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Introduction
According to the International Society for the Study of 
Vascular Anomalies classification, arteriovenous malfor-
mations (AVMs) are high-flow, typically congenital lesions 
where there is an abnormal connection between feeding 
arteries and draining veins without an intervening capillary 
bed.1 The result is that blood is shunted through a collection 
of dysmorphic vessels referred to as the nidus.1,2 AVMs are 
rare and occur most frequently within the central nervous 
system, with an estimated incidence of approximately 1 per 
100,000 per year in unselected populations.3,4 Other sites 
include the trunk and the peripheries.

There are four primary treatment options for AVMs: 
conservative management, surgery, endovascular emboli-
sation or radiosurgery.5 Each has its own advantages and 
disadvantages, and the decision regarding which option 

to pursue is often decided based on patient characteristics 
and features of the AVM. For example, the Spetzler-Martin 
classification has been developed to predict risk of open 
neurosurgery for patients with AVMs, and accounts for 
size, location and venous drainage of the AVM.6 Further-
more, advanced knowledge of the architectural features 
of the AVM, including the size and location of the nidus 
and information on feeding arteries, is essential for oper-
ative or endovascular planning. Moreover, some features 
such as deep location, single draining vein and deep venous 
drainage are associated with an increased risk of haemor-
rhage from intracranial AVMs,4,7,8 allowing clinicians to 
identify high-risk patients. As such, imaging plays a pivotal 
role in the workup of AVMs. While CT angiography and 
magnetic resonance angiography (MRA) are important in 
the workup, catheter angiography is considered the gold 
standard.5
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Objectives: To compare the performance of arterial spin 
labelling (ASL) in evaluating arteriovenous malforma-
tions (AVMs) against the current gold standard of cath-
eter angiography.
Methods: We systematically reviewed the published liter-
ature using EMBASE and Medline. We included studies 
that compared ASL to catheter angiography in the 
assessment of AVMs in three outcome domains: detec-
tion, angioarchitectural and haemodynamic features.
Results: From 314 unique citations, 19 studies repre-
senting 289 patients with intracranial AVMs met our 
inclusion criteria. We did not pool data due to marked 
heterogeneity in study outcome measures. Seven studies 
showed high diagnostic performance of ASL in identi-
fying arterial feeders, with sensitivity ranging from 84.6 
to 100% and specificity ranging from 93.3 to 100%. Six 
studies showed strong ability in detecting arteriovenous 

shunting, with sensitivity ranging from 91.7 to 100% 
and specificity ranging from 90 to 100%. Seven studies 
demonstrated that ASL could identify nidal location and 
size as well as catheter angiography, while five studies 
showed relatively poorer performance in delineating 
venous drainage. Two studies showed 100% sensitivity 
of ASL in the identification of residual or obliterated 
AVMs following stereotactic radiosurgery.
Conclusions: Despite limitations in the current evidence 
base and technical challenges, this review suggests 
that ASL has a promising role in the work-up and post-
treatment follow-up of AVMs. Larger scale prospective 
studies assessing the diagnostic performance of ASL are 
warranted.
Advances in knowledge: ASL demonstrates overall 
validity in the evaluation of intracranial AVMs.
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Arterial spin labelling (ASL) is a magnetic resonance (MR) 
perfusion technique where water in arterial blood is used as 
an endogenous freely diffusible tracer. ASL involves labelling 
inflowing arterial blood by applying an inversion radiofrequency 
pulse proximal to the imaging plane, the nature of which varies 
according to the specific method employed.9 Subsequently, signal 
from the arterial blood flow in the imaging plane is subtracted 
from unlabelled control images to provide a subtracted image. 
As a result, the signal intensity in the resultant image is propor-
tional to blood flow10,11 (Figure 1). ASL has emerged as a useful 
tool in the assessment of a range of neurological conditions 
where cerebral perfusion is altered, ranging from acute strokes 
and tumours to vascular malformations and chronic cerebrovas-
cular disease.12–15

To our knowledge, there have been no systematic reviews focused 
on the utility of ASL in the imaging of AVMs. This systematic 
review therefore sought to compare the diagnostic performance 
of ASL in the assessment and characterisation of AVMs against 
the current gold standard of catheter angiography.

