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Abstract 

Bac kgr ound: Car dio v ascular r esear c h heavil y r elies on mouse ( Mus m usculus ) models to stud y disease mechanisms and to test no vel 
biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffecti v e drugs. 
Ther efor e, it is an open challenge of translational science to develop models with high similarities and pr edicti v e v alue. This r equir es 
a comparison of disease models in mice with diseased tissue deri v ed fr om humans. 

Results: To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called OrthoInte- 
grate , which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The 
pipeline has been designed to be as easy to use and is fully inte gr able in the standard Seurat workflow. 
We applied OrthoIntegrate on scRNA-seq from cardiac tissue of heart failure patients with reduced ejection fr action (HF rEF) and scRN A- 
seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discov er ed shar ed and distinct 
r egulator y pathw ays betw een human HF rEF patients and the corr esponding mouse model. Ov er all, 54% of genes w er e commonl y 
regulated, including major changes in car diomyoc yte ener gy metabolism. Ho we ver, se ver al re gulatory pathways (e.g., ang iog enesis) 
wer e specificall y r egulated in humans. 

Conclusions: The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice 
models and human HFrEF and shows that results from the mice model should be validated carefully. OrthoIntegrate is publicly acces- 
sible ( https://github.com/MarianoRuzJurado/OrthoInte gr ate ) and can be used to inte gr ate other lar ge datasets to pro vide a general 
comparison of models with patient data. 

Ke yw ords: cr oss-species anal ysis, car dio v ascular disease, heart failur e with r educed ejection fraction, cor onar y arter y ligation, single- 
cell inte gr ation, cross-species inte gr ation w orkflow 

 

 

t  

d

c  

t  

i  

c  

1  

o
t
i  

u  

l  

s
[  

a

Introduction 

Animal experiments are a po w erful tool to improve our un- 
derstanding of pathophysiological conditions and to predict re- 
sponses to new therapeutic approaches [ 1 ]. Ho w ever, due to ethi- 
cal considerations, they are controversially discussed [ 2 ], and their 
pr edictiv e ca pacity for toxicity and drug responses is limited [ 3 ,
4 ]. Especially mice are commonly used to model human diseases 
as they are relatively inexpensive , ha ve short generation times,
and have large numbers of offspring. Additionally, mice have a 
r elativ el y close physiological and phylogenetic relationship with 

humans [ 5 , 6 ]. Mice protein-coding genes are on average 85% 

identical to humans [ 4 ], and over 90% of both genomes have re- 
gional conserved synteny [ 7 ]. Due to these adv anta geous br eed- 
ing c har acteristics and their high sequencing conservation to hu- 
mans, hundreds of different mouse models have been developed 

to study human diseases [ 8 ] like heart failure [ 9 ] or even diseases 
Recei v ed: J uly 31, 2023. Revised: J an uar y 17, 2024. Accepted: Mar c h 6, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
hat do not occur natur all y in mice like Alzheimer or Parkinson
isease [ 10 ]. 

To study cardiovascular diseases, which remain the leading 
ause of morbidity and mortality in the aging society, the liga-
ion of the left anterior descending coronary artery model (LAD)
s often used to induce my ocar dial infar ction, whic h r esults in is-
 hemic heart failur e with r educed ejection fr action (HFrEF) [ 11 ,
2 ]. Thereby, the LAD is ligated to mimic the clotted artery as it
ccurs after infarction. While short-term reperfusion then allows 
o mimic the reopening of the coronary artery by catheter-based 

nterv entions, often c hr onic ligation is used to induce heart fail-
r e ov er the course of > 4 weeks. As this method describes a simi-

ar decline in heart function, scientists use LAD mouse models to
imulate HFrEF and develop and test new therapeutic strategies 
 13–15 ]. Patients who have HFrEF are unable to pump sufficient
mounts of blood to meet the demands of body organs [ 16 ]. 
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To address the comparability of HFrEF in human to mouse
odels, we used single-nuclei RNA sequencing data, enabling us

o assess transcriptional regulatory pathways in all cardiac cell
opulations with high resolution and accuracy [ 17 , 18 ]. In order to
nalyze single-cell RNA sequencing (scRNA-seq) data from vari-
us samples, integration pipelines were developed to combine in-
ividual cells from different subjects into clusters with similar ex-
ression patterns [ 18 , 19 ]. Yet these bioinformatic tools can only

ntegr ate datasets fr om identical species. Se v er al studies de v el-
ped algorithms to compare messenger RN A (mRN A) expression
atterns across species [ 20–22 ]. Ho w ever, a standar dized and easy
ay to compare single-cell/nuclei RNA sequencing datasets of hu-
an and mouse by dir ectl y integr ating the data is still missing

 18 , 23 , 24 ]. Overcoming these limitations and the highly increas-
ng demand for comparison of various organisms prompted us to
e v elop a R pac ka ge called OrthoIntegrate . It features a pipeline for

ntegration of single-cell datasets and ortholog assignment, allow-
ng the simple integration of data from animal models and human
atients. For the ortholog assignment process, we implemented an
lgorithm in the w orkflo w that adjusts the different nomenclature
etween species before the integration takes place, by using the
atabases of Ensembl, NCBI, and Uniprot [ 25–27 ]. Using our newly
stablished pipeline, which is completely compatible with stan-
ard seurat workflows, we explored the gene expression patterns

n mouse models of HFrEF compared to human samples. While
4% of genes were commonly regulated in both species, we also
bserved significant differences in differentially expressed genes
nd regulated pathways in patients with heart diseases compared
ith the corresponding mouse model. 

esults 

-to-1 ortholog assignments 

o integrate single-cell data from different species, we established
 table of gene names, which contains 1 human gene for each
ouse gene, by which it will be replaced (1-to-1 orthologs). We per-

ormed the same a ppr oac h for generating a table of gene names
etween human and zebrafish genes. 

