported, and because it was unclear whether participants were properly blinded, it was unclear whether outcome assessors were blinded		
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable		

Fidelholtz 2011 (Continued)

Double-dummy technique used?	Unclear risk	Description of intervention is not detailed enough to assess whether dou- ble-dummy technique was used
Intention-to-treat analysis performed? Pain	Unclear risk	It was unclear how many participants were randomised in this study, so it was not possible to assess whether all participants randomised were included in the analysis
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

Friedmann 2011

Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 14 weeks Multicentre trial with 61 centres Power calculation reported	
Participants	Participants with moderate-to-severe osteoarthritis pain using NSAIDs or opioids were eligible 412 participants were randomised 412 participants with knee or hip osteoarthritis were reported at baseline Affected joints: 323 knees and 89 hips Number of females: 288 of 412 (70%) Mean age: 58 years	
Interventions	<i>Experimental intervention</i> Oral extended-release oxycodone (Remoxy), 5-20 mg twice daily <i>Control intervention</i> Placebo, twice daily	
	Treatment duration: 12 Unclear whether analg	2 weeks esics other than study drugs allowed
Outcomes	Extracted pain outcome: global pain after 14 weeks No function outcome reported Primary outcome: change in pain intensity score	
Notes	Sponsor: Pain Therapeutics, King, Pfizer	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear

Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote: "a double-blind, multicenter, placebo-controlled trial"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate

Friedmann 2011 (Continued)

Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Unclear risk	Because outcomes were self reported, and because it was unclear whether participants were properly blinded, it was unclear whether outcome assessors were blinded
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	Unclear risk	Description of intervention is not detailed enough to assess whether dou- ble-dummy technique was used
Intention-to-treat analysis performed? Pain	High risk	2 of 205 participants excluded in experimental group, 0 of 207 participants ex- cluded in control group
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

Hartrick 2009

Methods	Randomised controlled trial 4-arm parallel group design Trial duration: 2 weeks Randomisation stratified according to study centre Multicentre trial Power calculation reported
Participants	Participants with insufficient relief of moderate-to-severe osteoarthritis pain who were candidates for joint replacement surgery were eligible 674 participants were randomised 659 participants with knee or hip osteoarthritis were reported at baseline Number of females: 324 of 659 (49%) Mean age: 61 years Mean BMI: 33 kg/m ²
Interventions	<i>Experimental interventions</i> Oral immediate-release tapentadol, 50 mg every 4-6 hours Oral immediate-release tapentadol, 75 mg every 4-6 hours Oral oxycodone, 10 mg every 4-6 hours
	Control intervention Placebo, every 4-6 hours
	Treatment duration: 1 week Analgesics other than study drugs allowed, but it was unclear whether intake was similar between groups
Outcomes	Extracted pain outcome: global pain after 2 weeks No function outcome reported Primary outcome: sum of pain intensity difference
Notes	Sponsor: Johnson & Johnson, Grünenthal

Hartrick 2009 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Permuted blocks were used to balance the number of participants across groups, so generation of sequence of random allocation was likely comput- er-generated
Allocation concealment (selection bias)	Unclear risk	No information on concealment of allocation was provided, so risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote: "randomized, double-blind, active- and placebo-controlled study"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "This is a double-blind study, i.e., neither pa- tients nor investigators will know what treatment is given"
Blinding of outcome as- sessors?	Unclear risk	Because outcomes were self reported, and because it was unclear whether participants were properly blinded, it was unclear whether outcome assessors were blinded
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	0 of 330 participants excluded in experimental group, 86 of 172 participants excluded in control group
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

Katz 2010

Methods	Randomised controlled trial
	2-arm parallel group design
	Trial duration: 14 weeks
	Randomisation stratified according to joint (hip/knee), daily dosage at end of titration, and study site
	Multicentre trial with 81 centres
	Power calculation reported
Participants	Participants with insufficient pain relief with non-opioids analgesics, tramadol, or other opioids at \leq 40-
	mg morphine equivalent per day were eligible
	344 participants were randomised 344 participants with knee or hip osteoarthritis were reported at baseline
	Affected joints: 267 knees and 77 hips
	Number of females: 201 of 344 (58%)
	Mean age: 54 years
	Mean BMI: 32 kg/m ²
Interventions	Experimental intervention

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

his a subshate and a alterna a buda ablasida (ENDEDA), 20,00 m a tuica dailu
hine sulphate and naltrexone hydrochloride (EMBEDA), 20-80 mg twice daily
tervention
wice daily
t duration: 12 weeks
s other than study drugs allowed and intake was similar between groups
pain outcome: global pain after 14 weeks
function outcome: WOMAC disability subscore after 14 weeks
utcome: change in average pain intensity
King, Quintiles Medical Communications, Alphapharm

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear
Allocation concealment (selection bias)	Low risk	Quote: "The outpatient site contacted the Interactive Web Response System to receive a randomization number and treatment assignment"
Described as dou- ble-blind?	Low risk	Quote: "This randomized, double-blind, placebo-controlled, multicenter out- patient study"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of outcome as- sessors?	Unclear risk	Because outcomes were self reported, and because it was unclear whether participants were properly blinded, it was unclear whether outcome assessors were blinded
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	Unclear risk	Unclear whether double-dummy technique was used
Intention-to-treat analysis performed? Pain	High risk	1 of 171 participants excluded in experimental group, 0 of 173 participants ex- cluded in control group
Intention-to-treat analysis performed? Function	Low risk	All randomised participants included in the analysis

Kivitz 2006

Methods		

Randomised controlled trial 4-arm parallel group design Trial duration: 2 weeks Multicentre trial Power calculation reported

(ivitz 2006 (Continued)				
Participants	Participants with suboptimal analgesic response to NSAIDs/paracetamol or previous opioid therapy were eligible 370 participants were randomised 370 participants with knee or hip osteoarthritis were reported at baseline Affected joints: 297 knees and 73 hips Number of females: 224 of 370 (61%)			
Interventions	Oral extended-release	ions oxymorphone, 10 mg twice daily oxymorphone, 40 mg twice daily oxymorphone, 50 mg twice daily		
	<i>Control intervention</i> Placebo, twice daily			
	Treatment duration: 2 weeks No analgesics other than study drugs allowed			
Outcomes	Extracted function out	Extracted pain outcome: global pain after 2 weeks Extracted function outcome: WOMAC disability subscore after 2 weeks Primary outcome: change in pain intensity		
Notes	Sponsor: Endo Pharma	ceuticals Inc, Penwest Pharmaceuticals Co		
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote: "A computer-generated randomization schedule was used to assign them to 1 of 4 groups"		
Allocation concealment (selection bias)	Low risk	Quote: "The study medications had computer-generated 2-part labels. One part of the label, which contained study and patient information, was attached to the box that contained all 4 bottles of study medication. The other part of the label was a tear-off section containing the same information. This tear-off section was removed at the time of dispensing and was attached to the appro- priate page of the case report form; a copy of this page was made and retained in the investigator's study file. The treatment to which a patient had been as- signed was concealed by an alcohol-removable-ink overlay on the tear-off part of the label"		
Described as dou- ble-blind?	Low risk	Quote: "This was a 2-week, multicenter, randomized, double-blind, paral- lel-group, dose-ranging, Phase III trial"		
Blinding of patients?	Low risk	Because the study was described as a double-dummy, we considered participants to be blinded		
		Quote: "Study medications were overencapsulated in gelatin capsules so they were visually indistinguishable, and they were administered in a double-dummy fashion to maintain blinding"		
Blinding of physicians?	Low risk	Quote: "The study patients, study personnel, and investigators were blinded to the identity of the study treatments"		
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low		
Interventions reported as indistinguishable?	High risk	The authors reported that interventions were only visually indistinguishable, which is probably the reason why double-dummy was implemented		

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Kivitz 2006 (Continued)

Trusted evidence. Informed decisions. Better health.

Quote: "Study medications were overencapsulated in gelatin capsules so they were visually indistinguishable, and they were administered in a double-dummy fashion to maintain blinding" Double-dummy technique Quote: "Study medications were overencapsulated in gelatin capsules so they Low risk used? were visually indistinguishable, and they were administered in a double-dummy fashion to maintain blinding" Intention-to-treat analysis High risk 9 of 279 participants (0.7%) excluded in experimental groups, 4 of 91 participerformed? pants (4.4%) excluded in control group Pain Intention-to-treat analysis 9 of 279 participants (0.7%) excluded in experimental groups, 4 of 91 partici-High risk performed? pants (4.4%) excluded in control group Function

Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 4 weeks Multicentre trial with 7 centres Power calculation reported		
Participants	Participants with chronic pain requiring analgesic treatment were eligible 158 participants with hip osteoarthritis were reported at baseline Affected joints: 158 hips Number of females: 72 of 158 (46%) Mean age: 66 years Mean BMI: 26 kg/m ²		
Interventions	Experimental intervention Oral codeine 60 mg plus paracetamol 1000 mg, 3 times daily Control intervention Paracetamol 1000 mg, 3 times daily Treatment duration: 4 weeks No analgesics other than study drugs allowed		
Outcomes	Extracted pain outcome: global pain after 4 weeks Extracted function outcome: participant's global assessment after 4 weeks		
Notes	No information about source of funding provided		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear	
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear	

Kjaersgaard-Andersen 1990 (Continued)

Cochrane

Library

Described as dou- ble-blind?	Low risk	Quote: "The study was designed as a randomised, double-blind and parallel investigation"
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded
		Quote: "The tablets were identical in weight, appearance and taste"
Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "The tablets were identical in weight, appearance and taste"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	43 of 83 participants (52%) excluded in experimental group, 18 of 75 participants (24%) excluded in control group
Intention-to-treat analysis performed? Function	High risk	40 of 83 participants (48%) excluded in experimental group, 15 of 75 participants (20%) excluded in control group

Langford 2006	
Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 8 weeks Randomisation stratified according to target joint (knee/hip) Multicentre trial Power calculation reported
Participants	Participants without adequate pain control under weak opioid treatment (with and without paraceta- mol) were eligible 416 participants were randomised 399 participants with knee or hip osteoarthritis were reported at baseline Affected joints: 211 knees and 188 hips Number of females: 265 of 399 (66%)
Interventions	Experimental intervention Transdermal fentanyl (Durogesic), median dosage 25 μg/hour Control intervention Placebo Treatment duration: 6 weeks Analgesics other than study drugs allowed and intake assessed, but it was unclear whether intake was similar between groups
Outcomes	Extracted pain outcome: global pain after 8 weeks Extracted function outcome: WOMAC disability subscore after 8 weeks

Langford 2006 (Continued)

