Skip to main content
. 2024 Apr 3;24:425. doi: 10.1186/s12913-024-10849-9

Table 2.

Analysis of logistic regression models

Dependent variable Independent variable P OR (95%CI) P OR (95%CI) P OR (95%CI)
Model 1 Model 2 Model 3
Turnover intention Job stress
NJSI (1) < 0.001 3.686(3.070 ∼ 4.425) < 0.001 3.575(2.967 ∼ 4.307) < 0.001 3.387(2.793 ∼ 4.108)
Background characteristics
Age (1) < 0.001 2.573(1.746 ∼ 3.792) < 0.001 2.569(1.702 ∼ 3.877) 0.002 1.981(1.298 ∼ 3.024)
Family factors
Children 0.042 0.023
Children (1) 0.692 0.937(0.678 ∼ 1.294) 0.894 1.023(0.737 ∼ 1.418)
Children (2) 0.102 1.428(0.932 ∼ 2.188) 0.030 1.617(1.048 ∼ 2.493)
Income group 0.012 0.007
Incomegroup (1) 0.048 1.641(1.005 ∼ 2.679) 0.047 1.657(1.006 ∼ 2.729)
Incomegroup (2) 0.008 1.953(1.191 ∼ 3.204) 0.006 2.027(1.223 ∼ 3.359)
Major Choice < 0.001 < 0.001
Major Choice (1) 0.002 1.822(1.255 ∼ 2.645) 0.001 1.947(1.338 ∼ 2.835)
Major Choice (2) < 0.001 1.682(1.395 ∼ 2.027) < 0.001 1.686(1.395 ∼ 2.037)
Job Characteristics
ShiftStat 0.003
ShiftStat (1) 0.046 1.319(1.005 ∼ 1.732)
ShiftStat (2) 0.001 1.568(1.208 ∼ 2.036)
EmployType (1) < 0.001 1.620(1.270 ∼ 2.067)
PartTJob (1) 0.005 2.071(1.239 ∼ 3.461)
-2 Log likelihood 3085.112 3036.803 2996.291
Cox & Snell R Square 0.127 0.144 0.158
Nagelkerke R Square 0.171 0.193 0.212
Chi-square 340.946 389.255 429.768