In order to generate these 1-to-1 orthologs, we utilized the
eedleman–Wunsch algorithm [ 28 ] to perform a pairwise global
lignment between possible orthologs r etrie v ed by the Ensembl
atabase . T his calculation determines alignment scores based on
ifferences in the amino acid or nucleotide sequences. In case
o orthologs were found or a protein or nucleotide sequence
as not available for a particular gene, a lo w er case matching of

he human gene was searched for in the mouse gene database
 Supplementary Fig. S1A ). 

The Ensembl database assigned a total of 21,428 mouse or-
hologs to our human gene ID symbols. Ho w e v er, onl y 77%
16,573) of these were uniquely assigned. Through our OrthoInte-
rate pipeline, we increased the number of assignments to 82%
17,504). Hereby, 714 mouse genes were assigned by protein se-
uence alignment, 89 through nucleotide sequence alignment, 42
y using the Le v enshtein distance between gene names, and 86
sing our lo w er case matc hing a ppr oac h. Most of the 86 matc hes

ound by lowercasing were long noncoding RNAs with identical
ene names. We then proceeded by filtering the human and mice
ata by these orthologs in our pipeline and replaced the mice
omenclature by the human nomenclature for the correspond-

ng samples ( Supplementary Fig. S1B ). In the end, we could as-
ign ∼82% of the mice genes to human orthologs ( Supplementary
able S2 ). Replacing mouse gene names with the human ortholog
llo w ed us to integrate the human patient data with the mouse
odel data into 1 single-cell object (Fig. 1 A). Mor eov er, we aimed

o underscore the versatility of OrthoIntegrate . T herefore , we in-
egrated and clustered scRNA-seq datasets related to Alzheimer
isease from human, mouse, and zebrafish with the OrthoIntegrate
ipeline ( Supplementary Fig. S6 ). We successfull y cr eated clusters
 epr esenting excitatory and inhibitory neurons, as well as astro-
ytes, in the 3 species ( Supplementary Fig. S6A, B ). Given the fo-
us and the size of the human study and data, most of the exci-
atory neurons found were of human origin, but w e sho w ed that
xcitatory neurons found in mice were also assigned to the same
lusters and sho w ed comparable marker genes ( Supplementary
ig. S6A –D ). Similar results were obtained for inhibitory neurons
nd astr ocytes, pr oving a successful integration of all 3 datasets
 Supplementary Fig. S6C –F ). 

ell-type composition in human and mouse 

pon HFrEF 

fter demonstrating the practicality of the integrated dataset, the
iological differences of the human mouse datasets were ana-

yzed. The absence of species-specific clusters in the combined
niform Manifold Approximation and Projection (UMAP) plot con-
rms that human and mouse hearts comprise similar cell types
nd gene expression patterns (Fig. 1 B). This is additionally veri-
ed by similar cell type–specific marker genes in both species in
he different cell clusters (Fig. 1 E, F). The specific marker genes al-
o w ed the annotation of the clusters into car diomy oc ytes (CMs),
ericytes (PCs), smooth muscle cells (SMCs), fibroblasts (FBs), en-
othelial cells (ECs), immune cells (ICs), and neuronal cells (NCs)

Fig. 1 C). In addition, we analyzed how the distribution of cell types
 as affected b y the heart failure phenotype . T hereby, a 20% de-

rease in human CMs was observed when comparing the control
amples with the HFrEF samples (45% → 25%) (Fig. 1 D). Ho w e v er,
n mice, there was no difference in the numbers of CMs between
he infarcted and control mice (both comprise about ∼25% CMs)
Fig. 1 D). Furthermor e, we found differ ences in the distribution of
Cs in the human versus mouse samples. Specifically, we observed
 significant increase in the EC population in samples from HFrEF
atients ( ∼30%) compared to healthy hearts ( ∼8%). In contrast, we
oticed decreased EC numbers in mice upon infarction (from 25%

n controls to 18% after chronic infarction). Minor changes were
lso observed in the contributions of other cell types (Fig. 1 D). 

omparison to other integr a tion methods 

e car efull y inspected our data to determine species-specific dis-
ribution by creating UMAP plots of all cells in our integrated ob-
ect. Figure 1 B shows that cells of mouse and human origin com-

ingled in all clusters, which indicates a successful integration
ased on the cell types and not on the species. We additionally
ompared our OrthoIntegrate pipeline to other ortholog databases
nd tools to assess the adv anta ges of our ortholog assignments.
or this pur pose, we cr eated the same scRNA-SEQ datasets us-
ng the different ortholog lists OMA, Biomart, and InParanoid [ 29–
1 ]. Visualization of the integration by UMAP plots shows an inte-
ration of human- and mouse-derived cells in the individual cell
lusters also with the alternative orthologous list ( Supplementary
ig. S2A –C ). Ho w e v er, besides the visual impr ession, quantitativ e
etrics were used to assess the quality of the clustering, and
e calculated silhouette coefficients, which measure the quality
f the clustering independent from the number of clusters. In-
egration by OrthoIntegrate resulted in the highest silhouette co-
fficients compared to the other ortholog databases, suggesting