Primary outcome: pain relief on VAS

	Sponsor: Janssen-Cilag	
Notes		
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Randomization was performed using a computer-generated list"
Allocation concealment (selection bias)	Low risk	Quote: "Participants were assigned consecutive treatment codes, and investi- gators were unaware of the treatment allocation"
Described as dou- ble-blind?	Low risk	Quote: "The aim of the present trial was therefore to assess pain relief from treatment with TDF [transdermal fentanyl] as compared with placebo in a double-blind study"
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded
		Quote: "TDF and placebo patches were identical"
Blinding of physicians?	Low risk	Quote: "investigators were unaware of the treatment allocation"
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "TDF and placebo patches were identical"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	No information on exclusions available
Intention-to-treat analysis performed? Function	High risk	No information on exclusions available

Markenson 2005	
Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 13 weeks Multicentre trial with 9 centres Power calculation reported
Participants	Participants with moderate-to-severe pain while taking NSAIDs/paracetamol, with contraindications to NSAID therapy or with previous oral opioid therapy were eligible 109 participants were randomised 107 participants with osteoarthritis were reported at baseline Affected joints: 33 knees, 19 hips, and 57 other joints Number of females: 78 of 107 (73%)

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Markenson 2005 (Continued)

	Mean age: 63 years
Interventions	<i>Experimental intervention</i> Oral oxycodone (OxyContin), 10 mg twice daily
	<i>Control intervention</i> Placebo, twice daily
	Treatment duration: 13 weeks Analgesics other than study drugs allowed and intake assessed, but it was unclear whether intake was similar
Outcomes	Extracted pain outcome: global pain after 13 weeks Extracted function outcome: WOMAC global scale after 13 weeks

Notes

Sponsor: Purdue Pharma

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "The computer-generated randomization code and study drug bottles labeled with randomization numbers were supplied by the sponsor"
Allocation concealment (selection bias)	Low risk	Quote: "The computer-generated randomization code and study drug bottles labeled with randomization numbers were supplied by the sponsor"
Described as dou- ble-blind?	Low risk	Quote: "This was a double blind, randomized, placebo-controlled, paral- lel-group study"
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded
		Quote: "Patients who met the entry criteria were randomly assigned in dou- ble blind fashion to receive either 10-mg tablets of CR oxycodone or matching placebo every 12 hours"
Blinding of physicians?	Low risk	Because coded labelled bottles were provided by sponsor and drug tables were matching the placebo tablets, physicians were considered blinded as well
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "Patients who met the entry criteria were randomly assigned in dou- ble blind fashion to receive either 10-mg tablets of CR [controlled release] oxy- codone or matching placebo every 12 hours"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	2 randomised participants who withdrew before receiving treatment were ex- cluded from the analyses
Intention-to-treat analysis performed? Function	High risk	2 randomised participants who withdrew before receiving treatment were ex- cluded from the analyses

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Matsumoto 2005

Methods	Randomised controlled trial 4-arm parallel group design Trial duration: 4 weeks Simple randomisation Multicentre trial Power calculation reported		
Participants	Participants with suboptimal analgesic response to NSAIDs, paracetamol, or opioids were eligible 491 participants were randomised 489 participants with knee or hip osteoarthritis were reported at baseline Affected joints: 373 knees and 116 hips Number of females: 297 of 489 (61%) Mean age: 62 years Mean BMI: 34 kg/m ²		
Interventions	<i>Experimental interventions</i> Oral extended-release oxymorphone, 20 mg twice daily Oral extended-release oxymorphone, 40 mg twice daily Oral controlled-release oxycodone, 20 mg twice daily <i>Control intervention</i>		
	Placebo, twice daily Treatment duration: 4 weeks No analgesics other than study drugs allowed		
Outcomes	Extracted pain outcome: WOMAC pain subscore after 4 weeks Extracted function outcome: WOMAC disability subscore after 4 weeks Primary outcome: change in arthritis pain intensity		
Notes	Sponsors: TheraQuest Biosciences, Endo Pharmaceuticals, Penwest Pharmaceuticals Co		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Quote: "The list of randomization numbers was based on a computer generat- ed randomization schedule"	
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear	
Described as dou- ble-blind?	Low risk	Quote: "The study was a multicenter, 4-week, randomized, double-blind, par- allel-group study"	
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded	
		Quote: "Active study medication tablets were overencapsulated and visually indistinguishable from each other and from the placebo tablets"	
Blinding of physicians?	Low risk	Quote: "Study enrollees, study personnel, and investigators were blinded to the identity of the treatments"	
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Matsumoto 2005 (Continued)

Interventions reported as indistinguishable?	Low risk	Quote: "Active study medication tablets were overencapsulated and visually indistinguishable from each other and from the placebo tablets"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	19 of 367 participants (5.2%) excluded in experimental groups, 5 of 124 (4.0%) participants excluded in control group
Intention-to-treat analysis performed? Function	High risk	19 of 367 participants (5.2%) excluded in experimental groups, 5 of 124 (4.0%) participants excluded in control group

Munera 2010

Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 4 weeks Multicentre trial with 25 centres Power calculation reported		
Participants	Participants with inadequate pain control using NSAIDs were eligible 315 participants were randomised 315 participants with knee or hip osteoarthritis were reported at baseline Affected joints: 173 knees and 142 hips Number of females: 212 of 315 (67%) Mean age: 61 years		
Interventions	Experimental intervention Transdermal buprenorphine, 5, 10, or 20 μg/hour Control intervention Placebo		
	Treatment duration: 4 weeks No analgesics other than study drugs allowed		
Outcomes	Extracted pain outcome: global pain after 4 weeks Extracted function outcome: participant's global assessment after 4 weeks Primary outcome: percentage of participants considered to have achieved treatment success		
Notes	Sponsor: Purdue		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear	
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear	
Described as dou- ble-blind?	Low risk	Quote: "randomized, placebo-controlled, double-blind, parallel-group inves tigation"	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Munera 2010 (Continued)		
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded
		Quote: "Placebo TDS [transdermal buprenorphine]-treated patients received identical-looking patches for each strength level"
Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "Placebo TDS-treated patients received identical-looking patches for each strength level"
Double-dummy technique used?	Unclear risk	No information provided
Intention-to-treat analysis performed? Pain	High risk	3 of 152 participants excluded in experimental group, 1 of 163 participants ex- cluded in control group
Intention-to-treat analysis performed? Function	High risk	3 of 152 participants excluded in experimental group, 1 of 163 participants ex- cluded in control group

NCT00486811

Methods	Randomised controlled trial 3-arm parallel group design Trial duration unclear Multicentre trial with 101 centres No power calculation reported	
Participants	Participants who were dissatisfied with their prior analgesic therapy were eligible 987 participants with knee osteoarthritis were reported at baseline Number of females: 707 of 987 (72%) Mean age: 62 years	
Interventions	<i>Experimental interventions</i> Oral extended-release tapentadol, 100-250 mg twice daily Oral controlled-release oxycodone, 20-50 mg twice daily	
	<i>Control intervention</i> Placebo, twice daily	
	Treatment duration: 15 weeks Unclear whether analgesics other than study drugs allowed	
Outcomes	Extracted pain outcome: global pain after 15 weeks	
	Extracted function outcome: WOMAC global scale after 15 weeks Primary outcome: change in mean pain intensity	
Notes	Sponsor: Grünenthal GmbH	

NCT00486811 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of outcome as- sessors?	Unclear risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	Unclear risk	No information provided
Intention-to-treat analysis performed? Pain	Unclear risk	It was unclear whether all participants randomised were also analysed
Intention-to-treat analysis performed? Function	Unclear risk	It was unclear whether all participants randomised were also analysed

NCT00531427

Methods	Randomised controlled trial 2-arm parallel group design Trial duration unclear Multicentre trial with 83 centres No power calculation reported
Participants	Participants with suboptimal analgesic response to opioids were eligible 570 participants were randomised 570 participants with knee osteoarthritis were reported at baseline Affected joints: 567 knees Number of females: 356 of 567 (63%) Mean age: 59 years
Interventions	Experimental intervention Transdermal buprenorphine, 10 or 20 μg/hour Control intervention Placebo Treatment duration: 12 weeks

NCT00531427 (Continued)

Analgesics other than study drugs allowed and intake was similar between groups

	Analgesics other than s	study drugs allowed and intake was similar between groups
Outcomes	Extracted pain outcome: global pain after 12 weeks. No function outcome reported Primary outcome: mean pain over the last 24 hours	
Notes	Sponsor: Purdue Pharma	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of outcome as- sessors?	Unclear risk	Because it was unclear whether participants were blinded and outcomes were participant-reported, the risk of detection bias was considered unclear
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	Unclear risk	No information provided
Intention-to-treat analysis performed? Pain	Low risk	All randomised participants included in the analysis
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

NCT00980798	
Methods	Randomised controlled trial 2-arm parallel group design Trial duration unclear Power calculation reported
Participants	Participants with insufficient pain relief using NSAIDs, paracetamol, or a weak opioid were eligible 88 participants with knee or hip osteoarthritis were reported at baseline Number of females: 208 of 288 (72%) Mean age: 65 years
Interventions	<i>Experimental intervention</i> Oral hydromorphone (OROS), 4-32 mg once daily

Trusted evidence. Informed decisions. Better health.

NCT00980798 (Continued)	<i>Control intervention</i> Placebo, once daily			
	Treatment duration: 16 weeks Analgesics other than study drugs allowed, but it was unclear whether intake was similar between groups			
Outcomes	Extracted pain outcome: global pain after 16 weeks No function outcome reported Primary outcome: mean pain (Item 5 of Brief Pain Inventory)			
Notes	Sponsor: Janssen-Cila	g		
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear		
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear		
Described as dou- ble-blind?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor)"		
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded		
		Quote from ClinicalTrials.gov: "the control group receives an optically identi- cal tablet with no active ingredient, a so-called placebo."		
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor)"		
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low		
Interventions reported as indistinguishable?	Low risk	Quote from ClinicalTrials.gov: "the control group receives an optically identi- cal tablet with no active ingredient, a so-called placebo"		
Double-dummy technique used?	Unclear risk	No information available		
Intention-to-treat analysis performed? Pain	High risk	13 randomised participants were excluded from the analyses		
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported		

Del	loso	20	0	٦
re	1050	20	U	J

Methods

Randomised controlled trial 2-arm parallel group design Trial duration: 4 weeks

Peloso 2000 (Continued)	Multicentre trial with 4 Power calculation repo			
Participants	Participants with osteoarthritis symptoms requiring therapy with paracetamol, anti-inflammatory agents or opioids were eligible 103 participants were randomised 103 participants with osteoarthritis were reported at baseline Affected joints: 94 knees and 49 hips Number of females: 64 of 103 (62%) Mean age: 62 years Mean BMI: 34 kg/m ² Mean disease duration: 10.3 years			
Interventions	<i>Experimental intervent</i> Oral codeine (Contin),			
	<i>Control intervention</i> Placebo, twice daily			
	Treatment duration: 4 weeks Analgesics other than study drugs allowed and intake assessed, but it was unclear whether intake was similar between groups			
Outcomes	Extracted pain outcome: global pain after 4 weeks Extracted function outcome: WOMAC disability subscore after 4 weeks Primary outcome: WOMAC pain and overall pain intensity			
Notes	Sponsor: Purdue Frederick			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear		
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear		
Described as dou- ble-blind?	Low risk	Quote: "Randomized, balanced, double blind parallel group assignment"		
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded		
		Quote: "identical appearing placebo"		
Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear		
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low		
Interventions reported as indistinguishable?	Low risk	Quote: "identical appearing placebo"		
Double-dummy technique	High risk	No double-dummy technique used		

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review) Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

used?

