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Abstract

Background In the present systematic review and meta-analysis, the association of maternal exposure to the endo-
crine disrupting chemicals (EDCs) with cardio-metabolic risk factors in children during childhood for the first time.

Method The PubMed, Scopus, EMBASE, and Web of Science databases were systematically searched, up to Feb
2023. In total 30 cohort studies had our inclusion criteria. A random-effects model was used for the variables that had
considerable heterogeneity between studies. The Newcastle-Ottawa Scale (NOS) tool was used to classify the quality
score of studies. All statistical analyses were conducted using Stata 14 and P-value <0.05 considered as a significant
level.

Results In the meta-analysis, maternal exposure to the EDCs was weakly associated with higher SBP (Fisher_Z: 0.06,
Cl:0.04, 0.08), BMI (Fisher_Z: 0.07, Cl: 0.06, 0.08), and WC (Fisher_Z: 0.06, CI: 0.03, 0.08) z-scores in children. A significant
linear association was found between maternal exposure to the bisphenol-A and pesticides with BMI and WC z-score
in children (p <0.001). Subgroup analysis showed significant linear association of BPA and pesticides, in the urine sam-
ples of mothers at the first trimester of pregnancy, with BMI and WC z-score in children from 2-8 years (p < 0.05).

Conclusion Prenatal exposure to the EDCs in the uterine period could increase the risk of obesity in children. Mater-
nal exposure to bisphenol-A and pesticides showed the strongest association with the obesity, especially visceral
form, in the next generation.
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Introduction

Endocrine disruptors are defined as the exogenous
chemicals that interfere with any aspect of hormone
action [1]. Endocrine disruptor chemicals (EDCs) are
natural and manufactured compounds that are found in
pesticides, metals, plastic bottles, food containers, deter-
gents, flame-retardants, toys, and cosmetics [1, 2]. Daily
exposure to these materials is an inseparable part of con-
temporary life. Human are constantly exposed to these
chemicals in food, air, and water. Industrial and agricul-
tural toxins, including dioxins, perchlorates, organochlo-
rines, organophosphates, and carbamates, are some the
natural examples of EDCs. Bisphenol-A (BPA), phtha-
lates, diethylstilbestrol and parabens are residential part
of manufactured substances [3—7]. Regarding the impor-
tance of the developmental origin of health and disease
theory, exposure to these exogenous chemicals during
pregnancy predisposes the fetus to organ dysfunction
and chronic diseases in adulthood because of long-last-
ing and permanent alterations in the molecular, cellular,
and hormonal signaling pathways [8—12]. Identifying the
most important and dangerous EDCs, and initiating pre-
ventive strategies will help to minimize the health and
economic consequences of EDCs for future generations.
Herein, the associations between maternal exposure to
EDCs during pregnancy with the mean changes of fac-
tors related to the cardio-metabolic disorders including
triglyceride (TQ), total cholesterol (TC), low density lipo-
protein- cholesterol (LDL-C), high density lipoprotein-
cholesterol (HDL-C), fasting blood sugar (FBS), systolic
and diastolic blood pressure (SBP and DBP), body mass
index (BMI), and waist circumference (WC) was studied
in children.

Materials and methods

Literature search

The PubMed, Scopus, EMBASE, and Web of Science
databases were systematically searched by two inde-
pendent researchers for relevant studies published
before February 2023. Detailed search strategies have
been presented in Additional file 1: Table S1. There was
not any language restriction. The search was performed
using search terms, that were based on a combination
of indexed and free-text terms included: “endocrine-
disrupting,” endocrine disruptor, endocrine-disrupting
chemicals, maternal, pregnancy, "maternal exposure"
"lipid profile," triglyceride, "low-density lipoprotein,”
high-density lipoprotein,” LDL-C, HDL-C, cholesterol,
"blood pressure,” "systolic blood pressure,” "diastolic
blood pressure,” "fasting blood sugar,” FBS, weight, BMI,
body mass index, and waist circumference. To avoid los-
ing an article, references of all review articles were also
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checked manually. The reference list of the included arti-
cles was also manually searched.