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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Figure 1: Integrated human and mouse snRNA-seq data of healthy and heart failure samples. (A) Use case diagram of OrthoIntegrate : shown are the 
steps that are run by the user within their standard Seurat workflow. First, the Import function is used to create Seurat objects from scRNA-seq data; 
second, orthologs are searched by the BuildOrtholog function, and the third step creates an integrated object with uniform nomenclature by using the 
IntegrateObjects. (B) UMAP showing human cells (red) and mice cells (blue) in a common UMAP projection. In addition, cell types for the cell clusters 
can be seen. (C) UMAP with defined clusters according to Seurat’s clustering, divided by species. Cells of mouse and human origin commingled in all 
clusters . T her e ar e no clusters formed that originated fr om onl y 1 of the 2 species . T he cells w ere identified as car diomy oc ytes (r ed), fibr oblasts 
(y ello w), endothelial cells (green), pericytes (turquoise), immune cells (blue), smooth muscle cells (purple), and neuronal cells (pink). (D) Bar plot 
showing cell composition of cell types in human (red) and mice (blue) samples. Samples were grouped based on their origin into human controls from 

the left ventricle (Human-CTRLlv), human HFrEF (Human-HFrEF), mouse controls (Mice-CTRL), and mouse HFrEF model (Mice-HFrEF). Cell types were 
then analyzed for their composition from the previously mentioned groups and plotted. P values above the certain groups were calculated by 2-sided 
Student’s t -test. (E) Dot plot depicting the av er a ge expr ession le v els and expr ession pr oportions in human samples of the top 10 featur e genes for the 
found cell types . T he size of the dot r epr esents the proportion of cells expressing the indicated gene within a cell type, and the color indicates the 
av er a ge expr ession le v el of cells . (F) Dot plot depicting the a v er a ge expr ession le v els and expr ession pr oportions in mice samples of the top 10 featur e 
genes for the found cell types. Similar to (E), the size of the dot r epr esents the proportion of cells expressing the indicated gene within a cell type, and 
the color indicates the av er a ge expr ession le v el of cells. 
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an impr ov ed clustering (Fig. 2 A). Additionall y, it is note worthy to 
mention that our pipeline ac hie v ed by far the most 1:1 protein 

coding and lncRNA coding orthologous pairs in comparison to 
the other described methods (Fig. 2 B, C). To further determine the 
clustering quality after integration, we computed supplementary 
metrics recommended by the single-cell integration benchmark 
scib pac ka ge [ 32 ] and the Orthology Benchmark Service. We also 
calculated the species mixing score and bioconservation score, 
following the guidelines of the BENGAL pipeline (Fig. 2 D) [ 32 , 33 ].
Remarkably, our method not only achieved the highest number of 
uniquel y ma pped orthologous pairs but also demonstrated high 

performance across individual metrics in comparison with alter- 
native tools (Fig. 2 D–F). 

Differential gene expression between mice and 

humans 

The differ entiall y expr essed gene (DEG) anal ysis sho w ed strong 
similarities in the regulated genes upon HF rEF. Ho w e v er, some 
enes sho w ed differ ences in their expr ession patterns, mainl y
hen the cell types were analyzed individually. Overall, we found
 comparable number of DEGs in both species (4,141 in humans,
,654 in mice). 

T he a v er a ge of commonl y r egulated genes per cell type (Fig. 3 A,
eft side) sho w ed that around 54% of DEGs found in humans were
lso regulated in mice, with minor differences between cell types.
pregulated genes sho w ed a gener all y higher compar ability com-
ared to downregulated genes (Fig. 3 B). Only in smooth muscle
ells were many more human-specific DEGs regulated in opposite 
irections (Fig. 3 B, right upper panel). Averaging the mouse regu-

ated DEGs (Fig. 3 A, right side) sho w ed that only about 34% of the
ell type–specific DEGs in mice were regulated in humans, indi-
ating a more substantial transcriptional effect of the LAD model
ompared to the human disease. 