Peloso 2000 (Continued)

Intention-to-treat analysis performed? Pain	High risk	20 of 51 participants (39%) excluded in experimental group, 17 of 52 participants (33%) excluded in control group
Intention-to-treat analysis performed? Function	High risk	20 of 51 participants (39%) excluded in experimental group, 17 of 52 participants (33%) excluded in control group

Quiding 1992

Methods	Randomised controlled trial 3-arm cross-over design Trial duration: 1 week No power calculation reported
Participants	Participants in need of analgesic medication for hip osteoarthritis were eligible 27 participants were randomised 26 participants with hip osteoarthritis were reported at baseline Affected joints: 26 hips Number of females: 22 of 26 (85%) Mean age: 53 years
Interventions	Experimental intervention Oral codeine 30 mg plus ibuprofen 200 mg, 6 times in 32 hours <i>Control intervention</i> Ibuprofen 200 mg, 6 times in 32 hours Treatment duration: 32 hours No analgesics other than study drugs allowed
Outcomes	Extracted pain outcome: global pain after 1 week No function outcome reported No primary outcome reported
Notes	No information about source of funding provided 1 trial arm excluded from review

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote: "double-blind, placebo-controlled cross-over design"
Blinding of patients?	Low risk	Because the study was described as a double-dummy, we considered participants to be blinded
		Quote: "a double-dummy technique was used to ensure blindness of the study"

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Quiding 1992 (Continued)

Cochrane

Library

Trusted evidence.

Informed decisions. Better health.

Blinding of physicians?	Unclear risk	Physicians were not explicitly described as blinded, so the risk of performance bias was unclear
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	Low risk	Quote: "a double-dummy technique was used to ensure blindness of the study"
Intention-to-treat analysis performed? Pain	Unclear risk	No information on exclusions available
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

Shannon 2005

Bias	Authors' judgement Support for judgement			
Risk of bias				
Notes	Sponsor: Purdue Pharma L.P			
Outcomes	Extracted pain outcome: global pain after 30 weeks Extracted function outcome: after 30 weeks Primary outcome: time to development of inadequate analgesia			
	Treatment duration: 4 weeks Analgesics other than study drugs allowed, but it was unclear whether intake was similar between groups			
	<i>Control intervention</i> Placebo			
Interventions	<i>Experimental intervention</i> Transdermal buprenorphine (Butrans), 5, 10 or 20 μg/hour			
	agents or opioids were eligible 327 participants were randomised 327 participants with knee or hip osteoarthritis were reported at baseline Number of females: 219 of 326 (67%) Mean age: 61 years			
Participants	Participants with moderate-to-severe pain while taking paracetamol, non-steroidal anti-inflammatory			
	Multicentre trial with 41 centres No power calculation reported			
Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 30 weeks			

Shannon 2005 (Continued)

Random sequence genera- tion (selection bias)	Unclear risk	Method used to generate random sequence of allocation was not reported, so the risk of selection bias was unclear
Allocation concealment (selection bias)	Unclear risk	Method used to conceal the random sequence of allocation was not reported, so the risk of selection bias was unclear
Described as dou- ble-blind?	Low risk	Quote: "Randomized, double-blind, placebo-controlled"
Blinding of patients?	Unclear risk	It was unclear if method used to blind participants was appropriate
Blinding of physicians?	Low risk	Quote from ClinicalTrials.gov: "Double Blind (Subject, Investigator)"
Blinding of outcome as- sessors?	Unclear risk	Because it was unclear whether participants were blinded and the outcomes are participant-reported, the risk of bias was unclear
Interventions reported as indistinguishable?	High risk	Interventions were not reported as indistinguishable
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	1 of 165 participants excluded in experimental group, 0 of 162 participants ex- cluded in control group
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

Zautra 2005

Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 13 weeks Multicentre trial with 9 centres No power calculation reported	
Participants	107 participants were randomised 104 participants with knee osteoarthritis were reported at baseline Number of females: 76 of 104 (73%) Mean age: 63 years	
Interventions	<i>Experimental intervention</i> Oral oxycodone (Oxycontin), 10 mg twice daily	
	<i>Control intervention</i> Placebo, twice daily	
	Treatment duration: 13 weeks Analgesics other than study drugs allowed, but it was unclear whether intake was similar between groups	
Outcomes	Extracted pain outcome: global pain after 13 weeks No function outcome reported Primary outcome: coping efficacy and arthritis helplessness	

Cochrane Database of Systematic Reviews

Zautra 2005 (Continued)

Notes

Sponsor: Purdue Pharma

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	No information provided
Allocation concealment (selection bias)	Low risk	Quote: "The bottles of medication were labeled with a randomization number and dispensed by the investigators"
Described as dou- ble-blind?	Low risk	Quote: "Double-blind, randomized, placebo-controlled, parallel-group study"
Blinding of patients?	Low risk	Because the study used indistinguishable interventions, we considered participants to be blinded
		Quote: "Patients were randomized at each of the 9 participating clinics to re- ceive either oral CR oxycodone (10 mg) or matching placebo"
Blinding of physicians?	Unclear risk	No information provided
Blinding of outcome as- sessors?	Low risk	Because participants were blinded and outcomes were participant-reported, the risk of detection bias was considered low
Interventions reported as indistinguishable?	Low risk	Quote: "Patients were randomized at each of the 9 participating clinics to re- ceive either oral CR oxycodone (10 mg) or matching placebo"
Double-dummy technique used?	High risk	No double-dummy technique used
Intention-to-treat analysis performed? Pain	High risk	1 of 56 participants (1.8%) excluded in experimental group, 2 of 51 participants (3.9%) excluded in control group
Intention-to-treat analysis performed? Function	Unclear risk	Not applicable, no function outcome reported

BMI: body mass index; COXIB: cyclo-oxygenase inhibitor; NSAID: non-steroidal anti-inflammatory drug; VAS: visual analogue scale; WOMAC: Western Ontario and McMaster Universities Arthritis Index.

Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion
Adams 2006	Only active control interventions
Andrei 1984	Percentage of participants with knee or hip osteoarthritis 17% (5/30)
Boureau 1990	Only active control interventions
Boyer 2012	Cross-over trial providing pooled results only

Study	Reason for exclusion
Brooks 1982	Percentage of participants with osteoarthritis 50%, no information about joints involved
Burch 2004	Not a randomised controlled trial
Caldwell 1999	Percentage of participants with knee or hip osteoarthritis likely to be below 50%
Choquette 2008	Not a randomised controlled trial
Conaghan 2011	Only active control interventions
Corsinovi 2009	Only active control interventions
Doak 1992	Cross-over trial providing pooled results only
Fancourt 1984	Mixed population of rheumatoid arthritis and osteoarthritis, no information about number of par- ticipants with osteoarthritis
Friedmann 2011b	Percentage of participants with knee or hip osteoarthritis 15% (123/827)
Gazi 2005	Only active control interventions
Hale 2007	Only active control interventions
James 2010	Only active control interventions
Katz 2010b	Only active control interventions
Le Loet 2005	Not a randomised controlled trial
McIlwain 2005	Not a randomised controlled trial
Mitchell 1984	Mixed population of rheumatoid arthritis and osteoarthritis, no information about number of par- ticipants with osteoarthritis
Neubauer 1983	Percentage of participants with osteoarthritis 15% (5/33)
Rosenthal 2007	Not a randomised controlled trial
Roth 2000	Percentage of participants with knee or hip osteoarthritis likely to be below 50%
Salzman 1983	Only active control interventions
Tassain 2003	Percentage of participants with osteoarthritis 7% (2/28)
Torres 2001	Not a randomised controlled trial
Vignon 1999	Comparison of combination of dextropropoxyphene, paracetamol, and caffeine with placebo
Vlok 1987	Cross-over trial providing pooled results only
Vorsanger 2011	Only active control interventions
Wallace 1994	Cross-over trial providing pooled results only
Wang 1965	Percentage of participants with osteoarthritis 6% (2/34)

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Copyright $\ensuremath{\textcircled{O}}$ 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Study

Reason for exclusion

Wild 2010

Only active control interventions

Characteristics of studies awaiting assessment [ordered by study ID]

Kroner 1991	
Methods	Randomised controlled trial 2-arm parallel group design Trial duration: 3 weeks Multicentre trial
Participants	131 participants with hip osteoarthritis were reported at baseline Number of females: 70 of 131 (53%)
Interventions	<i>Experimental intervention</i> Codeine 30 mg plus paracetamol 500 mg <i>Control intervention</i> Paracetamol 500 mg Treatment duration: 3 weeks
Outcomes	Assessed efficacy outcomes: pain intensity, pain relief, participant's evaluation of the effect of treatment Assessed safety outcomes: number of participants withdrawn due to adverse events, serious ad- verse events
Notes	Insufficient data provided in published abstract, no full-text article available. Awaiting author re- sponse

DATA AND ANALYSES

Comparison 1. Opioids versus placebo

Outcome or sub- group title	No. of studies	No. of partici- pants	•	
1 Pain	22	8275	Std. Mean Difference (Random, 95% CI)	-0.28 [-0.35, -0.20]
1.1 Buprenorphine	4	1401	401 Std. Mean Difference (Random, 95% CI)	
1.2 Codeine	3	179	Std. Mean Difference (Random, 95% CI)	-0.51 [-1.01, -0.01]
1.3 Fentanyl	1	399	Std. Mean Difference (Random, 95% CI)	-0.22 [-0.42, -0.03]
1.4 Hydromorphone	1	275	Std. Mean Difference (Random, 95% CI)	0.04 [-0.19, 0.28]
1.5 Morphine	2	638	Std. Mean Difference (Random, 95% CI)	-0.25 [-0.42, -0.09]
1.6 Oxycodone	10	2943	Std. Mean Difference (Random, 95% CI)	-0.31 [-0.47, -0.15]