Study selection

Inclusion criteria were based on the population, expo-
sure, comparison, outcome and study design (PECOS)
approach (11) as follows: (1) population: pregnant
women and child, (2) exposure: exposure to EDCs during
the pregnancy, (3) comparison: pregnant women with the
higher degrees of exposure versus the lower degrees, (4)
outcome: estimated changes in TG, TC, LDL-C, HDL-
C, FBS, SBP, DBP, BMI and WC, (5) study design: cohort
studies.

We evaluated studies based on the following inclusion
criteria: studies with cohort design that examined the
association between EDC exposure in pregnancy and its
effects on a child’s outcome that have been reported as
an odds ratio (OR) with a 95% confidence interval (CI) or
could be calculated from the provided data. We excluded
studies if they had the following criteria: case—control,
and cross-sectional design, reviews, letters, interven-
tions, and conference papers, publications with no com-
plete reports, exposure assessment in children only. In
the case of studies in which more than one article was
published from the same data, a study with a larger sam-
ple size was included in the meta-analysis.

Data extraction and qualitative assessment

At the first, descriptive information was extracted from
all studies. This information included the name of the
first author, year of publication, the country of study, type
of EDC, sample size, the mean age of participants, and
the risk estimates with 95% CI. The Newcastle—Ottawa
Scale (NOS) tool was used to classify the quality score
of studies as follows: low quality=0-4; moderate-qual-
ity=5-6; high quality=7-9 [13]. Two reviewers inde-
pendently conducted the risk of bias assessment (MR and
SNM); disagreements were resolved after discussion with
a third reviewer (MAM).

Statistical analysis

All statistical analyses were conducted using Stata 14
(Stata Corporation, College Station, TX, U.S.A.). We
aggregated the studies into four general groups according
to the type of EDC including BPA, pesticides, phthalates,
and other EDCs. A fixed- and random- model effects
were used to estimate the effect size and heterogeneity
of studies. The heterogeneity was evaluated by the x2-Q
statistics and I? that is classified as follows: I> < 30% mild,
=30-75% moderate and high if I*>75% [14]. A ran-
dom-effects model was used for the variables that had
considerable heterogeneity between studies. To iden-
tify the potential sources of heterogeneity, the subgroup
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analysis was performed based on the country (the USA
vs. other countries), sample type (serum or urine), preg-
nancy time for sampling (the first trimester of pregnancy
vs. 2nd or 3th trimesters), age of child in the evaluation
time (<4 or>4 yrs.), and the type of EDC (BPA, phtha-
lates, pesticides or other EDC). The effect of each study
on the overall estimates was studied by the leave-one-out
method. Also, the publication bias was assessed by the
funnel plots, Begg’s rank correlation, and Egger’s linear
regression tests. We followed the conventional cut-offs
to interpret the effect size (r) as weak (<0.35), moderate
(£0.36—0.67), and strong (<0.68—1.00) [15].

Results

Findings of the systematic review

As shown in Fig. 1, the early search resulted in 7769 stud-
ies after duplicate removal. After the first screening and
reading the article’s title and abstract, 6480 papers were
excluded due to the unrelated titles. In the second phase
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of screening, 1216 articles were again excluded due to the
unrelated data, animal subjects, being review articles, etc.
In total, 73 papers were evaluated for eligibility, and 43
articles were excluded for the following reasons: maternal
exposure was not assessed, the concentration of chemi-
cals was not reported, risk estimate was not reported,
and two studies were based on the same data. Finally, 30
studies were included for the final analysis [16—45].

The characteristics of the included studies in this sys-
tematic review and meta-analysis have been presented
in Table 1. These studies were published among 2008
to 2022, and all included studies had a cohort design.
Among the included studies, ten studies were reported
from the USA and twenty from other countries. Stud-
ies included in the final analysis were conducted in sev-
eral countries, including: Spain [18, 20, 24, 29, 33, 35],
China [22, 44], USA [17, 19, 26, 27, 31, 36, 40, 42], Italy
[45], Netherland [21], Denmark [23, 39], Korea [25, 30,
43], Belgium [41], Canada [32, 34], and Greece [28, 29].