Figur e 3 B separ atel y shows the upr egulated (top panel) and
o wnregulated (lo w er panel) genes in humans and their regula-
ion in mice. For the upregulated genes in humans, around 50–70%
f the corresponding mouse genes were also upregulated, around 
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Figure 2: Comparison of snRNA-seq data integration with orthologs from OrthoIntegrate and other ortholog databases. (A) Box plot showing the av er a ge 
silhouette coefficient for clusterings based on different databases and tools . T he dark blue box stands for the silhouette coefficient of the clustering 
made with an orthologous list using the tool OMA (orthologous matrix). It is follo w ed b y the r esults for biomaRt (light blue), InP ar anoid (gr een), and 
the pipeline OrthoIntegrate (y ello w). On the y-axis, you can see the value of the silhouette coefficient. Additionall y, eac h silhouette coefficient was 
calculated for each sample and depicted as a circle in their species-specific color. (B) Bar plot with number of orthologs found that codes for a protein 
(C) and bar plot with number of orthologs found that codes for lncRNA. On the x-axis, the used tool is depicted. (D) Table showing results of different 
metric calculations to comprehend batch correction and biological conservation of clusterings based on orthologous lists of OMA, biomaRt, 
InP ar anoid, and OrthoIntegrate (bASW: batch average silhouette width; BCS: bioconservation score; CCC: cell cycle conservation; GC: graph 
connectivity; ILF1: isolated labels F1 score; NMI: normalized mutual information; PCR: principal component regression comparison; SC: silhouette 
coefficient; SMS: species mixing score). The color code represents low and high values and is scaled per column (low = green, brown; high = blue, 
y ello w). (E) Sc hlic ker similarity scor es calculated for OMA (r ed), Biomart (gr een), InP ar anoid (blue), and OrthoIntegrate (pur ple) in terms of enzyme 
classification conservation (left) and gene ontology conservation (right). (F) Venn diagram highlighting the numbers of uniquely found orthologs 
between human and mouse per tool and their ov erla p between each other (blue = OMA, red = biomart, green = biomart, y ello w = OrthoIntegrate ). 
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5% were not regulated, and only about 5–20% were regulated in
he opposite direction, suggesting that ov er all activ ation occurs

ainly in similar expression pathways across all cell types. In
he downregulated genes in humans, we observed a strikingly low
umber of commonly regulated genes in car diomy oc ytes . T here ,
nly 23.3% of the downregulated genes were also decreased in
ice. Most of them were either not regulated (48.2%) or e v en up-

egulated in mice (28.5%). The other cell types show a higher per-
entage of commonly downregulated genes. 

We visualized all expr ession c hanges in 1 heatmap to further
alidate individual gene changes upon HFrEF (Fig. 4 A, B). Thereby,
e found that around 30% of the genes show no changes in their
xpression upon heart failure (Fig. 4 A, cluster 1). Most expres-
ion changes were consistently observable in all cell types (clus-
ers 2–23) and ther efor e a ppear ed as gener al r esponses to injury
hat could not be attributed to individual cell types. Ho w e v er, the
emaining 16 clusters sho w ed cell type–specific expression pat-
erns (Fig. 4 B). For example, cluster 25 held a set of genes that
ho w ed increased expression of genes in human FBs, whereas
luster 28 in human ECs contained many genes that were down-
 egulated. These c hanges wer e not detectable in other cell types
or these genes and ther efor e of utmost interest to follow up on
pecific gene expression changes in species-specific cells. Simi-
ar patterns were found by observing commonly regulated genes
Fig. 4 C). For humans, the largest number of DEGs was found in
ll cell types (1,087 DEGs). The second largest groups contained
EGs that were found only in the individual cell types (Fig. 4 C;
upplementary Fig. S4A ). T hus , we identified 687 DEGs specific to
uman CMs and 208 DEGs that could only be found in ECs. Deter-
ining the distribution of DEGs in mice r e v ealed lar ger popula-

ions of cell type–specific genes and fewer DEGs, which were found
n all populations ( n = 228). Notably, we found far fewer DEGs in
he mouse SMCs than in the human samples. Ho w e v er, this could
e related to the total number of SMCs in mice, which was far less

n mice than in human samples (Figs . 1 C and 3 A). T his could ex-
lain the lo w er number of DEGs found in all cell types. When we
xcluded SMCs from the common DEG population, we observed a
imilar number of DEGs in all cell types as in humans pr e viousl y
 Supplementary Fig. S4B ). 

Further, we analyzed the highest upregulated genes per cell
ype in humans and mice along with the regulation of that gene
n the other species. Hereb y, w e observed ho w the genes with the
ar gest c hanges in human heart failur e patients behav e in the r e-
pective mouse model ( Supplementary Fig. S3 ). 

We observed that the expression of the most regulated genes
n human cell types sho w ed compar abl y less regulation in the

ouse models . For example , we found LDB2 , a gene of the LIM-
omain family, in human CMs as highly upregulated (log2FC =

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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BA

Figure 3: Similarities and differences revealed by DEG analysis. (A) Sank e y plot illustrating the distribution of DEGs in the corresponding cell types. 
The width of the paths illustrates the number of DEGs that are human specific (y ello w), detected in both species (light green), or mouse specific (dark 
gr een). DEG anal ysis was performed for eac h cell type individuall y. Neur onal cells wer e omitted fr om all further anal yses due to their insufficient 
number of cells in the mouse data. (B) Bar gr a ph of upr egulated (top) and downregulated (bottom) genes in humans, along with the expression in mice. 
The panels show genes that are either commonly regulated (left), regulated in humans, and not regulated in mice (middle) and regulated in opposite 
directions. 