Methods
Following a predefined protocol (available from the authors 
on request), we systematically reviewed the peer-reviewed, 
published literature according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses guidelines.16 
We searched two electronic databases using the search terms 
detailed in the Supplementary Material 1: EMBASE and Medline 
for articles with no time or language restrictions. Reference lists 
of included studies were screened to identify further data.

After screening titles and abstracts, we performed a full-text 
review of remaining articles. The screening and full-text review 

were conducted by two independent reviewers (SR and DM) 
with arbitration in case of disagreement (NK). The reviewers 
were blinded from each other in the selection process. Inclu-
sion criteria included any primary study that: 1) involved any 
form of ASL imaging; 2) had adult or paediatric patients with 
AVMs; and 3) provided a direct comparison with catheter 
angiography.

During screening and full-text review, a study was excluded once 
it met any exclusion criterion. The exclusion criteria were always 
applied in the following order: 1) ASL imaging was not used; 
2) no patients with intracranial AVMs were included in study 
cohort; 3) catheter angiography was not performed for compar-
ison; 4) no appropriate outcome measures reported; and 5) indi-
vidual case reports or conference abstracts.

Outcomes were categorised according to three domains: overall 
detection (including accuracy of presence, location and size), 
architectural features (including nidus, feeding arteries and 
draining veins) and haemodynamic features (including flow and 
arteriovenous shunting). We extracted any data that allow direct 
comparison of ASL performance with catheter angiography 
in these domains. We recorded information in a standardised 
database on the following: study design, patient characteristics, 
sample size, outcome measures and associated statistical signif-
icance, ASL protocols (including labelling method, MR field 
strength and sequence parameters) and information pertaining 
to the quality assessment outlined below.

We gave a descriptive analysis of the outcomes and provided a 
qualitative analysis of the data. We did not pool outcomes due 
to the marked heterogeneity in study outcome measures and 
populations.

Using an adapted QUADAS-2 tool,17 we evaluated the quality of 
studies according to five categories, each reflecting a key domain 
of QUADAS-2:

•	 Study design (under the domain “patient selection”)
•	 Patient enrolment method (under “patient selection”)
•	 Risk of individual interpreter subjectivity (under “index test” 

and “reference standard”)
•	 Risk of recall bias (under “index test” and “reference standard”)
•	 Time elapsed between ASL imaging and catheter angiography 

(“flow and timing”)

Details of how each study was assessed against each criterion is 
outlined in the Supplementary Material 1.

Results
Of 314 unique records, we excluded 238 by abstract/title 
screening and 57 by full-text review (Figure 2). Nineteen studies 
met the inclusion criteria and provided outcomes on 289 patients 
with intracranial AVMs. There were no patients with AVMs 
located in other anatomical sites which met the inclusion criteria. 
A summary of patient characteristics and outcome measures by 
study is provided in Table 1.

Figure 1. A diagram outlining the principle of pseudocontinu-
ous ASL imaging. Inflowing arterial water is labelled by apply-
ing an inversion radiofrequency pulse at the neck. A “labelled” 
image is then acquired. Subsequently, a “control” image is 
acquired without labelling. The final image is produced by 
subtracting the “labelled” image from the “control” image. 
Diagram reproduced with permission from the Functional MRI 
Laboratory, University of Michigan.

http://birpublications.org/bjr
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Description of studies
The majority of studies were retrospective in study design (n = 
11, 57.9%),18–28 and the remaining were prospective compara-
tive studies (n = 8, 42.1%).29–36 Sample sizes in studies were rela-
tively small, with a mean of 15.2 patients per study (range: 2–53). 
Labelling methods and magnetic field strengths used in each 
study are outlined in Table  1. Other details of MR parameters 
used were not as consistently reported and are reported in the 
Supplementary Material 1.

Most studies did not employ restrictions on patient or AVM 
characteristics, but tended to primarily enrol a large adult popu-
lation (n = 10, 52.6%). Only two studies (10.5%) focused exclu-
sively on paediatric patients, with a combined sample size of 40 
patients.19,24 Some had focused on the follow-up for procedures 
to treat the AVM (n = 4, 21.1%), namely poststereotactic radio-
surgery18,22,25 and postembolisation32 with a total of 39 patients. 
Two studies only included patients with untreated AVMs,26,27 
one of which recruited newly diagnosed AVMs.26 One study only 
recruited patients with small AVMs (defined as <2 cm) and was 
combined with patients with arteriovenous fistulas (AVFs).23

Study quality
The majority of studies were retrospective and were therefore 
deemed relatively low quality in this category (n = 11, 57.9%). Only 
two studies (10.5%) described recruitment methods intended to 
minimise selection bias, by using consecutive patients.28,33 The 
vast majority of studies used at least two interpreters to assess 
the ASL imaging and were therefore deemed high quality in this 
category (n = 17, 89.5%). Most studies had described sufficient 
blinding to be assessed as high quality (n = 11, 57.9%). ASL 
imaging and catheter angiography were performed within 6 
months of one another in most studies (n = 14, 73.7%), whereas 

timing was not reported in the remaining five studies. A full list 
of study quality assessments is provided in Table 2.