Articles excluded as duplicate

(n =2960)

Records excluded after evaluation of
title and abstract (n=7696)

Excluded studies:

Not relevant outcome (n=36)

—
Records identified through
g PubMed, ISI, EMBASE, Scopus,
E and Google scholar searching
% (n=10729)
2
—
e
A4
E" Records screened
3 (n=7769)
5
w
—t
L J
& Full-text articles
i assessed for eligibility
= (a=T3)
=
—
h
- Studies included
'g systematic review and
E meta-analysis
(n =30)

Fig. 1 PRISMA flow diagram of study selection

Review papers (n=7)
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Except of one cohort study that evaluated prenatal expo-
sure to the EDCs in newborns, other studies assessed this
association in the age of 2 to 8 years. The number of cases
varied from 105 to 4065. The type of evaluated EDCs
was different in most studies. As mentioned, we catego-
rized and evaluated EDCs into four main groups, includ-
ing BPA, phthalates, pesticides, and other EDCs. Based
on this category, eleven studies evaluated BPA, twelve
studies assessed phthalates, ten evaluated pesticides, and
finally, eleven cohorts examined other EDCs. It should be
noted that some studies have examined more than one
EDC. In terms of the study quality, the total score qual-
ity was shown in Table 1, and the detailed score for each
study was reported in Additional file 1: Table S2. Accord-
ing to the total score, nine studies had moderate-quality,
and others had good quality.

Association between maternal exposures to the EDCs

with the glycemic profile

Only two studies evaluated the effects of maternal
EDC exposure with child’s FBS [22, 45]. Warner et al.
included 426 children in their study and evaluated the
association between maternal 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin (TCDD) and glycemic profile in chil-
dren. Maternal exposure to the TCDD showed an inverse
association with serum insulin (adj-p=-1.24 plU/mL,
95% confidence interval (CI): -2.38, -0.09) and HOMA2-
B (adj-p=— 10.2% decrease, 95% CL: — 17.8, — 1.9) in
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girls, but these associations were not statistically signifi-
cant among boys (insulin: adj-p=0.57 pIU/mL, 95% CIL:
— 0.84, 1.98, P for interaction=0.04; and HOMA2-B:
adj-p=0.8% increase, 95% CI -10.7, 13.9, P for interac-
tion=0.11) [45]. In addition, medium maternal prenatal
BPA level showed a moderately significant association
with serum plasma glucose in boys 0.36 (95% CI: 0.04
to 0.68) in another study. However, no associations were
found between prenatal exposure to BPA and serum
insulin level in girls and boys [22].

Association between maternal exposures to EDCs

with lipid profile

Overall, six studies considered the association between
the maternal exposure to the EDCs and serum TG level
[19, 23, 24, 29, 30, 37]. These studies included 3334 par-
ticipants. No significant association was seen between
the maternal exposure to the EDCs and serum TG level
(Fisher_Z: -0.02, CI: -0.05, 0.02) per doubling EDCs levels
(Fig. 2).

There was a high heterogeneity between studies
(I?=97.8%, P<0.001). The results of the subgroup analy-
sis have been reported in Additional file 1: Table S3.

In a subgroup analysis, a significant association was
found between maternal exposure to the EDCs and
serum TG level in children, in studies performed at
the second and third trimester of pregnancy. The vis-
ual inspection of the funnel plot has been presented in

Study %
D ES (95% CT) Weight
Kupsco (2021) —_— .27 (036, 0.18) 13.80
Warner (2020) —H 0.38 (0.28, 0.47) 12.78
Jensen (2020) _— 0.24 (033, 0.16) 17.79
]
Manzano-Salgado (2017) —_. 0.16(0.11, 0.22) 36.89
Vafeiadi (2016) _— 035 (0.4, -027) 1482
Kim (2015) 0.20 (0.03, 0.37) 3.84
Overall (I-squared = 97.8%, p = 0.000) <:> .02 (0.05, 0.02) 100.00
T T
472 0 AT2

Fig. 2 Overall effect of maternal exposure to the EDCs on serum triglyceride level in children
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Additional file 1: Fig S1. The sensitivity analysis did not
show any change in the results.

There was not a significant association between mater-
nal exposure to the EDCs with serum TC (Fisher_Z:
-0.02, CI: -0.05, 0.01). A significant heterogeneity was
observed among studies (I>=86.4%, P <0-001) (Fig. 3).