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Outcome or sub- group title	No. of studies	No. of partici- pants	Statistical method	Effect size
1.7 Oxymorphone	2	645	Std. Mean Difference (Random, 95% CI)	-0.39 [-0.58, -0.21]
1.8 Tapentadol	4	1795	Std. Mean Difference (Random, 95% CI)	-0.31 [-0.46, -0.16]
2 Function	12	3553	Std. Mean Difference (Random, 95% CI)	-0.26 [-0.35, -0.17]
2.1 Buprenorphine	2	501	Std. Mean Difference (Random, 95% CI)	-0.23 [-0.40, -0.05]
2.2 Codeine	2	169	Std. Mean Difference (Random, 95% CI)	-0.42 [-0.74, -0.10]
2.3 Fentanyl	1	399	Std. Mean Difference (Random, 95% CI)	-0.28 [-0.48, -0.09]
2.4 Morphine	2	639	Std. Mean Difference (Random, 95% CI)	-0.20 [-0.38, -0.02]
2.5 Oxycodone	4	680	Std. Mean Difference (Random, 95% CI)	-0.30 [-0.58, -0.01]
2.6 Oxymorphone	2	645	Std. Mean Difference (Random, 95% CI)	-0.38 [-0.56, -0.19]
2.7 Tapentadol	2	520	Std. Mean Difference (Random, 95% CI)	-0.15 [-0.45, 0.16]
3 Number of partic- ipants experiencing any adverse event	10	4898	Risk Ratio (IV, Random, 95% CI)	1.49 [1.35, 1.63]
3.1 Buprenorphine	1	199	Risk Ratio (IV, Random, 95% CI)	1.25 [1.09, 1.42]
3.2 Codeine	1	66	Risk Ratio (IV, Random, 95% CI)	1.28 [0.94, 1.75]
3.3 Fentanyl	1	416	Risk Ratio (IV, Random, 95% CI)	1.55 [1.33, 1.81]
3.4 Morphine	1	344	Risk Ratio (IV, Random, 95% CI)	1.10 [0.89, 1.35]
3.5 Oxycodone	6	1779	Risk Ratio (IV, Random, 95% CI)	1.69 [1.47, 1.95]
3.6 Oxymorphone	1	304	Risk Ratio (IV, Random, 95% CI)	1.59 [1.28, 1.97]
3.7 Tapentadol	4	1790	Risk Ratio (IV, Random, 95% CI)	1.39 [1.17, 1.66]
4 Number of partici- pants who withdrew because of adverse events	21	8128	Risk Ratio (IV, Random, 95% CI)	3.76 [2.93, 4.82]
4.1 Buprenorphine	4	1407	Risk Ratio (IV, Random, 95% CI)	3.10 [1.38, 6.94]
4.2 Codeine	3	277	Risk Ratio (IV, Random, 95% CI)	3.67 [2.16, 6.24]
4.3 Fentanyl	1	399	Risk Ratio (IV, Random, 95% CI)	2.63 [1.64, 4.23]
4.4 Hydromorphone	1	288	Risk Ratio (IV, Random, 95% CI)	5.51 [2.54, 11.98]
4.5 Morphine	2	639	Risk Ratio (IV, Random, 95% CI)	2.12 [0.87, 5.15]
4.6 Oxycodone	9	2653	Risk Ratio (IV, Random, 95% CI)	5.55 [3.47, 8.87]

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Outcome or sub- group title	No. of studies	No. of partici- pants	Statistical method	Effect size
4.7 Oxymorphone	2	674	Risk Ratio (IV, Random, 95% CI)	5.32 [2.93, 9.68]
4.8 Tapentadol	4	1791	Risk Ratio (IV, Random, 95% CI)	2.76 [1.90, 4.00]
5 Number of partic- ipants experiencing any serious adverse event	3	681	Risk Ratio (IV, Random, 95% CI)	3.35 [0.83, 13.56]
5.1 Codeine	1	158	Risk Ratio (IV, Random, 95% CI)	0.0 [0.0, 0.0]
5.2 Fentanyl	1	416	Risk Ratio (IV, Random, 95% CI)	2.78 [0.57, 13.60]
5.3 Oxycodone	1	107	Risk Ratio (IV, Random, 95% CI)	6.39 [0.34, 120.71]
6 Withdrawal symp- toms	3		Odds Ratio (Random, 95% CI)	2.76 [2.02, 3.77]
6.1 Oxycodone	1		Odds Ratio (Random, 95% CI)	2.18 [0.61, 7.81]
6.2 Morphine	1		Odds Ratio (Random, 95% CI)	3.05 [0.12, 75.52]
6.3 Tapentadol	1		Odds Ratio (Random, 95% CI)	0.99 [0.25, 3.97]
6.4 Fentanyl	1		Odds Ratio (Random, 95% CI)	2.97 [2.13, 4.14]

Analysis 1.1. Comparison 1 Opioids versus placebo, Outcome 1 Pain.

Study or subgroup	Opioids	Control	Std. Mean Difference	Std. Mean Difference	Weight	Std. Mean Difference
	N	Ν	(SE)	IV, Random, 95% Cl		IV, Random, 95% CI
1.1.1 Buprenorphine						
Breivik 2010	95	99	-0.2 (0.144)	-+	3.46%	-0.24[-0.52,0.04]
Munera 2010	149	162	-0.1 (0.114)	-+-	4.25%	-0.13[-0.35,0.1]
NCT00531427	283	287	-0.1 (0.084)	-+-	5.14%	-0.14[-0.3,0.02]
Shannon 2005	164	162	-0.3 (0.112)	-+	4.31%	-0.32[-0.54,-0.1]
Subtotal (95% CI)				•	17.16%	-0.19[-0.3,-0.09]
Heterogeneity: Tau ² =0; Chi ² =2.22, o	df=3(P=0.53); I ² =0%					
Test for overall effect: Z=3.6(P=0)						
1.1.2 Codeine						
Kjaersgaard-Andersen 1990	40	57	-0.1 (0.207)	— + -	2.27%	-0.14[-0.55,0.26]
Peloso 2000	31	35	-0.8 (0.256)		1.67%	-0.78[-1.28,-0.28]
Quiding 1992	8	8	-0.8 (0.525)		0.49%	-0.84[-1.87,0.18]
Subtotal (95% CI)				-	4.43%	-0.51[-1.01,-0.01]
Heterogeneity: Tau ² =0.1; Chi ² =4.44	, df=2(P=0.11); l ² =5	5%				
Test for overall effect: Z=2(P=0.05)						
1.1.3 Fentanyl						
Langford 2006	202	197	-0.2 (0.1)		4.66%	-0.22[-0.42,-0.03]
		F	avours opioids	-2 -1 0 1	² Favours co	ontrol

Cochrane Database of Systematic Reviews

Study or subgroup	Opioids	Control	Std. Mean Difference	Std. Mean Difference	Weight	Std. Mean Difference
	N	Ν	(SE)	IV, Random, 95% CI		IV, Random, 95% CI
Subtotal (95% CI)				•	4.66%	-0.22[-0.42,-0.03
Heterogeneity: Not applicable						
Test for overall effect: Z=2.23(P=	0.03)					
1.1.4 Hydromorphone						
NCT00980798	132	143	0 (0.121)	-+	4.05%	0.04[-0.19,0.28
Subtotal (95% CI)				•	4.05%	0.04[-0.19,0.28
Heterogeneity: Not applicable						
Test for overall effect: Z=0.36(P=	0.72)					
1.1.5 Morphine						
Caldwell 2002	222	73	-0.3 (0.136)	-+	3.66%	-0.35[-0.61,-0.0
Katz 2010	170	173	-0.2 (0.108)	-+	4.42%	-0.19[-0.41,0.0
Subtotal (95% CI)				\blacklozenge	8.08%	-0.25[-0.42,-0.0
Heterogeneity: Tau ² =0; Chi ² =0.7	6, df=1(P=0.38); l ² =0%)				
Test for overall effect: Z=3(P=0)						
1.1.6 Oxycodone						
Afilalo 2010	342	168	-0.1 (0.094)	-+	4.84%	-0.13[-0.31,0.0
Chindalore 2005	309	51	-0.3 (0.152)	+	3.28%	-0.32[-0.61,-0.0
Etropolski 2011	143	74	-0.7 (0.147)	_+_	3.39%	-0.68[-0.97,-0.
Fidelholtz 2011	158	141	0 (0.116)		4.19%	0[-0.23,0.2
Friedmann 2011	203	207	-0.3 (0.099)	-+-	4.69%	-0.26[-0.46,-0.0
Hartrick 2009	172	86	-0.5 (0.134)		3.71%	-0.51[-0.77,-0.2
Markenson 2005	56	51	-0.4 (0.196)	—+—	2.44%	-0.43[-0.82,-0.0
Matsumoto 2005	120	59	-0.3 (0.159)	-+	3.12%	-0.28[-0.6,0.0
NCT00486811	331	168	0 (0.095)		4.81%	0.05[-0.14,0.2
Zautra 2005	55	49	-0.8 (0.204)	—+—	2.31%	-0.81[-1.21,-0.4
Subtotal (95% CI)				•	36.77%	-0.31[-0.47,-0.1
Heterogeneity: Tau ² =0.05; Chi ² =	37.08, df=9(P<0.0001)	; I²=75.73%				
Test for overall effect: Z=3.7(P=0)					
1.1.7 Oxymorphone						
Kivitz 2006	270	87	-0.4 (0.124)	-+	3.97%	-0.39[-0.63,-0.1
Matsumoto 2005	228	60	-0.4 (0.147)		3.39%	-0.39[-0.68,-0.1
Subtotal (95% CI)				•	7.36%	-0.39[-0.58,-0.2
Heterogeneity: Tau ² =0; Chi ² =0, d	lf=1(P=0.98); I ² =0%					
Test for overall effect: Z=4.14(P<	0.0001)					
1.1.8 Tapentadol						
Afilalo 2010	344	169	-0.3 (0.094)		4.84%	-0.3[-0.48,-0.1
Etropolski 2011	304	74	-0.4 (0.13)	_+ _	3.81%	-0.36[-0.62,-0.1
Hartrick 2009	330	86	-0.5 (0.122)	→	4.03%	-0.51[-0.75,-0.2
NCT00486811	319	169	-0.1 (0.095)	-+	4.81%	-0.14[-0.33,0.0
Subtotal (95% CI)				•	17.48%	-0.31[-0.46,-0.1
Heterogeneity: Tau ² =0.01; Chi ² =	5.97, df=3(P=0.11); I ² =	49.78%				
Test for overall effect: Z=4.09(P<	0.0001)					
Total (95% CI)				•	100%	-0.28[-0.35,-0.
Heterogeneity: Tau ² =0.02; Chi ² =	62.17, df=26(P<0.0001	L); I ² =58.18%				
	0.0001)	.,				

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Trusted evidence. Informed decisions. Better health.