A B C

Figure 4: DEG analysis shows similar and different populations of regulation in gene expression patterns upon heart failure in humans and mice. (A) 
Heatmap of log2FC values (control vs HFrEF) for all genes and all cell types . T he y-axis describes all genes (16,545) clustered by a k -means algorithm 

( k = 40). The x-axis shows the species and the additional clustering into the different cell types . P ositive log2FCs are represented by red, while negative 
scor es ar e giv en in blue. (B) Closeup of the 24–40 k -means clusters of log2FCs of genes in whic h most cell type–specific differ ences ar e observ ed. (C) 
Venn dia gr ams of all identified DEGs in human (top) and mouse (bottom) (log2FC > 0.1 and P -adjusted < 0.05). 
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A B

C

Figure 5: GSEA analysis reveals more regulated pathways in heart failure in human car diomy oc ytes than in mice, with the terms found sharing many 
k e yw or ds. (A) Heatmap clustering of significant GSEA results ( P -adjusted < 0.25) of DEGs found in human and mouse car diomy oc ytes b y similar 
GeneIDs in the pathwa ys . Bar gr a phs ar e shown on the left y-axis r epr esenting the number of pathways found in the r espectiv e cluster for the giv en 
species and condition. In addition, the adjusted P value is color-coded from 1 (green) to the smallest P value found, ∼0.025 (red). On the right side of 
the y-axis, k e yw or ds describing the found pathw ays in that cluster are sho wn, where the size of the w or d r epr esents its fr equency in the terms (lar ger 
= most, smaller = less). (B) Bar gr a ph showing the first 20 GO terms found by analyzing genes in cluster 25. Terms were sorted by their logarithmized 
and Bonferroni-adjusted P values, resulting in high significant pathways depicted first ( P -adjusted < 0.05). (C) Bar graph similar to (B) terms found in a 
subsection of genes in cluster 28. 
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.15) ( Supplementary Fig. S3A ). The LIM-domain family genes
re well known as adapter molecules that allow the assembly of
r anscriptional r egulatory complexes in CMs. Ho w e v er, in mice,
DB2 was only mildly regulated upon HFrEF (log2FC = 0.38). Other
enes such as the VEGF receptor FLT1 , which is upregulated in hu-
an car diomy oc ytes, sho w ed a do wnregulation in mice CMs . T his

emonstrates that some genes have completely different expres-
ion patterns in humans and mice. Ho w e v er, some genes shar e
imilar regulation in their respective cell types . T hus , we observed
hat phosphodiesterase 4D ( PDE4D ) and ADP ribosylation factor
ike GTPase 15 ( ARL15 ) sho w ed similar changes in ECs. Among the
0 most upregulated genes in the mouse model data, we found
 genes that also sho w ed a significant increase in their expres-
ion in humans ( RBPJ , SLC9A9 , RUNX1 ) ( Supplementary Fig. S3B ).
 he other genes , ho w e v er, sho w ed little to no change. In contrast,

f we investigate the expression changes in ECs, DEGs sho w ed an
pposite direction in their expression change ( RBPJ , PID1 , SLC9A9 ).
hese differential gene expressions in the cell types suggest that
ome cell type–specific responses may be different between hu-
an patients and mouse models. 

athw ay enric hment results in cardiomyocytes 

o address whether the relatively high number of significantly
egulated genes indicates overall changes in pathways and patho-
ogical processes or whether the differences relate more to the
lternative use of genes with similar functions in mice and hu-
ans, we further determined the implications for ov er all path-
ays in the individual cell types. Figure 4 shows a simplifyEnrich-
ent heatmap cluster with w or d clouds of Gene Ontology (GO)
erms regulated in human or mouse car diomy oc ytes. We gener-
ll y observ ed mor e significantl y enric hed gene set enric hment
nalysis (GSEA) terms in humans than in mice (Fig. 5 A). Important
athw ay terms regar ding mitoc hondrial ener gy pr oduction and
he electr on c hain wer e enric hed in both species. Other terms in-
olving de v elopmental pr ocesses wer e enric hed in humans com-
ared to mice. Additionally, we investigated the set of genes found

n cluster 25 and cluster 28 in more detail (Fig. 4 B and Fig. 5 B, C).
O analysis on subsections of genes found in these clusters re-
ealed a change in pathways associated with cell adhesion and
xtr acellular pr ocesses (Fig. 5 B). The second subsection of clus-
er 28 was associated with terms regarding cell differentiation
rocesses, lik e “e pithelial cell differentiation” or “angiogenesis”

Fig. 5 C). 
We identified cell-type specifically regulated pathways upon

FrEF. Ther efor e, we inv estigated how the enriched signaling
athways differ between humans and mice in cardiomyocytes.
e observ ed lar ger differ ences for pathways that were specif-

call y r egulated in humans. Among the most regulated path-
a ys , specifically detected in humans, we found the terms “actin
lament organization” and “angiogenesis” (Fig. 6 A). Genes as-
ociated with these pathw ays w er e explicitl y upr egulated in
atients (Fig. 6 B). These gene sets were not found among the reg-
lated pathways in mice ( Supplementary Table S4 ). Examples of
ngiogenesis-related genes that are specifically induced in hu-
an heart failure but not in mouse models include receptors such

s the VEGF -receptor FLT1 or transcription factors like the mes-
nc hyme homeobox pr otein 2 (MEOX2) (Fig. 6 B). In addition, man y