Subgroup analysis did not find any source of heteroge-
neity regarding serum TC. Also, there was not any evi-
dence of publication bias in the Begg (P=0.707), Egger’s
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regression tests (P=0.436) and the funnel plot (Addi-
tional file 1: Fig S2). Sensitivity analysis did not show any
change in the results.

Five studies evaluated the associations between mater-
nal exposure to the EDCs and serum HDL.C levels in
children[19, 23, 24, 28, 37]. As shown in Fig. 4, there
was not any significant association between EDCs and
serum HDL.C (Fisher_Z: -0.02, CI: -0.06, 0.01). Studies
showed a significant heterogeneity (I>=98.7%, P <0-001).

Study %
D ES (95% CI) Weight
Kupsco (2021) —_— -0.23 (-0.33,-0.14) 13.87
‘Warner (2020) —_ 0.07 (-0.03,0.17)  12.76
Jensen (2020) —_—s -0.06 (-0.14, 0.02)  17.79
Manzano-Salgado (2017) —= 0.07 (0.01,0.13)  37.00
Vafeiadi (2016) = -0.07 (-0.16, 0.02)  14.81
Kim (2015) -0.02 (-0.20, 0.15)  3.77
Overall (I-squared = 86.4%, p = 0.000) C> -0.02 (-0.05, 0.01)  100.00
A J s
Fig. 3 Overall effect of maternal exposure to the EDCs on serum total cholesterol level in children
Study %
D ES (95% CT) Weight
Kupsco (2021) — 031 (0.22, 0.40) 14.42
‘Warner (2020) —_— 0.21 (012, 0.31) 13.26
Jensen (2020) T 0.07 (-0.01, 0.15) 18.49
Manzano-Salgado (2017) - -0.01 (-0.07, 0.05) 38.45
Vafeiadi (2016) —— -0.69 (-0.78, -0.60) 15.39
Overall (I-squared = 98.7%, p = 0.000) -0.02 (-0.06, 0.01) 100.00
0 i m

Fig. 4 Overall effect of maternal exposure to the EDCs on serum HDL-C in children
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However, in the subgroup analysis, we found a significant
association in each subgroup (Additional file 1: Table S4).

We did not find any evidence of publication bias
according to the Begg (P=0.462), and Egger’s regression
tests (P=0.990) and funnel plot (Additional file 1: Fig
S3). Sensitivity analysis did not show any change in the
results.

Association between maternal exposures to the EDCs
with blood pressure
Eight studies with 14 effect sizes reported the association
between EDCs exposure with DBP [16, 18, 21, 22, 25,
28, 29, 33]. We found that EDCs exposure during preg-
nancy had a weakly significant correlation with lower
DBP in children (Fisher_Z: -0.16, CI: -0.19, -0.13), with
a significant heterogeneity between studies (I>=98.6%,
P<0-001) (Fig. 5). Subgroup analysis did not report any
new findings (Additional file 1:Table 5). We did not find
the source of heterogeneity in the subgroup analysis. We
did not find any evidence of publication bias according to
the Begg (P=0.869), Egger’s regression tests (P =0.3), and
funnel plot in term of DBP (Additional file 1: Fig S4).
Also, in eight studies with 15 effect sizes, the associa-
tion between maternal exposure to the EDCs and SBP
was reported. We found that maternal exposures to the
EDCs had a weakly significant correlation with higher
child’s SBP (Fisher_Z: 0.06, CI: 0.04, 0.08) (Fig. 6). The
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studies showed a significant heterogeneity (I>=94.2%,
P<0-001) (Fig. 5). Subgroup analysis did not find the
source of the heterogeneity. We did not find any evidence
of publication bias according to the Begg (P =0.456), Egg-
er’s regression tests (P =0.385) and the funnel plot (Addi-
tional file 1: Fig S4). Sensitivity analysis did not show any
change in the results.