Study or subgroup	Opioids	Control	Std. Mean Difference		Std. Mean Difference			Weight Std. Mean Difference	
	N	Ν	(SE)		IV, Random, 95% CI			IV, Random, 95% CI	
Test for subgroup differences: Chi ² =11.57, df=1 (P=0.12), I ² =39.5%									
			Favours opioids	-2	-1	0	1	2	Favours control

Analysis 1.2. Comparison 1 Opioids versus placebo, Outcome 2 Function.

Study or subgroup	Opioids	Control	Std. Mean Difference	Std. Mean Difference	Weight	Std. Mean Difference
	N	Ν	(SE)	IV, Random, 95% CI		IV, Random, 95% CI
1.2.1 Buprenorphine						
Breivik 2010	94	96	-0.2 (0.146)	+	6.37%	-0.24[-0.53,0.05
Munera 2010	149	162	-0.2 (0.114)		8.79%	-0.22[-0.44,0
Subtotal (95% CI)				•	15.16%	-0.23[-0.4,-0.05
Heterogeneity: Tau ² =0; Chi ² =0.01, c	lf=1(P=0.91); I ² =0%)				
Test for overall effect: Z=2.53(P=0.0	1)					
1.2.2 Codeine						
Kjaersgaard-Andersen 1990	43	60	-0.3 (0.201)		3.9%	-0.29[-0.68,0.11
Peloso 2000	31	35	-0.6 (0.253)		2.64%	-0.62[-1.12,-0.13
Subtotal (95% CI)					6.54%	-0.42[-0.74,-0.1
Heterogeneity: Tau ² =0; Chi ² =1.06, c	lf=1(P=0.3); l ² =5.84	%				
Test for overall effect: Z=2.58(P=0.0	1)					
1.2.3 Fentanyl						
Langford 2006	202	197	-0.3 (0.101)	_	10.08%	-0.28[-0.48,-0.09
Subtotal (95% CI)				•	10.08%	-0.28[-0.48,-0.09
Heterogeneity: Not applicable						
Test for overall effect: Z=2.8(P=0.01)					
1.2.4 Morphine						
Caldwell 2002	222	73	-0.3 (0.136)		7.03%	-0.31[-0.58,-0.04
Katz 2010	171	173	-0.1 (0.108)	+-	9.36%	-0.13[-0.34,0.08
Subtotal (95% CI)				•	16.39%	-0.2[-0.38,-0.02
Heterogeneity: Tau ² =0; Chi ² =1.12, c	lf=1(P=0.29); I ² =10.	92%				
Test for overall effect: Z=2.22(P=0.0						
1.2.5 Oxycodone						
Afilalo 2010	92	79	-0.3 (0.154)		5.9%	-0.29[-0.59,0.01
Markenson 2005	56	51	-0.8 (0.201)		3.9%	-0.8[-1.19,-0.4
Matsumoto 2005	120	59	-0.1 (0.159)		5.63%	-0.14[-0.45,0.17
NCT00486811	114	109	-0 (0.134)		7.17%	-0.05[-0.31,0.22
Subtotal (95% CI)			- *		22.6%	-0.3[-0.58,-0.01
Heterogeneity: Tau ² =0.06; Chi ² =10.	27, df=3(P=0.02); I ²	=70.79%				- ,
Test for overall effect: Z=2(P=0.05)						
1.2.6 Oxymorphone						
Kivitz 2006	270	87	-0.4 (0.124)	_	7.93%	-0.39[-0.64,-0.15
Matsumoto 2005	228	60	-0.4 (0.146)	-	6.37%	-0.36[-0.64,-0.07
Subtotal (95% CI)	0	50	()		14.3%	-0.38[-0.56,-0.19
Heterogeneity: Tau ² =0; Chi ² =0.04, c	If-1/D-0 95), 12-00/			-	1	0.001 0.00, 0.10

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Study or subgroup	Opioids	Control	Std. Mean Difference	Std. Mean Difference	Weight	Std. Mean Difference
	Ν	Ν	(SE)	IV, Random, 95% CI		IV, Random, 95% CI
Test for overall effect: Z=4.02(P<	<0.0001)					
1.2.7 Tapentadol						
Afilalo 2010	149	79	-0.3 (0.14)		6.75%	-0.31[-0.58,-0.03]
NCT00486811	183	109	0 (0.121)	_ +	8.18%	0[-0.24,0.24]
Subtotal (95% CI)					14.93%	-0.15[-0.45,0.16]
Heterogeneity: Tau ² =0.03; Chi ² =	2.77, df=1(P=0.1); I ² =	63.91%				
Test for overall effect: Z=0.95(P=	=0.34)					
Total (95% CI)				•	100%	-0.26[-0.35,-0.17]
Heterogeneity: Tau ² =0.01; Chi ² =	20.5, df=14(P=0.12); I	² =31.69%				
Test for overall effect: Z=5.91(P<	<0.0001)					
Test for subgroup differences: C	hi²=3.7, df=1 (P=0.72)), I ² =0%				
		F	avours opioids	-1 -0.5 0 0.5	1 Favours co	ntrol

Analysis 1.3. Comparison 1 Opioids versus placebo, Outcome 3 Number of participants experiencing any adverse event.

Study or subgroup	Opioids	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	/N IV, Random, 95% CI		IV, Random, 95% CI
1.3.1 Buprenorphine					
Breivik 2010	92/100	73/99		8.52%	1.25[1.09,1.42]
Subtotal (95% CI)	100	99	•	8.52%	1.25[1.09,1.42]
Total events: 92 (Opioids), 73 (Control))				
Heterogeneity: Not applicable					
Test for overall effect: Z=3.31(P=0)					
1.3.2 Codeine					
Peloso 2000	25/31	22/35	+	4.82%	1.28[0.94,1.75]
Subtotal (95% CI)	31	35		4.82%	1.28[0.94,1.75]
Total events: 25 (Opioids), 22 (Control))				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.59(P=0.11)					
1.3.3 Fentanyl					
Langford 2006	169/216	101/200	_ 	8%	1.55[1.33,1.81]
Subtotal (95% CI)	216	200	•	8%	1.55[1.33,1.81]
Total events: 169 (Opioids), 101 (Contr	rol)				
Heterogeneity: Tau ² =0; Chi ² =0, df=0(P-	<0.0001); l ² =100%				
Test for overall effect: Z=5.57(P<0.000)	1)				
1.3.4 Morphine					
Katz 2010	91/171	84/173	_ + •	6.77%	1.1[0.89,1.35]
Subtotal (95% CI)	171	173	-	6.77%	1.1[0.89,1.35]
Total events: 91 (Opioids), 84 (Control))				
Heterogeneity: Not applicable					
Test for overall effect: Z=0.86(P=0.39)					
		Favours opioids	0.5 0.7 1 1.5 2	Favours control	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Study or subgroup	Opioids	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	IV, Random, 95% CI		IV, Random, 95% CI
1.3.5 Oxycodone					
Afilalo 2010	299/342	103/169	_ 	8.6%	1.43[1.26,1.63]
Etropolski 2011	114/143	31/74	+	- 5.29%	1.9[1.44,2.52]
Hartrick 2009	144/172	27/85		4.65%	2.64[1.92,3.62]
Markenson 2005	52/56	28/51	· · · · · · · · · · · · · · · · · · ·	5.7%	1.69[1.31,2.19]
Matsumoto 2005	110/125	35/62	· · · · · · · · · · · · · · · · · · ·	6.34%	1.56[1.24,1.96]
NCT00486811	294/331	95/169		8.36%	1.58[1.38,1.81]
Subtotal (95% CI)	1169	610	•	38.93%	1.69[1.47,1.95]
Total events: 1013 (Opioids), 31	19 (Control)				
Heterogeneity: Tau ² =0.02; Chi ² =	=13.99, df=5(P=0.02); l ² =64.	26%			
Test for overall effect: Z=7.34(P-	<0.0001)				
1.3.6 Oxymorphone					
Matsumoto 2005	223/242	36/62	· · · · · · · · · · · · · · · · · · ·	6.62%	1.59[1.28,1.97]
Subtotal (95% CI)	242	62		6.62%	1.59[1.28,1.97]
Total events: 223 (Opioids), 36 ((Control)				
Heterogeneity: Tau ² =0; Chi ² =0,	df=0(P<0.0001); I ² =100%				
Test for overall effect: Z=4.22(P-	<0.0001)				
1.3.7 Tapentadol					
Afilalo 2010	261/344	103/169	-+	8.44%	1.24[1.09,1.42]
Etropolski 2011	199/305	31/74	· · · · · · · · · · · · · · · · · · ·	5.29%	1.56[1.18,2.06]
Hartrick 2009	201/325	27/85	+	4.57%	1.95[1.41,2.69]
NCT00486811	216/319	95/169		8.02%	1.2[1.03,1.4]
Subtotal (95% CI)	1293	497	-	26.33%	1.39[1.17,1.66]
Total events: 877 (Opioids), 256	6 (Control)				
Heterogeneity: Tau ² =0.02; Chi ² =	=8.94, df=3(P=0.03); l ² =66.4	4%			
Test for overall effect: Z=3.68(P	=0)				
Total (95% CI)	3222	1676	•	100%	1.49[1.35,1.63]
Total events: 2490 (Opioids), 89	91 (Control)				
Heterogeneity: Tau ² =0.02; Chi ² =	=47.91, df=14(P<0.0001); I ² =	70.78%			
Test for overall effect: Z=8.38(P-	<0.0001)				
Test for subgroup differences: 0	Chi ² =18.44, df=1 (P=0.01), I ²	=67.46%			

Analysis 1.4. Comparison 1 Opioids versus placebo, Outcome 4 Number of participants who withdrew because of adverse events.

n/N 00 2/9	IV, Random, 95% CI		IV, Random, 95% CI
00 2/9	۹ ـــــــــــ		
00 2/9	9		
	5	2.26%	15.35[3.77,62.39]
52 18/16	3	5.91%	2.14[1.27,3.61]
82 30/28	5 +	6.42%	1.48[0.96,2.29]
64 1/16	2 +	1.23%	7.9[1,62.47]
98 70	9	15.82%	3.1[1.38,6.94]
² =74.37%			
2 1 5	282 30/28 164 1/16 598 70	282 30/285 164 1/162 598 709	282 30/285 6.42% 164 1/162 1.23% 598 709 15.82% I ² =74.37% 1