Detection of AVMs
Three studies demonstrated a sensitivity of 78%,23 95.1%28 and 
98%,34 respectively, in detecting the overall presence of an AVM, 
with the limitation that the former reflected a mixed cohort of 
patients with small AVMs and AVFs.23 Moreover, two studies 
investigating the identification of AVMs following stereotactic 
radiosurgery demonstrated 100% sensitivity in detecting residual 
AVMs,18,25 and high specificities of 95%25 and 100%.18

Four studies evaluated concordance in Spetzler-Martin classifi-
cations between ASL and catheter angiography.21,28,35,36 There 
was an overall moderate intermodality agreement among three 
studies,21,28,36 with Cohen’s κ coefficients ranging from 0.4321 
to 0.89.36 The fourth showed high concordance at 87.5% at 7T, 
reducing to 50% at 3T. The discrepancies at both field strengths 
were solely due to inaccurate or inadequate delineation of venous 
drainage.35 Finally, one study found a statistically significant, 
moderately positive correlation between overall AVM signal 
intensity of the AVM and size of the AVM measured during cath-
eter angiography (r = 0.561, p < 0.001),20irrespective of whether 
the AVM had been previously treated or not.

Angioarchitectural features of AVMs
A number of studies assessed performance in identifying arterial 
feeders (n = 7, 36.8%).26,27,29–31,33,36 Across five studies,26,29–31,33 
sensitivity in this domain ranged from 84.6%33 to 100%31 
(median: 91%). Across two studies, specificity ranged from 
93.33%33 to 100%.26 Good diagnostic performance was demon-
strated for both standard and custom labelling efficiencies, with 
an area under the curve value of 0.94 and 0.96, respectively, (p < 
0.01).33 Interestingly, one study identified an arterial feeder on 
ASL which was not accessible on catheter angiography due to 
altered vasculature.31 The final two studies revealed high inter-
modality agreement for delineating arterial feeders at 0.8536 and 
0.88,27 respectively.

Fewer studies assessed venous drainage (n = 5, 26.3%)24,26–28,36 
and showed relatively lower performance in this domain. One 
study found the mean sensitivity and specificity for the identifica-
tion of draining veins by vessel selective ASL to be 62 and 100%, 
respectively. Meanwhile, non-vessel selective ASL had slightly 
higher sensitivity at 79% but lower specificity at 93%.26 Moreover, 
in a study of paediatric patients, the median number of draining 
veins detected on DSA was approximately twice as many as on ASL 
(3.63 on DSA versus 1.76 on ASL, p < 0.05).24 Three studies showed 
similar intermodality agreement for venous drainage patterns at 
0.72,28 0.8236 and 0.80 (95% CI: 0.45–1.00),27 respectively, with 
the latter marginally lower compared to both arterial drainage and 
nidus size.27 One of these studies demonstrated markedly superior 
intermodality agreement an acquisition window over two cardiac 
cycles.36

AVM nidus
Some studies reported outcome measures on the AVM nidus (n 
= 6, 31.6%).19,26–28,30,36 Two studies demonstrated 100% accuracy 

Figure 2. Preferred reporting items for systematic reviews and 
meta-analyses (PRISMA) flow diagram outlining the selection 
process for studies

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20190830/suppl_file/Supplementary Appendix ASL Sytematic Review.docx
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of ASL in determining nidus location from a combined cohort of 
24 patients,19,30 21 of whom were paediatric patients. Two studies 
showed no significant differences in nidus size across DSA and 
ASL.26,28 Similarly, two studies found excellent intermodality agree-
ment between ASL and catheter angiography for nidus size, with an 
overall Cohen’s κ value of 1.00 from a total of 22 patients.27,36