Association between maternal exposures to the EDCs

with child’s BMI and WC z-score

Twenty-one studies with 29 effect sizes reported the
association between maternal exposures to the EDCs
and child’s BMI z-score. As shown in Fig. 7, maternal
exposure to the EDCs had a weakly significant corre-
lation with higher BMI z-score in children (Fisher_Z:
0.04, CI: 0.03, 0.06). The included studies showed a
significant heterogeneity (I>=91.3%, P <0-001). Mater-
nal exposures to the EDCs showed a significant effect
on BMI z-score in the non-US countries, sampling the
urine at the first trimester of pregnancy throughout all
ages (P<0.05) ( Additional file 1:Table 6). Moreover,
maternal exposures to the BPA and pesticides showed a
weakly significant correlation with BMI z-score in chil-
dren (Fisher_Z: 0.14, CI: 0.08, 0.19, P <0.001 for BPA
and Fisher_Z: 0.1, CI: 0.08, 0.12, P<0.001 for pesti-
cides). Other EDCs showed a weak reverse association
with BMI z-score in children (Fisher_Z: -0.09, CI: -0.13,

Study %
D ES (95% CI) Weight
Montazeri (2022) - 040 (-0.51,-029)  5.71
Montazeri (2022 — 0.50 (-0.61,-039)  5.67
Giiil-Oumrait (2021) — 0.12 (0.02, 0.22) 6.48
Sol (2020) —— 0.07 (-0.01, 0.15) 922
Sol (2020) =~ 020(-029,-012)  9.02
Sol (2020) = 0.06 (-0.03, 0.15) 9.02
Sol (2020) —— 0.09 (0.01, 0.17) 02
Ouyang (2020) —_— 037 (0.17, 0.56) 1.76
Ouyang (2020) —_— 0.62 (0.43, 0.81) 1.90
Bae (2017) —— 039 (0.30, 0.48) 833
Vafeiadi (2016) — 110 (-1.19,-1.01) 847
Valv (2014) - -0.05 (-0.15, 0.05) 6.69
Valv (2014) - 0.13(-0.23,-003)  6.69
Vafeiadi (2015) — 0.54 (-0.61, -0.46)  11.83
Overall (I-squared = 98.6%, p = 0.000) 0 016 (-0.19,-0.13)  100.00
T |
-1.19 0 1.19

Fig.5 Overall effect of maternal exposures to the EDCs on DBP in children
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Study %
D ES (95% CT) Weight
i
Valv (2014) —_— | 0.14 (024, 0.04) 5.52
Valv (2014) i 0.06 (-0.16, 0.04) 5.52
Vafeiadi (2015) | ——— 021(0.14,029) 976
Vafeiadi (2016) — i 020 (029, 0.11) 6.99
Manzano-Salgado (2017) — i -0.01 (-0.07,0.05) 1746
Bae (2017) — 0.14 (0.05,023) 687
Sol (2020) —'—i' -0.01 (-0.09, 0.07) 761
Sol (2020) —E—*— 0.10(0.01,0.19) T44
Sol (2020) —Io— 0.09 (0.00, 0.18) 744
Sol (2020) — 0.09 (0.01,0.17) 761
Ouyang (2020) i—o— 0.26 (0.06, 0.45) 145
Ouyang (2020) i —_— 037(0.18, 0.55) 1.57
Giiil-Oumrait (2021) | ——— 0.19 (0.09,029) 535
Montazeri (2022) i ——— 062(051,0.73) 4m
Montazeri (2022) —_— i 2026 (-0.36, 0.15) 468
Overall (I-squared = 94.2%, p =0.000) (T) 0.06 (0.04, 0.08) 100.00
i
|
T : T
-726 0 726
Fig. 6 Overall effect of maternal exposures to the EDCs on SBP in children
-0.06, P<0.001). The visual inspection of the funnel Discussion

plot has been presented in Fig. 5S. Sensitivity analysis
did not show any change in the results.

Fourteen studies with nineteen effect sizes reported
the association of maternal exposures to the EDCs with
a child’s WC [18, 23, 24, 26-28, 32-34, 36-39, 41]. As
shown in Fig. 8, there was a weakly significant associa-
tion between maternal exposures to the EDCs and WC
z-score in children (Fisher_Z: 0.06, CI: 0.03, 0.08). The
included studies showed a significant heterogeneity
(I’=99%, P<0-001). The subgroup analysis showed a
significant association between the maternal exposures
to the EDC with WC z-score in the studies conducted
in the USA, using urine samples in the first trimester
of pregnancy and children <4. Moreover, a significant
association was observed between maternal exposures
to the BPA and pesticide with WC z-score. However,
this association was reverse in the other EDCs (Addi-
tional file 1:Table 6). We did not find any evidence of
publication bias according to the Begg (P=0.063),
Egger’s regression tests (P=0.556), and the funnel plot
(Additional file 1: Fig S5). Sensitivity analysis did not
show any change in the results.