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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Figure 6: Common and distinct regulated pathways found in human and mouse cardiomyocytes. (A) Dot plot visualizing the 10 most significant 
pathways for terms only to be found regulated in humans, commonly regulated, and specific in mice . T he size of the dots corresponds to the negative 
log10 of the Benjamini–Hoc hber g adjusted P value, and the color code represents the normalized enrichment score (NES), with upregulated pathways 
shown in red and downregulated pathways in blue. The y-axis depicts the description of the identified term. (B) Bar plot with mean values for the 
amount of unique molecular identifiers (UMIs) in the cells for the shown genes . T he genes are identified to be dissimilarly regulated between humans 
and mice for pathways specifically found in humans. (C) Bar gr a ph similar to (B) with mean values for UMIs in cells for genes downregulated in both 
species for commonly found terms. (D) Bar graph similar to (B) and (C) with mean values for UMIs in cells for genes that are uniquely found to be 
regulated in terms specifically identified in mice. P values above the certain groups were calculated by 2-sided Student’s t -test. 
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GTP ase r egulatory genes wer e found specificall y incr eased in hu- 
mans, including MCF2L and RASGRF2 , which are known to reg- 
ulate RAC1 , and SPATA13 , which enables guanyl-nucleotide ex- 
change factor activity [ 34 , 35 ]. In contrast, we observed that sig- 
naling pathways mainly dealing with energy metabolism were 
commonl y r egulated in patients with heart disease as well as 
in mouse models . T he genes included in pathways such as “ATP 
biosynthetic pr ocess,” “mitoc hondrial ATP synthesis,” “aer obic 
electr on tr ansport c hain,” and “cellular r espir ation” sho w ed sig- 
nificant downregulation compared to their corresponding control 
(Fig. 6 C). These data suggest conservation of disturbed mitochon- 
drial metabolism in both mice and humans upon heart failure. 

On the other hand, pathways such as “Wnt signaling path- 
w ay,” “actin–my osin filament sliding,” and “regulation of cell mor- 
phogenesis” wer e upr egulated specificall y in the mouse HFrEF 
model (Fig. 6 A). Genes associated with Wnt signaling include LRP6 ,
a known inhibitor of cardiomyocyte pr olifer ation [ 36 ], and the 
serine/thr eonine–pr otein kinase MARK2 , which regulates the sta- 
bility of microtubules through phosphorylation and inactivation 

of se v er al micr otubule-associated pr oteins [ 36 ]. 
Furthermor e, we r epeated the GSEA anal ysis with the identi- 

fied ECs in the human and mouse model data to gain further in- 
sight into the different cell types ( Supplementary Fig. S5 ). Here, we 
found human-specific regulated terms such as “cardiac contrac- 
tion” and “regulation of axonogenesis” ( Supplementary Fig. S5A ) 
only in ECs but not in the pr e viousl y anal yzed CMs . T he genes 
in these sets sho w ed a distinct r egulation onl y observ ed in hu- 
man data ( Supplementary Fig. S5B ). When we examined the com- 
monl y r egulated metabolic pathwa ys , we found similar terms 
and changes in gene expression related to impaired mitochon- 
rial metabolism in ECs as we had pr e viousl y observ ed in CMs
 Supplementary Fig. S5C ). In ECs, we also found similar mouse-
pecific terms such as “cell morphogenesis” and the “Wnt signal- 
ng pathway” but also ne wl y discov er ed pathways such as “pos-
tiv e r egulation of ster oid hormone secr etion.” Ster oid hormones
ave been shown to coordinate micr ov ascular function in obese
ice endothelium [ 37 ]. Based on these results, one might specu-

ate that this regulatory function is mouse specific. GSEA analysis
or all other cell types can be found in [ 38 ]. All source code for this
tudy can be found in the article-specific GitHub repository [ 39 ]. 

iscussion 

he e v er-gr owing number of published single-cell experiments
nables scientists to deepen the knowledge about transcriptional 
hanges of individual cell types and species-specific regulatory 
hanges upon disease conditions. A particular combination of 
ingle-cell datasets fr om differ ent species in the same UMAP pro-
ection allows the detection of well-conserved or species-specific 
egulatory networks [ 40–42 ]. 

Ther efor e, integr ating datasets from different species with a
ell-curated list of orthologs has significant advantages and sim- 
lifies comparisons among species. 

Here we propose OrthoIntegrate , an R-package that enables sci-
ntists to integrate single-cell datasets from different species 
nto a shared dimensional space. To generate high-quality and 

niquel y ma pped orthologous lists between differ ent species, we
mplemented a new pipeline that increases the 1-to-1 assign- 

ent of ontologies to impr ov e single-cell integr ation. Compar ed
o the Ensembl orthologous list (Biomart), our pipeline results 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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n up to 10% mor e uniquel y assigned orthologs between human
nd mouse. Compared to the other databases OMA and InP ar a-
oid, OrthoIntegrate contains 8.6% and 9.3% more 1-to-1 orthologs

Fig. 3 F). 
OrthoIntegrate additionally contains functions that use the ex-

ended orthologous assignments to streamline the integration of
ingle-cell datasets from humans and mice . Moreo ver, it is highly
daptable and can be easily customized to support other species.

We demonstrated the usability of combining cross-species
ingle-cell data by using datasets of human and mouse heart fail-
re with reduced ejection fraction. 