Haemodynamic features of AVMs
Some studies reported haemodynamic outcome measures of 
AVMs, specifically of AV shunting (n = 6, 31.6%).20,21,24,25,32,34 
Sensitivity in detecting AV shunting ranged from 91.7%21 to 
100%,21,24 including 100% sensitivity in an exclusive cohort of 
19 paediatric patients.24 Specificity was measured by two studies 
and ranged from 90%34 to 100%.21 Importantly, the study with 
the largest sample size in this review (53 patients) showed robust 
diagnostic performance of ASL in detecting AV shunting.34 
From a sample size of eight patients, one study demonstrated 
good agreement in quantifying AV shunt reduction postembo-
lisation with operator-based estimates during catheter angiog-
raphy.32 Similarly, a further study showed 100% sensitivity in 
detecting the disappearance of AV shunting from a cohort of 
seven patients following on from stereotactic radiosurgery.22

Discussion
Nineteen studies evaluated the diagnostic performance of 
ASL in the characterisation of intracranial AVMs in compar-
ison with catheter angiography. Findings suggest that ASL has 
promising diagnostic potential, particularly in ascertaining the 
location of the AVM and the nidus, determining the presence 
of AV shunting and identifying arterial feeders. Of all outcome 
measures, the evidence for arterial feeders26,27,29–31,33,36 and 
AV shunting20,21,24,25,32,34 are the strongest, with several studies 
showing consistently high diagnostic performance in these 
domains. Furthermore, there is some evidence that ASL may 
provide a robust non-invasive imaging alternative to catheter 
angiography in assessing the response to treatment following 
stereotactic radiosurgery and embolisation. However, there is 
evidence from five studies that suggests inferior performance 
in the characterisation of venous drainage. In addition, ASL 
appears to be a usable imaging tool, with high interobserver 
agreement,20,23,25–27,33–35 adequate diagnostic quality27,33,35 and 
acceptable scan times (with a mean reported time of 5 min). 
However, the strength of the evidence base is limited by small 
sample sizes and relatively low quality in some domains (partic-
ularly study design and patient recruitment).

Although heterogeneity in ASL labelling methods prevented 
analysis of its effects on the imaging of AVMs, there is prelim-
inary evidence that increased field strength to 7T35 and electro-
cardiogram gating over two cardiac cycles as opposed to one36 
can improve the diagnostic performance of ASL. Furthermore, 
although vessel-selective ASL confers the theoretical advantage 
of imaging AVMs according to their specific vascular territory, 
evidence from three studies demonstrates no significant differ-
ence in performance to non-selective methods.29,31,33

Two further conference abstracts also addressed our research 
question.37,38 The first study showed that ASL was able to 
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successfully identify all three AVMs in patients with hereditary 
haemorrhagic telangiectasia, two of which were smaller than 
1 cm.37 Conversely, the second contrastingly showed a lower 
sensitivity of 72% and intermodality agreement with DSA of only 
0.39 for ASL among paediatric patients in post-treatment AVM 
surveillance. However, specificity was 100% and sensitivity rose 
to 92% when using additional techniques that combined ASL 
with spoiled gradient recalled echo.38 Moreover, ASL imaging 
has been shown to be useful in diagnosing paediatric cervicofa-
cial AVMs by demonstrating increased lesional flow.39

ASL may confer several advantages over both catheter angi-
ography and conventional MRA. First, the use of intravenous 
gadolinium in some conventional MRA techniques may be 
avoided as ASL uses water as an endogenous tracer.13 This is of 
clinical importance as ASL may offer an alternative option for 
patients with renal impairment who are at risk of nephrogenic 
systemic fibrosis,40 and in other circumstances where gado-
linium poses risks, such as in paediatric patients in the first year 
of life and during pregnancy.41,42 Second, ASL may offer a safer, 
non-invasive alternative to catheter angiography in select cases, 
obviating the risks posed by the latter.43,44 Third, ASL provides 
a functional AVM assessment that provides an objective, 

quantitative measure of flow. Fourth, ASL may identify some 
arterial feeders not detected on catheter angiography31 and may 
offer better characterisation of low-flow segments of the nidus.32 
Fifth, strong pressure injection of contrast agent during catheter 
angiography may result in an overestimation in the proportion of 
blood flow in the nidus, due to reflux from other feeding arteries. 
This phenomenon may have been reflected in some studies in 
our review.26,32 ASL may mitigate for this by providing a more 
physiological indication of cerebral blood flow. Sixth, ASL may 
occasionally be useful in identifying AVMs that may otherwise 
be obscured on DSA by mass effect secondary to intracerebral 
haemorrhage.23