Results of the present systematic review and meta-anal-
ysis on previous cohort studies showed a significant lin-
ear association between maternal exposures to the EDCs
with BMI, WC z-scores and SBP in children. However,
our results showed an inverse correlation between mater-
nal exposures to the EDCs with DBP. There wasn't any
significant association between maternal exposures to
the EDCs with lipid profile.

The results regarding the association between mater-
nal EDC exposure and glycemic profile in children were
limited, with only two studies providing relevant data
[46, 47]. While Warner et al. found an inverse associa-
tion between maternal exposure to 2,3,7,8-tetrachlo-
rodibenzo-p-dioxin (TCDD) and serum insulin and
HOMA2-B in girls, no significant associations were
observed in boys [48]. Another study reported a signifi-
cant association between medium maternal prenatal BPA
levels and serum plasma glucose in boys but not in girls
[47]. The observed gender-specific associations between
maternal EDC exposure and glycemic parameters in chil-
dren in some studies could be attributed to differences in
hormonal regulation and metabolic processes between
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Study %
D ES (95% CT) Weight
Yang (2022) —— 0.17(0.11, 0.23) 175
Giiil-Oumrait (2021) —— 0.19 (0.09, 0.29) 2381
Jensen (2020) —— -0.00(-0.08,008) 441
Jensen (2020) e e a— 0.11(-0.01,0.23) 203
Manzano-Salgado (2017) —t— 0.02(-008,004) 918
Vuong (2016) —r—— -038(-049,027) 236
Maresca (2016) B — 0.15 (0.00, 0.30) 133
Maresca (2016) —— 024(-040,-009) 114
Vafeiadi (2016) ——— 002(-011,007y 367
Buckley (2016) ——— 0.05(-0.15,005) 2280
Braun (2016) —— 037(-048,025) 211
Valv (2014) —— -0.16 (-026,-006) 290
Valv (2014) —— 0.17(0.07,027) 290
Vafeiadi (2015) ———t— 027(0.19, 0.34) 513
Erkin-Calma (2013) ——— -0.08(-021,005) 165
Agay-Shay (2014) —— 026 (0.16, 0.35) 349
Agay-Shay (2014) —— 0.08(-0.01,0.17) 349
Agay-Shay (2014) —— 033 (024, 0.42) 349
Tang-Pe ronard (2014) ——— 0.04 (-0.16,008) 200
Tang-Pe ronard (2014) —— 029(-040,-017) 215
Warmer (2014) b 0.12(-0.00, 0.24) 193
Harlely (2013) ——— 0.09(-0.03,021) 215
Andersen (2013) —— -0.01(-0.10,0.09) 297
Andersen (2013) —— -0.00(-0.10,0.10) 287
Cupul-Uicab (2013) —— 0.06 (0.02, 0.10) 1430
Delvaux (2013) ———— 0.13 (-0.06, 0.32) 0.83
Berger (2021) ———— 0.07 (-0.04, 0.18) 229
Berger (2021) ———— 0.08 (-0.03, 0.19) 229
Lee (2019) —— -0.07(-0.16,0.02) 357
Overall (I-squared =91.3%. p =0.000) & 0.04 (0.03, 0.06) 100.00
T I
-487 0 A7

Fig. 7 Overall effect of maternal exposures to the EDCs on BMI z-score in children

boys and girls. It’s well-established that sex hormones,
such as estrogen and testosterone, play crucial roles in
modulating glucose metabolism and insulin sensitivity
[49]. Therefore, exposure to EDCs during critical peri-
ods of development, such as prenatal or early postnatal
stages, may disrupt the normal hormonal milieu and
contribute to dysregulation of glycemic control in a sex-
specific manner.