In order to e v aluate the species mixing and the biological con-
erv ation of differ ent integr ation methods, we applied certain
etrics from the scib pac ka ge [ 32 , 43 ], whic h wer e also suggested

y Song et al. [ 32 , 33 , 43 ]. The results are summarized in Fig. 2 D.
e found that most batc h corr ection scor es impr ov ed by using
rthoIntegrate . 
For biological conservation scores, we demonstrate that some

etrics, like the “cell c ycle conservation,” w er e impr ov ed by us-
ng OrthoIntegrate , which means that the variance caused by dif-
erent cell cycle states of the cells was conserved via OrthoIn-
egrate . Other parameters, like the normalized mutual informa-
ion (NMI) scor e, wer e r educed. But this scor e , for example , was
tr ongl y influenced by the cell-type labeling [ 33 ], which focused
nly on main cell-type groups in these datasets, regardless of the
xistence of subpopulation or mixed cell-type population clus-
ers. In other w or ds, subclusters of different cell types were not
nnotated in detail. Due to the increased numbers of features
hat are included in OrthoIntegrate , the clustering might be more
iv er ged, likel y by species-specific noncoding RNAs or other fea-
ur es, whic h ar e not included in the other databases. Ther efor e,
he more divergent clustering, due to the increased number of
eatures in OrthoIntegrate combined with the broad cell-type la-
eling, might explain the slightl y r educed NMI scor es. Ho w e v er,
ince various publications have shown that long noncoding RNAs
av e important r egulatory r oles in the heart [ 44–46 ], we think that
hese additional noncoding RNAs are an important resource to
tudy species-specific responses to different disease conditions,
specially in the field of heart failure. 

Commonl y r egulated pathways upon heart failure reflect an
 volutionary conserv ed tr anscriptomic answer to se v er e dam-
ge in heart cells. One example is the conserved downregula-
ion of critical mitochondrial metabolic pathwa ys , which pro-
ide ATP for the heart (Fig. 5 and Fig. 6 A, C). As the heart is the
ost ener gy-consuming or gan, maintaining mitoc hondrial func-

ion plays a critical role, and the decline in energy production lim-
ts heart function [ 47 ]. We could show that genes important for
TP biosynthesis and electr on tr ansport (e.g., PGAM2 , NDUFA1 ,
nd TMEM126A ) are consistently downregulated in heart failure.
GAM2 and NDUFA1 have been described in the context of heart
isease in mice [ 48 ] and rats [ 49 ], respectively, but their role in
umans is unknown. 

Besides commonl y r egulated pathwa ys , we found differences
etween humans and mice upon heart failure. In car diomy oc ytes,
enes associated with “angiogenesis” wer e specificall y enric hed
n humans. For example, the VEGF receptor FLT1 was specifically
ncreased in the human samples. FLT1 primarily mediates VEGF
ignaling in endothelial cells, but its role in car diomy oc ytes, be-
ides high expression [ 50 ], is less clear [ 51 ]. Functionally, FLT1 was
hown to partially mediate VEGF -induced car diomy oc yte differ-
ntiation [ 52 ] and regulate car diomy oc yte contractility in the em-
ryonic zebrafish heart [ 53 ]. Cardiomyocyte-specific deletion of
LT1 w as sho wn to w orsen car diac r emodeling and hypertr ophy
nduced by pr essur e ov erload [ 54 ], suggesting that the specific up-
egulation in humans may represent a compensatory cardiopro-
ectiv e mec hanism that might not be conserv ed in mice. 

A second human CM-specific gene is MEOX2 , which was as-
igned to “angiogenesis” because of its role in endothelial fatty
cid transport [ 55 ]. MEOX2 plays a critical role in the de v elopment
f all muscle lineages [ 56 ]. In car diomy oc ytes , MEOX2 o verexpres-
ion blocks proliferation during heart morphogenesis [ 57 ]. All of
hese human CM-specific genes have not been studied in mouse
ar diomy oc ytes, and their human-specific regulation upon heart
ailure might be of utmost interest for future studies. 

Among the pathways specificall y enric hed in mice, we found
r edominant expr ession of genes associated with Wnt signaling.
lthough most identified genes have not been dir ectl y linked to
ar diomy oc yte-specific functions, Wnt signaling critically regu-
ates cardiac h ypertroph y, remodeling, and regeneration [ 36 , 58 ].
her efor e, these findings and the other identified species-specific
athways deserve more in-depth validation and investigation. 

To further demonstrate the functionality of OrthoIntegrate , we
ntegrated scRNA-seq data from human [ 43 ], mouse [ 59 ] and ze-
rafish [ 59 , 60 ] brain tissue under an Alzheimer disease condi-
ion. Besides the evolutionary distance between these species,
e could jointly cluster different cell types via OrthoIntegrate

 Supplementary Fig. S6A –C ) and detect commonly expressed
arker genes within these cell clusters ( Supplementary Fig.