Cochrane Database of Systematic Reviews

Study or subgroup	Opioids n/N	Control n/N	Risk Ratio IV, Random, 95% CI	Weight	Risk Ratio IV, Random, 95% Cl
Test for overall effect: Z=2.75(P=0.01	1)				
1.4.2 Codeine					
Kjaersgaard-Andersen 1990	40/83	10/75	_ 	5.34%	3.61[1.95,6.7]
Peloso 2000	15/51	4/52	+	3.36%	3.82[1.36,10.7
Quiding 1992	0/8	0/8			Not estimab
Subtotal (95% CI)	142	135	•	8.7%	3.67[2.16,6.2
Total events: 55 (Opioids), 14 (Contr	rol)				
Heterogeneity: Tau²=0; Chi²=0.01, d	f=1(P=0.93); I ² =0%				
Test for overall effect: Z=4.8(P<0.000	01)				
1.4.3 Fentanyl					
Langford 2006	54/202	20/197		6.19%	2.63[1.64,4.2
Subtotal (95% CI)	202	197	•	6.19%	2.63[1.64,4.2
Total events: 54 (Opioids), 20 (Contr	rol)				
Heterogeneity: Not applicable					
Test for overall effect: Z=4(P<0.0001)				
1.4.4 Hydromorphone					
NCT00980798	36/139	7/149		4.49%	5.51[2.54,11.9
Subtotal (95% CI)	139	149	-	4.49%	5.51[2.54,11.9
Total events: 36 (Opioids), 7 (Contro	ol)				
Heterogeneity: Not applicable					
Test for overall effect: Z=4.31(P<0.00	001)				
1.4.5 Morphine					
Caldwell 2002	53/222	5/73	+	4%	3.49[1.45,8.3
Katz 2010	18/171	13/173	_ + •	4.99%	1.4[0.71,2.7
Subtotal (95% CI)	393	246		9%	2.12[0.87,5.1
Total events: 71 (Opioids), 18 (Contr	rol)				
Heterogeneity: Tau ² =0.25; Chi ² =2.58	3, df=1(P=0.11); l ² =61.3	1%			
Test for overall effect: Z=1.65(P=0.1)					
1.4.6 Oxycodone					
Afilalo 2010	146/342	11/169	-+	5.54%	6.56[3.66,11.7
Chindalore 2005	79/309	0/51		0.74%	26.67[1.68,423.4
Etropolski 2011	35/143	2/74		2.27%	9.06[2.24,36.6
Friedmann 2011	43/201	22/207	- • -	6.18%	2.01[1.25,3.2
Hartrick 2009	52/172	3/85	· · · · · · · · · · · · · · · · · · ·	3%	8.57[2.75,26.6
Markenson 2005	20/56	2/51	+	2.26%	9.11[2.24,37.0
Matsumoto 2005	31/125	3/62	+	2.97%	5.13[1.63,16.1
NCT00486811	135/333	14/169		5.93%	4.89[2.91,8.2
Zautra 2005	20/55	2/49	+	2.26%	8.91[2.19,36.1
Subtotal (95% CI)	1736	917	•	31.14%	5.55[3.47,8.8
Total events: 561 (Opioids), 59 (Con					
Heterogeneity: Tau ² =0.24; Chi ² =18.3 Test for overall effect: 7=7.15(B<0.00		5%			
Test for overall effect: Z=7.15(P<0.00	JUT)				
1.4.7 Oxymorphone	100/070	0/07		- 0-0/	4 4050 04
Kivitz 2006	122/279	9/91		5.25%	4.42[2.34,8.3
Matsumoto 2005	103/242	3/62		3.07%	8.8[2.89,26.7
Subtotal (95% CI)	521	153		8.33%	5.32[2.93,9.6

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Opioids	Control	Risk Ratio	Weight	Risk Ratio
n/N	n/N	IV, Random, 95% CI		IV, Random, 95% Cl
ntrol)				
1, df=1(P=0.29); I ² =9.65	%			
0001)				
66/344	11/169	│ _ •	5.39%	2.95[1.6,5.43]
27/305	2/74	+	2.23%	3.28[0.8,13.47]
52/325	3/85	+	2.99%	4.53[1.45,14.16]
60/320	14/169	— + —	5.73%	2.26[1.3,3.93]
1294	497	•	16.34%	2.76[1.9,4]
ntrol)				
df=3(P=0.72); I ² =0%				
0001)				
5125	3003	•	100%	3.76[2.93,4.82]
Control)				
, df=24(P=0); I ² =59.04%)			
.0001)				
=11.2, df=1 (P=0.13), I ² =	37.49%			
	n/N htrol) 1, df=1(P=0.29); l ² =9.65 0001) 66/344 27/305 52/325 60/320 1294 htrol) df=3(P=0.72); l ² =0% 0001) 5125 Control) 5, df=24(P=0); l ² =59.04% 0001)	ntrol) 1, df=1(P=0.29); l ² =9.65% 0001) 66/344 11/169 27/305 2/74 52/325 3/85 60/320 14/169 1294 497 ntrol) df=3(P=0.72); l ² =0% 0001) 5125 3003 Control) 5, df=24(P=0); l ² =59.04%	n/N n/N IV, Random, 95% CI ntrol) 1, df=1(P=0.29); I ² =9.65% 0001) 66/344 11/169 27/305 2/74 52/325 3/85 60/320 14/169 1294 497 htrol) df=3(P=0.72); I ² =0% 0001) 5125 3003 ◆	n/N n/N IV, Random, 95% CI ntrol) 1, df=1(P=0.29); l ² =9.65% 0001) 66/344 66/344 11/169 27/305 2/74 52/325 3/85 60/320 14/169 1294 497 497 16.34% ntrol) 6f=3(P=0.72); l ² =0% 0001) 5125 3003 ◆ 100%

Analysis 1.5. Comparison 1 Opioids versus placebo, Outcome 5 Number of participants experiencing any serious adverse event.

Study or subgroup	Opioids n/N	Control n/N	Risk Ratio IV, Random, 95% Cl	Weight	Risk Ratio IV, Random, 95% Cl
1.5.1 Codeine					
Kjaersgaard-Andersen 1990	0/83	0/75			Not estimable
Subtotal (95% CI)	83	75			Not estimable
Total events: 0 (Opioids), 0 (Control)					
Heterogeneity: Not applicable					
Test for overall effect: Not applicable					
1.5.2 Fentanyl					
Langford 2006	6/216	2/200		77.39%	2.78[0.57,13.6]
Subtotal (95% CI)	216	200		77.39%	2.78[0.57,13.6]
Total events: 6 (Opioids), 2 (Control)					
Heterogeneity: Not applicable					
Test for overall effect: Z=1.26(P=0.21)					
1.5.3 Oxycodone					
Markenson 2005	3/56	0/51		22.61%	6.39[0.34,120.71]
Subtotal (95% CI)	56	51		22.61%	6.39[0.34,120.71]
Total events: 3 (Opioids), 0 (Control)					
Heterogeneity: Not applicable					
Test for overall effect: Z=1.24(P=0.22)					
Total (95% CI)	355	326		100%	3.35[0.83,13.56]
Total events: 9 (Opioids), 2 (Control)					
		Favours opioids	0.005 0.1 1 10 200	Favours control	

Study or subgroup	Opioids	Control		R	isk Rati	o		Weight	Risk Ratio
	n/N	n/N		IV, Ra	ndom, 9	95% CI			IV, Random, 95% CI
Heterogeneity: Tau ² =0; Chi ² =0.	24, df=1(P=0.63); I ² =0%								
Test for overall effect: Z=1.7(P=	:0.09)								
Test for subgroup differences:	Chi ² =0.24, df=1 (P=0.63), I ⁴	2=0%							
		Favours opioids	0.005	0.1	1	10	200	Favours control	

Analysis 1.6. Comparison 1 Opioids versus placebo, Outcome 6 Withdrawal symptoms.

Study or subgroup	Opioids	Control	log[Odds Ratio]	Odds Ratio	Weight	Odds Ratio
	Ν	Ν	(SE)	IV, Random, 95% Cl		IV, Random, 95% CI
1.6.1 Oxycodone						
Afilalo 2010	121	41	0.8 (0.652)		5.92%	2.18[0.61,7.81]
Subtotal (95% CI)					5.92%	2.18[0.61,7.81]
Heterogeneity: Not applicable						
Test for overall effect: Z=1.19(P=0.23)						
1.6.2 Morphine						
Katz 2010	171	173	1.1 (1.637)		- 0.94%	3.05[0.12,75.52]
Subtotal (95% CI)					0.94%	3.05[0.12,75.52]
Heterogeneity: Not applicable						
Test for overall effect: Z=0.68(P=0.5)						
1.6.3 Tapentadol						
Afilalo 2010	105	41	-0 (0.709)		5.01%	0.99[0.25,3.97]
Subtotal (95% CI)					5.01%	0.99[0.25,3.97]
Heterogeneity: Not applicable						
Test for overall effect: Z=0.01(P=0.99)						
1.6.4 Fentanyl						
Langford 2006	0	0	1.1 (0.169)		88.13%	2.97[2.13,4.14]
Subtotal (95% CI)				•	88.13%	2.97[2.13,4.14]
Heterogeneity: Not applicable						
Test for overall effect: Z=6.44(P<0.000	1)					
Total (95% CI)				•	100%	2.76[2.02,3.77]
Heterogeneity: Tau ² =0; Chi ² =2.42, df=	3(P=0.49); I ² =0%					
Test for overall effect: Z=6.4(P<0.0001)					
Test for subgroup differences: Chi ² =2.	42, df=1 (P=0.49), I	² =0%				
		Fa	avours opioids	0.01 0.1 1 10	¹⁰⁰ Favours co	ntrol

ADDITIONAL TABLES

Table 1. Stratified analyses: pain

Variable Num studi	ber of N of partic- es ipants opioids	N of partic- ipants control	Pain intensity SMD (95% Cl)	Hetero- geneity I ² (%)	P value*
-----------------------	---	-----------------------------------	---------------------------------------	--	----------

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

0.32

58%

55%

Table 1. Stratified analyses: pain (Continued) All trials 22 5180 3095 -0.28 (-0.35 to -0.20) Analgesic potency Veak 3 79 100 -0.51 (-1.01 to -0.01)

Strong	19	5101	2995	-0.26 (-0.35 to -0.18)	64%	
Route of administ	ration					0.36
Oral	17	4287	2188	-0.30 (-0.41 to -0.20)	70%	
Transdermal	5	893	907	-0.20 (-0.29 to -0.11)	0%	
Allocation conceal	ment					0.31
Adequate	8	1981	1141	-0.32 (-0.44 to -0.21)	48%	
Inadequate or un- clear	14	3199	1954	-0.24 (-0.35 to -0.13)	67%	
Blinding of partici	pants					0.23
Adequate	15	3050	1616	-0.32 (-0.42 to -0.22)	53%	
Inadequate or un- clear	7	2130	1479	-0.21 (-0.34 to -0.08)	73%	
Intention-to-treat	analysis					0.43
Yes	1	283	287	-0.14 (-0.30 to 0.02)	N/A	
No or unclear	21	4897	2808	-0.29 (-0.37 to -0.20)	63%	
Type of control int	ervention					0.97
Placebo	20	5132	3030	-0.28 (-0.36 to -0.19)	65%	
No intervention	2	48	65	-0.33 (-0.93 to 0.28)	35%	
Number of particip	pants rando	omised				0.08
> 200	16	4895	2796	-0.24 (-0.33 to -0.16)	64%	
≤200	6	285	299	-0.47 (-0.71 to -0.23)	48%	
Duration of treatm	nent					0.001
>1 month	10	2635	1972	-0.15 (-0.22 to -0.08)	25%	
≤1 month	12	2545	1123	-0.40 (-0.50 to -0.30)	37%	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Use of analgesic co-interventions

Copyright @ 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

0.59

Table 1. Stratified analyses: pain (Continued)

Unclear	16	3991	2204	-0.26 (-0.36 to -0.16)	65%	
Type of osteoart	hritis					0.77
Hip only	2	48	65	-0.33 (-0.93 to 0.28)	35%	
Knee only	4	1674	1010	-0.22 (-0.41 to -0.04)	78%	
Knee and hip	16	3458	2020	-0.29 (-0.38 to -0.20)	56%	

*P value for interaction. N/A: not available.