One potential mechanism underlying the observed
associations involves disruption of the endocrine system
by EDCs, leading to alterations in insulin signaling path-
ways and glucose homeostasis. For instance, TCDD, a
well-known EDC, has been shown to affect insulin secre-
tion and sensitivity by binding to the aryl hydrocarbon
receptor (AhR) and modulating downstream signaling
pathways involved in glucose metabolism [50]. Similarly,
BPA, another prevalent EDC, has been implicated in
impairing pancreatic B-cell function and insulin sensitiv-
ity through its estrogenic activity and interference with
insulin receptor signaling [51]. Furthermore, emerging
evidence suggests that EDCs may exert epigenetic effects,

leading to persistent alterations in gene expression pat-
terns related to glucose metabolism and insulin sensitiv-
ity. Epigenetic modifications, such as DNA methylation
and histone acetylation, can modulate the expression of
key genes involved in glycemic regulation, potentially
predisposing individuals to metabolic disorders later in
life [52, 53]. Importantly, these epigenetic changes may
exhibit sex-specific patterns due to differences in sex
chromosome composition and hormonal regulation of
epigenetic machinery [54-56].

In terms of lipid profile, the meta-analysis did not
reveal a significant association between maternal EDC
exposure during pregnancy and serum TG or TC levels
in children. However, subgroup analysis identified a sig-
nificant association between maternal EDC exposure
and serum TG levels in studies conducted during the
second and third trimesters of pregnancy. This suggests
a potential window of vulnerability during later stages of
gestation. Similarly, no significant association was found
between maternal EDC exposure and serum HDL-C
levels in children. The lack of a significant association
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Study %
D ES (95% CI) Weight
Giiil-Oumrait (2021) —- 0.19(0.09,029)  5.47
Tensen (2020) = 0.01 (-0.09, 0.07)  8.58
Jensen (2020) —— 0.01 (-0.13,0.11)  3.96
Manzano-Salgado (2017) ~ 0.04 (-0.10,0.02) 17.85
Vuong (2016) — 113 (-1.24,-1.02) 458
Maresca (2016) — 097(0.83,1.12)  2.59
Maresca (2016) — 138 (-1.53,-122) 223
Vafeiadi (2016) -~ 0.20 (020, -0.11) 7.14
Braun (2016) —_ 0.37(025,048)  4.10
Valv (2014) - 0.05 (-0.05,0.15)  5.65
Valv (2014) = 0.06 (-0.04, 0.16)  5.65
Erkin-Cakma (2015) = 0.02 (-0.15,0.11) 322
Tang-Pe ronard (2014) - 0.78 (0.66, 0.90)  3.90
Tang-Pe ronard (2014) — 0.12 (-0.24, -0.00) 4.18
Warner (2014) o 0.13(0.01,025)  3.75
Harlely (2013) —— 1.59(1.47,1.70)  4.18
Andersen (2013) = 0.00 (-0.10, 0.10)  5.78
Andersen (2013) - 0.00 (-0.10, 0.10)  5.59
Delvaux (2013) —_ 0.55(0.36,0.74)  1.62
Overall (I-squared = 99.0%, p = 0.000) b 0.06 (0.03,0.08)  100.00
| T
1.7 0 1.7

Fig. 8 Overall effect of maternal exposures to the EDCs on WC z-score in children

between maternal EDC exposure during pregnancy and
serum TG or TC levels in children, as indicated by the
meta-analysis, suggests that the overall impact of mater-
nal EDC exposure on lipid metabolism may be nuanced
and multifactorial. However, subgroup analysis revealing
a significant association between maternal EDC exposure
and serum TG levels specifically in studies conducted
during the second and third trimesters of pregnancy sug-
gests a potential window of vulnerability during later
stages of gestation. This observation aligns with previous
evidence suggesting that fetal development during late
gestation is particularly sensitive to environmental expo-
sures, including EDCs, which may influence metabolic
programming and long-term health outcomes [57-59].
One potential mechanism underlying the observed
association between maternal EDC exposure and serum
TG levels in children could involve disruption of lipid
metabolism pathways. EDCs, such as BPA and phtha-
lates, have been shown to interfere with lipid synthesis,
transport, and metabolism through various mechanisms,
including activation of nuclear receptors (e.g., per-
oxisome proliferator-activated receptors, PPARs) and
modulation of lipid-related gene expression[60, 61]. For
example, BPA exposure has been associated with dys-
regulation of lipogenic genes in animal models, leading to

increased hepatic lipid accumulation and altered serum
lipid profiles [62]. Similarly, phthalate exposure has been
linked to impaired lipid metabolism and dyslipidemia in
both animal and human studies [63, 64].