In contrast, there are a number of disadvantages in using ASL. The 
reduced reliability of ASL for venous drainage may be accounted 
for by the recovery of spin inversion in arterial water during its 
transit, such that the signal reduces by the time it enters venous 
drainage.45 Furthermore, there was interstudy variation in the 
MR parameters employed in this review. Although no general 
trend was identified in whether the variation in these parame-
ters significantly affected outcome measures, there were too few 
studies to formally assess this. Indeed, it has been shown that 
altering parameters such as postlabelling delay time can change 

Table 2. A summary of quality assessment of studies included in qualitative synthesis

Study Study design Patient enrolment
Interpreter 
subjectivity

Confirmation bias 
(blinding)

Delay between 
modalities

Kukuk 2010 High Low High High High

Amponsah 2012 Low Low Low Low Unclear

Blauwblomme 
2015

Low Low High Unclear High

Wu 2014 High Low High Unclear High

Jensen-
Kondering 2015

High Low High Unclear Unclear

Sunwoo 2015 Low Low High High High

Schubert 2018 Low Low High High Unclear

Kodera 2017 Low Low High Unclear Unclear

Le 2012 Low Low High High High

Suazo 2012 High Low Unclear Unclear High

Yu 2014 High High High High High

Nabavizadeh 
2014

Low Low High High High

Heit 2019 Low Low High High High

Fujima 2016 Low Low High High High

Hodel 2017 High Low High High High

Iryo 2016 Low Low High High High

Cong 2018 High Low High Unclear Unclear

Togao 2019 Low High High Low High

Raoult 2014 High Low High High High

Quality assessment was carried out using an adapted QUADAS-2 tool. A colour-coded system is used to represent the quality of the study 
under each domain, as opposed to risk of bias. Green is used if the study quality was high, red if the study quality was low and grey if there was 
insufficient information reported to formulate a judgement.
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nidal, venous and gray matter perfusion.46 The sensitivity of ASL 
in evaluating small AVMs, low flow AVMs, small calibre arte-
rial feeders and draining veins is also not clear from current 
evidence, and may represent another potential issue.

Moreover, AVMs in particular locations such as the apical cranial 
convexity may be more difficult to detect on ASL due to greater 
loss of signal as the labelled blood travels further from the label-
ling plane.21 There may also be an underestimation of total blood 
flow in AVMs on ASL, as regions of interests may include not 
only the high-flow nidus but also the arterial feeders and draining 
veins, resulting in an average value for flow.32 Another caution in 
the immediate postintervention period is that ASL may underes-
timate angiographically confirmed complete AV shunt occlusion, 
which may be due to dilatation of proximal segments of previous 
feeding arteries32 or changes in autoregulation.47 However, this 
can be mitigated by comparative use of MRA. Furthermore, ASL 
interpretation can be hindered by inhomogeneities in certain 
vessel territories31 ; hyperintensity secondary to conditions such 
as seizures and luxury perfusion48 ; and large changes in cerebral 
blood flow that occur with age.49

Review limitations
First, the evidence we present is limited by the small sample sizes of 
many studies. Another consequence of this is that statistical signif-
icance was inconsistently reported, rendering interpretation of 
some data difficult. Second, the majority of studies were retrospec-
tive and of the remaining prospective studies, only one reported 
a robust recruitment strategy. This also limits the strength of the 

evidence base. Third, we could not evaluate the effect of inter-
study variation in labelling methods and MR sequence parame-
ters. Fourth, although a few studies did directly compare ASL with 
other MR imaging modalities, this was not the focus of our review. 
Finally, the study populations and the outcome measures varied 
widely, precluding our ability to pool data for meta-analysis.

Conclusions
Taken together, this review provides preliminary evidence on 
the reliability of ASL in evaluating intracranial AVMs. Although 
the quality of current evidence and technical limitations of ASL 
suggest that it will not replace conventional catheter angiog-
raphy, it shows a promising role of ASL imaging in the workup 
of AVMs and their follow-up after treatment. There is sufficient 
evidence to justify larger scale prospective studies dedicated to 
assessing the diagnostic performance of ASL. Furthermore, there 
was no literature on ASL imaging of truncal or peripheral AVMs, 
highlighting another area for future research.
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