Table 2. Stratified analyses: function

Variable	Number of studies	N of partic- ipants opioids	N of partic- ipants control	Function SMD (95% Cl)	Hetero- geneity I ² (%)	P value*
All trials	12	2124	1429	-0.26 (-0.35 to -0.17)	32%	
Analgesic potency						0.42
Weak	2	74	95	-0.42 (-0.74 to -0.10)	6%	
Strong	10	2050	1334	-0.26 (-0.36 to -0.16)	48%	
Route of administr	ation					0.76
Oral	9	1679	974	-0.30 (-0.43 to -0.16)	58%	
Transdermal	3	445	455	-0.25 (-0.38 to -0.12)	0%	
Allocation conceal	ment					0.43
Adequate	6	1034	762	-0.32 (-0.45 to -0.18)	47%	
Inadequate or un- clear	6	1090	667	-0.23 (-0.37 to -0.09)	39%	
Blinding of particip	oants					0.008
Adequate	10	1656	1038	-0.32 (-0.40 to -0.24)	0%	
Inadequate or un- clear	2	468	391	-0.07 (-0.20 to 0.07)	0%	
Intention-to-treat	analysis					0.34
Yes	1	171	173	-0.13 (-0.34 to 0.08)	N/A	
No or unclear	11	1953	1256	-0.29 (-0.40 to -0.19)	44%	
Type of control inte	ervention					0.96
Placebo	11	2081	1369	-0.28 (-0.38 to -0.18)	49%	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Table 2. Stratified analyses: function (Continued)

			,			
No intervention	1	43	60	-0.29 (-0.68 to 0.11)	N/A	
Number of partici	pants ranc	lomised				0.11
> 200	8	1900	1187	-0.23 (-0.32 to -0.14)	26%	
≤200	4	224	242	-0.46 (-0.73 to -0.19)	51%	
Duration of treatr	nent					0.41
>1 month	6	1061	893	-0.25 (-0.41 to -0.09)	66%	
≤1 month	6	1063	536	-0.31 (-0.42 to -0.20)	0%	
Use of analgesic c	o-interven	tions				0.38
Similar between groups	4	460	456	-0.40 (-0.67 to -0.13)	71%	
Unclear	8	1664	973	-0.24 (-0.33 to -0.15)	16%	
Type of osteoarth	ritis					0.45
Hip only	1	43	60	-0.29 (-0.68 to 0.11)	N/A	
Knee only	2	538	376	-0.16 (-0.43 to 0.11)	76%	
Knee and hip	9	1543	993	-0.31 (-0.41 to -0.20)	31%	

*P value for interaction. N/A: not available.

APPENDICES

Appendix 1. MEDLINE, EMBASE, and CINAHL search strategy

Ovid MEDLINE	Ovid EMBASE	CINAHL through EBSCOhost	
Search terms for design	Search terms for design	Search terms for design	
1. randomized controlled trial.pt.	1. randomized controlled trial.sh.	1. (MH "Clinical Trials+")	
2. controlled clinical trial.pt.	2. randomization.sh.	2. (MH "Random Assignment")	
3. randomized controlled trial.sh.	3. double blind procedure.sh.	3. (MH "Double-Blind Studies") or (MH	
4. random allocation.sh.	4. single blind procedure.sh.	"Single-Blind Studies")	
5. double blind method.sh.	5. exp clinical trials/	4. TX (clin\$ n25 trial\$)	
6. single blind method.sh.	6. (clin\$ adj25 trial\$).ti,ab.	5. TX (sing\$ n25 blind\$)	
7. clinical trial.pt.	7. ((singl\$ or doubl\$ or trebl\$ or tripl\$)	6. TX (sing\$ n25 mask\$)	
8. exp clinical trial/	adj25 (blind\$ or mask\$)).ti,ab.	7. TX (doubl\$ n25 blind\$)	
9. (clin\$ adj25 trial\$).ti,ab.	8. placebo.sh.	8. TX (doubl\$ n25 mask\$)	
10. ((singl\$ or doubl\$ or trebl\$ or tripl\$)	9. placebo\$.ti,ab.	9. TX (trebl\$ n25 blind\$)	
adj25 (blind\$ or mask\$)).ti,ab.	10. random\$.ti,ab.	10. TX (trebl\$ n25 mask\$)	
11. placebos.sh.	11. methodology.sh.	11. TX (tripl\$ n25 blind\$)	
12. placebo\$.ti,ab.	12. comparative study.sh.	12. TX (tripl\$ n25 mask\$)	
13. random\$.ti,ab.	13. exp evaluation studies/	13. (MH "Placebos")	
14. research design.sh.	14. follow up.sh.	14. TX placebo\$	

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

(Continued)

15. comparative study.sh. 16. exp evaluation studies/ 17. follow up studies.sh. 18. prospective studies.sh. 19. (control\$ or prospectiv\$ or volunteer\$).ti,ab.

Search terms for Osteoarthritis

20. exp osteoarthritis/ 21. osteoarthriti\$.ti,ab,sh. 22. osteoarthro\$.ti,ab,sh. 23. gonarthriti\$.ti,ab,sh. 24. gonarthro\$.ti,ab,sh. 25. coxarthriti\$.ti,ab,sh. 26. coxarthro\$.ti,ab,sh. 27. arthros\$.ti,ab. 28. arthrot\$.ti,ab. 29. ((knee\$ or hip\$ or joint\$) adj3 (pain\$ or ach\$ or discomfort\$)).ti,ab. 30. ((knee\$ or hip\$ or joint\$) adj3 stiff \$).ti,ab.

15. prospective study.sh. 16. (control\$ or prospectiv\$ or volunteer\$).ti,ab.

15. TX random\$ 16. (MH "Study Design+") 17. (MH "Comparative Studies") 18. (MH "Evaluation Research") 19. (MH "Prospective Studies+") 20. TX (control\$ or prospectiv\$ or volunteer\$) 21. S1 or S2 or (.....) or S20

Search terms for Osteoarthritis Search terms for Osteoarthritis

17. exp osteoarthritis/ 18. osteoarthriti\$.ti,ab,sh. 19. osteoarthro\$.ti,ab,sh. 20. gonarthriti\$.ti,ab,sh. 21. gonarthro\$.ti,ab,sh. 22. coxarthriti\$.ti,ab,sh. 23. coxarthro\$.ti,ab,sh. 24. arthros\$.ti,ab. 25. arthrot\$.ti,ab. 26. ((knee\$ or hip\$ or joint\$) adj3 (pain\$ or ach\$ or discomfort\$)).ti,ab. 27. ((knee\$ or hip\$ or joint\$) adj3 stiff \$).ti,ab.

22. osteoarthriti\$ 23. (MH "Osteoarthritis") 24. TX osteoarthro\$ 25. TX gonarthriti\$ 26. TX gonarthro\$ 27. TX coxarthriti\$ 28. TX coxarthro\$ 29. TX arthros\$ 30. TX arthrot\$ 31. TX knee\$ n3 pain\$ 32. TX hip\$ n3 pain\$ 33. TX joint\$ n3 pain\$ 34. TX knee\$ n3 ach\$ 35. TX hip\$ n3 ach\$ 36. TX joint\$ n3 ach\$ 37. TX knee\$ n3 discomfort\$ 38. TX hip\$ n3 discomfort\$ 39. TX joint\$ n3 discomfort\$ 40. TX knee\$ n3 stiff\$ 41. TX hip\$ n3 stiff\$ 42. TX joint\$ n3 stiff\$ 43. S22 or S23 or S24....or S42

Search terms for Opioids

Search terms for Opioids

Search terms for Opioids

-		
31. exp Analgesics, Opioid/	28. exp Analgesics, Opioid/	44. MH " Analgesics, Opioid"
32. exp Narcotics/	29. exp Narcotic Analgesic Agent/	45. MH "Narcotics"
33. acetyldihydrocodeine.tw.	30. acetyldihydrocodeine.tw.	46. TX acetyldihydrocodeine
34. alfentanil.tw.	31. alfentanil.tw.	47. TX alfentanil
35. allylprodine.tw.	32. allylprodine.tw.	48. TX allylprodine
36. alphamethylfentanyl.tw.	33. alphamethylfentanyl.tw.	49. TX alphamethylfentanyl
37. alphaprodine.tw.	34. alphaprodine.tw.	50. TX alphaprodine
38. benzylmorphine.tw.	35. benzylmorphine.tw.	51. TX benzylmorphine
39. betaprodine.tw.	36. betaprodine.tw.	52. TX betaprodine
40. bezitriamide.tw.	37. bezitriamide.tw.	53. TX bezitriamide
41. buprenorphine.tw.	38. buprenorphine.tw.	54. TX buprenorphine
42. butorphanol.tw.	39. butorphanol.tw.	55. TX butorphanol
43. bremazocine.tw.	40. bremazocine.tw.	56. TX bremazocine
44. carfentan\$.tw.	41. carfentan\$.tw.	57. TX carfentan\$
45. codeine.tw.	42. codeine.tw.	58. TX codeine
46. contin.tw.	43. contin.tw.	58. TX contin
47. dextromoramide.tw.	44. dextromoramide.tw.	60. TX dextromoramide
48. dextropropoxyphene.tw.	45. dextropropoxyphene.tw.	61. TX dextropropoxyphene
49. dezocine.tw.	46. dezocine.tw.	62. TX dezocine
50. diacetylmorphine.tw.	47. diacetylmorphine.tw.	63. TX diacetylmorphine
51. diamorphine.tw.	48. diamorphine.tw.	64. TX diamorphine
52. dihydrocodeine.tw.	49. dihydrocodeine.tw.	65. TX dihydrocodeine
53. dihydromorphine.tw.	50. dihydromorphine.tw.	66. TX dihydromorphine
54. dihydromorphone.tw.	51. dihydromorphone.tw.	67. TX dihydromorphone
55. diphenoxylate.tw.	52. diphenoxylate.tw.	68. TX diphenoxylate

Oral or transdermal opioids for osteoarthritis of the knee or hip (Review)

Copyright $\ensuremath{\mathbb S}$ 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Library

Trusted evidence. Informed decisions. Better health.