The observed association between maternal EDC expo-
sure and lower DBP but higher SBP in children suggests
that EDCs may exert differential effects on blood pressure
regulation depending on various factors, including the
specific types of EDCs involved, timing of exposure, and
individual susceptibility. This discrepancy underscores
the multifaceted nature of EDC-induced alterations in
cardiovascular health. One potential mechanism under-
lying the observed associations involves disruption of the
renin—angiotensin—aldosterone system (RAAS), a key
regulator of blood pressure and fluid balance. EDCs, such
as BPA and phthalates, have been shown to interfere with
RAAS signaling pathways through various mechanisms,
including activation of angiotensin receptors and modu-
lation of aldosterone synthesis and secretion [65, 66].
Dysregulation of RAAS activity can lead to alterations in
vascular tone, sodium retention, and fluid volume, ulti-
mately impacting blood pressure regulation in offspring
exposed to EDCs during critical periods of development
[67, 68]. Furthermore, emerging evidence suggests that
maternal EDC exposure may influence vascular function
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and endothelial homeostasis, contributing to alterations
in blood pressure regulation in offspring. EDCs, includ-
ing PCBs and organochlorine pesticides, have been
shown to impair endothelial function and induce vas-
cular inflammation through oxidative stress-mediated
mechanisms [69, 70]. Additionally, EDC-induced altera-
tions in neuroendocrine signaling pathways, such as the
sympathetic nervous system and hypothalamic—pitui-
tary—adrenal (HPA) axis, may also contribute to changes
in blood pressure regulation in offspring. EDCs, such as
phthalates and perfluoroalkyl substances (PFAS), have
been implicated in dysregulation of sympathetic nerve
activity and cortisol secretion, which can influence vas-
cular tone and blood pressure responsiveness [71, 72].

The association between maternal EDC exposure and
child adiposity, as assessed by BMI z-score and waist cir-
cumference (WC) z-score, was consistently significant.
EDCs, such as BPA and phthalates, have been shown to
interfere with endocrine systems involved in adipocyte
differentiation, proliferation, and metabolism. These
chemicals can disrupt hormone receptors, including per-
oxisome proliferator-activated receptors (PPARs) and
estrogen receptors, leading to dysregulation of adipo-
genic and lipogenic pathways [1, 73]. For instance, BPA
exposure has been associated with increased adipocyte
size, altered adipokine secretion, and impaired insulin
sensitivity in animal and human studies [74, 75]. Simi-
larly, phthalate exposure has been linked to adipocyte
hypertrophy, adipose tissue inflammation, and insulin
resistance in both experimental models and epidemio-
logical studies [76, 77].

The present study had some limitations that should
be considered in the interpretation of the results. First,
heterogeneity between studies was high in most of the
evaluated variables. Second, difficulty in discriminat-
ing between the effects of exposure during pregnancy
and exposure after birth. Third, some of the included
studies in the meta-analysis had relatively small sample
sizes, which could affect the statistical power to detect
significant associations. Fourth, due to the observational
nature of the included cohort studies, causal relation-
ships between maternal exposure to EDCs and cardio-
metabolic risk factors in children cannot be definitively
established.

In conclusion, prenatal exposure to EDCs during the
uterine period may elevate the risk of childhood obe-
sity, particularly the visceral form. BPA and pesticides
demonstrated the strongest association with WC and
BMI z-score. Furthermore, urine sampling from moth-
ers to assess BPA and pesticide concentrations in the
first trimester of pregnancy revealed a significant lin-
ear association with BMI and WC z-scores in children
aged 2-8 years. Therefore, identifying these pollutants
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and their sources is crucial for preventing childhood
obesity. According to our review, no study was founded
in Iran about maternal exposure to EDCs during gesta-
tion and their consequences on the growth and meta-
bolic markers in children. Based on the differences
about environmental contaminants, it is suggested to
researchers on Iranian population for future studies.
All community members, especially pregnant women,
the next generations, policy and health decision mak-
ers will benefit from these results. However, the cause-
effect of EDCs on metabolism is lacking and precise
molecular mechanisms are unclear. More molecular
studies are needed in this field.
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Funnel plot for BMI and WC z-score in children.
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