(Continued) 56. dipipanone.tw. 57. enadoline.tw. 58. ethylketazocine.tw. 59. ethylmorphine.tw. 60. etonitazene.tw. 61. etorphine.tw. 62. fentanyl.tw. 63. heroin.tw. 64. hydrocodone.tw. 65. hydromorphin\$.tw. 66. hydromorphone.tw. 67. ketazocine.tw. 68. ketobemidone.tw. 69. lefetamine.tw. 70. levomethadon.tw. 71. levomethadyl.tw. 72. levomethorphan\$.tw. 73. levorphanol.tw. 74. loperamide.tw. 75. meperidine.tw. 76. meptazinol.tw. 77. methadone.tw. 78. methadyl.tw. 79. methylmorphine.tw. 80. morphin\$.tw. 81. nalbuphine.tw. 82. narcotic\$.tw. 83. nicocodeine.tw. 84. nicomorphine.tw. 85. normorphine.tw. 86. noscapin\$.tw. 87. ohmefentanyl.tw. 88. opiate\$.tw. 89. opioid\$.tw. 90. opium.tw. 91. oripavine.tw. 92. oxycodone.tw. 93. oxycontin.tw. 94. oxymorphone.tw. 95. papaveretum.tw. 96. papaverin.tw. 97. pentazocine.tw. 98. percocet.tw. 99. peronine.tw. 100. pethidine.tw. 101. phenazocine.tw. 102. phencyclidine.tw. 103. pholcodine.tw. 104. piritramid\$.tw. 105. prodine.tw. 106. promedol.tw. 107. propoxyphene.tw. 108. remifentanil.tw. 109. sufentanil.tw. 110. tapentadol.tw. 111. thebaine.tw. 112. tilidine.tw.

54. enadoline.tw. 55. ethylketazocine.tw. 56. ethylmorphine.tw. 57. etonitazene.tw. 58. etorphine.tw. 59. fentanyl.tw. 60. heroin.tw. 61. hydrocodone.tw. 62. hydromorphin\$.tw. 63. hydromorphone.tw. 64. ketazocine.tw. 65. ketobemidone.tw. 66. lefetamine.tw. 67. levomethadon.tw. 68. levomethadyl.tw. 69. levomethorphan\$.tw. 70. levorphanol.tw. 71. loperamide.tw. 72. meperidine.tw. 73. meptazinol.tw. 74. methadone.tw. 75. methadyl.tw. 76. methylmorphine.tw. 77. morphin\$.tw. 78. nalbuphine.tw. 79. narcotic\$.tw. 80. nicocodeine.tw. 81. nicomorphine.tw. 82. normorphine.tw. 83. noscapin\$.tw. 84. ohmefentanyl.tw. 85. opiate\$.tw. 86. opioid\$.tw. 87. opium.tw. 88. oripavine.tw. 89. oxycodone.tw. 90. oxycontin.tw. 91. oxymorphone.tw. 92. papaveretum.tw. 93. papaverin.tw. 94. pentazocine.tw. 95. percocet.tw. 96. peronine.tw. 97. pethidine.tw. 98. phenazocine.tw. 99. phencyclidine.tw. 100. pholcodine.tw. 101. piritramid\$.tw. 102. prodine.tw. 103. promedol.tw. 104. propoxyphene.tw. 105. remifentanil.tw. 106. sufentanil.tw. 107. tapentadol.tw. 108. thebaine.tw. 109. tilidine.tw.

53. dipipanone.tw.

69. TX dipipanone 70. TX enadoline 71. TX ethylketazocine 72. TX ethylmorphine 73. TX etonitazene 74. TX etorphine 75. TX fentanyl 76. TX heroin 77. TX hydrocodone 78. TX hydromorphin\$ 79. TX hydromorphone 80. TX ketazocine 81. TX ketobemidone 82. TX lefetamine 83. TX levomethadon 84. TX levomethadyl 85. TX levomethorphan\$ 86. TX levorphanol 87. TX loperamide 88. TX meperidine 89. TX meptazinol 90. TX methadone 91. TX methadyl 92. TX methylmorphine 93. TX morphin\$ 94. TX nalbuphine 95. TX narcotic\$ 96. TX nicocodeine 97. TX nicomorphine 98. TX normorphine 99. TX noscapin\$ 100. TX ohmefentanyl 101. TX opiate\$ 102. TX opioid\$ 103. TX opium 104. TX oripavine 105. TX oxycodone 106. TX oxycontin 107. TX oxymorphone 108. TX papaveretum 109. TX papaverin 110. TX pentazocine 111. TX percocet 112. TX peronine 113. TX pethidine 114. TX phenazocine 115. TX phencyclidine 116. TX pholcodine 117. TX piritramid\$ 118. TX prodine 119. TX promedol 120. TX propoxyphene 121. TX remifentanil 122. TX sufentanil 123. TX tapentadol 124. TX thebaine 125. TX tilidine 126. S44 or S45 or S125

Combining terms

Combining terms

Combining terms

(Continued) 113. or/31-112 114. or/1-19 115. or/20-30 116. and/113-115 117. animal/ 118. animal/ and human/ 119. 117 not 118 120. 116 not 119 121. remove duplicates from 120

110. or/28-109 111. or/1-16 112. or/17-27 113. and/110-112 114. animal/ 115. animal/ and human/ 116. 114 not 115 117. 113 not 116 118. remove duplicates from 117 **Cochrane** Database of Systematic Reviews

127. S21 and S43 and S126

Appendix 2. CENTRAL search strategy

CENTRAL

Search terms for Osteoarthritis

#1. MeSH descriptor Osteoarthritis explode all trees

#2. (osteoarthritis* OR osteoarthro* OR gonarthriti* OR gonarthro* OR coxarthriti* OR coxarthro* OR arthros* OR arthrot* OR ((knee* OR hip* OR joint*) near/3 (pain* OR ach* OR discomfort*))
OR ((knee* OR hip* OR joint*) near/3 stiff*)) in Clinical Trials

Search terms for Opioids

#3. MeSH descriptor Analgesics, Opioid explode all trees

#4. MeSH descriptor Narcotics explode all trees

#5. (acetyldihydrocodeine OR alfentanil OR allylprodine OR alphamethylfentanyl OR alphaprodine OR benzylmorphine OR betaprodine OR bezitriamide OR buprenorphine OR butorphanol OR bremazocine OR carfentan* OR codeine OR contin OR dextromoramide OR dextropropoxyphene OR dezocine OR diacetylmorphine OR diamorphine OR dihydrocodeine OR dihydromorphine OR dihydromorphone OR diphenoxylate OR dipipanone OR enadoline OR ethylketazocine OR ethylmorphine OR etonitazene OR etorphine OR fentanyl OR heroin OR hydrocodone OR hydromorphin* OR hydromorphone OR ketazocine OR ketobemidone OR lefetamine OR levomethadon OR levomethadyl OR levomethorphan* OR levorphanol OR loperamide OR meperidine OR meptazinol OR methadone OR methadyl OR methylmorphine OR morphin* OR nalbuphine OR narcotic* OR nicocodeine OR nicomorphine OR normorphine OR noscapin* OR ohmefentanyl OR opiate* OR opioid* OR opium OR oripavine OR oxycodone OR oxycontin OR oxymorphone OR papaveretum OR papaverin OR pentazocine OR percocet OR peronine OR pethidine OR phenazocine OR phencyclidine OR pholcodine OR piritramid* OR prodine OR promedol OR propoxyphene OR remifentanil OR sufentanil OR tapentadol OR thebaine OR tilidine) in Clinical Trials

Combining terms

#6. (#1 OR #2) #7. (#3 OR #4 OR #5) #8. (#6 AND #7) in Clinical Trials

WHAT'S NEW

Date	Event	Description
22 March 2013	New search has been performed	Search updated with 12 additional trials included.
22 August 2012	New citation required but conclusions have not changed	Change in authorship

HISTORY

Protocol first published: Issue 2, 2001 Review first published: Issue 4, 2009

Date	Event	Description
8 October 2009	Amended	NNTs for pain and function were corrected
13 May 2008	Amended	Change in authorship
1 May 2008	Amended	CMSG ID C141-R

CONTRIBUTIONS OF AUTHORS

Protocol completion: Nüesch, Rutjes, Husni, Jüni. Acquisition of data: Nüesch, da Costa, Kasteler, Rutjes. Analysis and interpretation of data: Nüesch, da Costa, Kasteler, Husni, Welch, Rutjes, Jüni. Manuscript preparation: Nüesch, da Costa, Kasteler, Husni, Welch, Rutjes, Jüni. Statistical analysis: Nüesch, da Costa, Rutjes, Jüni.

Drs. Nüesch and da Costa contributed equally to this review.

DECLARATIONS OF INTEREST

None.

SOURCES OF SUPPORT

Internal sources

• Institute of Social and Preventive Medicine, University or Bern, Switzerland.

Intramural grants

External sources

• Swiss National Science Foundation, Switzerland.

National Research Program 53 on musculoskeletal health (grant numbers 4053-40-104762/3 and 3200-066378)

• Marie Curie Intra-European Fellowship, Other.

Dr Nüesch was recipient of a Marie Curie Intra-European Fellowship for Career Development (grant number FP7-PEOPLE-2010-IEF-273673)

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

The cut-off to distinguish between short-term and long-term trials was changed from 26 weeks to one month. Six months was considered to be rather long as the cut-off for an agent that is not considered to be a structure-modifying drug. In the absence of definitions for short-term treatment in osteoarthritis treatment guidelines, we used the median follow-up duration in the trials included in the first review (four weeks) as a cut-off to discriminate between trials of shorter and longer duration.

We did not include the electronic database CINAHL in our search update since, in our previous search, this database did not identify any additional hits. Finally, we did not include the OARSI database in our search update, as we no longer had access to this database. We added analyses stratified by type of osteoarthritis (hip only versus knee only versus mixed) upon request of peer reviewers.

INDEX TERMS

Medical Subject Headings (MeSH)

Administration, Cutaneous; Administration, Oral; Analgesics, Opioid [*administration & dosage] [adverse effects]; Osteoarthritis, Hip [*drug therapy]; Osteoarthritis, Knee [*drug therapy]; Pain Measurement; Randomized Controlled Trials as Topic

MeSH check words

Humans