6D –F ). 
In summary, our publicly available bioinformatic tool OrthoIn-

egrate simplifies the comparison of scRNA-seq datasets from hu-
ans and mice, and thereby we could identify conserved regula-

ory pathways upon heart failur e. Furthermor e, we identified cell
ype–specific differences in both species. Also, w e sho w ed path-
ays such as angiogenesis regulated explicitly in humans, and
nt signaling pathways specifically regulated in mice. 
We anticipate that this study shows the benefits of the

oint analysis of scRNA-seq data through OrthoIntegrate. Due to
he growing number of scRNA-seq datasets, we hope that Or-
hoIntegrate encour a ges other scientists to perform compar ativ e
nalysis between different species, thereby increasing knowl-
dge about conserved or species-specific pathway responses
n various diseases . T his could impro ve the effective develop-

ent of novel treatment strategies for heart failure or other
iseases. 

imitations 

he main limitation of our ortholog assignment and sample in-
egration pipeline is the dependence on reliable databases for or-
hologous lists. Another problem with this approach is that it fails
o consider the biological functions of the possible orthologs but
elects the ortholog with the highest sequence similarity. Sec-
nd, our biological example has some limitations. While a de-
ent number of healthy controls are a vailable , the number of pa-
ients with HFrEF is limited. Knowing the biological heterogeneity
f heart failure and comorbidities, variations are expected and the
amples may not r epr esent the r epr esentativ e and most common
pectrum of heart failur e. Finall y, although the mouse model used
s commonly applied in cardiovascular research, there are signifi-
ant limitations due to the lack of underlying coronary artery dis-
ase and ther a peutic pharmacological and interv entions as done
n humans . T he integr ation of incr easingl y av ailable published
ata both from alternative mice models and data derived from
uman samples will allow a refined comparative analysis in the
uture. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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Methods 

Study samples 

The human heart samples used as controls were provided from 

the PRJEB39602 (Human Cell Atlas) project published in 2020.
The heart tissue was obtained from deceased transplant organ 

donors who were between 45 and 70 years old and showed un- 
r emarkable cardiov ascular history. The healthy mice samples 
(CTRL: n4–n9) were gathered by Vidal et al. (2019) [ 61 ] and can 

be found using the Array Express Data Portal under E-MTAB-7869 
( Supplementary Table S1 ). 

Heart samples from patients with HF rEF w er e gather ed for 
this study from the Frankfurt University Hospital and subse- 
quentl y pr ocessed at the Institute of Cardiov ascular Regener ation 

(Frankfurt am Main, Germany), where the processed mice sam- 
ples (CTRL: n1–n3, HFrEF: n1–n4) were also gathered and sourced.

Nuclear isolation steps and single-nucleus RNA sequencing li- 
br ary pr epar ation wer e conducted as described in Nicin et al. [ 62 ].

The human heart failure samples as well as the mice control 
and heart failure samples are published in Array Express with the 
accession E-MTAB-13264 ( Supplementary Table S1 ). 

In order to provide another species and disease condition,
we applied OrthoIntegrat e on humans , mice , and zebrafish in the 
Alzheimer disease (AD) condition. Ther efor e, we gather ed scRNA- 
seq data from the prefrontal cortex (location matched) of human,
mouse, and zebrafish via scRead (human and mouse data; disease,
n = 2; healthy, n = 2) [ 63 ] and GEO (GSE118577; n = 3). The human 

and mouse samples originate from GSE129308 [ 43 ] and GSE143758 
(AD) & GSE143758 (Healthy), r espectiv el y. 

Single-cell preprocessing 

Single-cell RNA-seq results wer e pr ocessed by CellRanger (10x Ge- 
nomics) version 6.1.1 software . T he first step consisted of demul- 
tiplexing and processing raw base count files by the implemented 

mkfastq tool. The human raw reads were mapped to the reference 
genome hg38 (GRCh38-2020) using CellRanger count, whereas the 
mouse r aw r eads wer e ma pped to the r efer ence genome mm10 
(GRCm38-2020). The secondary data analysis was conducted us- 
ing the Seurat 4.1.0 package in R. The datasets were first combined 

into a Seurat object and then subjected to a filtering process. Bar- 
codes with too low ( < 300) or too high number of genes ( > 6,000) 
were sorted out and not considered further in the data analy- 
sis. In addition, barcodes with too low ( < 500) and too high read 

counts ( > 15,000) were also sorted out. To further ensure no apop- 
totic cells or doublets were analyzed, we discarded barcodes with 

a high percentage of mitochondrial content ( > 5%). The filtered 

gene counts were then logarithmized and normalized according 
to the tutorial for data analysis with Seurat. Baseline characteris- 
tics for the samples can be found in Supplementary Table S1 . 

Ortholog assignment and sample integr a tion 

In order to ensure the integration of single-cell datasets from 

different species, we coded a function to assign animal model 
orthologs to the human nomenclature (or vice versa) using 
gene transfer format (GTF) files provided by Ensembl (GRCh38,
GRCm38). In order to detect only well-annotated genes between 

the species, predicted genes were removed. Afterw ar d, orthologs 
to the human genes were determined using the R package 
biomaRt. This assigned the majority of genes in our human 

GTF file to at least 1 ortholog. If there were several entries of 
possible orthologs in the Ensembl database, a protein sequence 
comparison was initiated. Ther efor e, pr otein sequences wer e 
 etrie v ed fr om the Unipr ot database for the human gene and all
ossible orthologs in the second species . T hese sequences were
hen aligned using the R pac ka ge Biostrings 2.60.2. The alignment
core was calculated based on the Needleman–Wunsch global 
lignment algorithm [ 28 ] with substitution matrices. For nu-
leotide sequences, the nucleotideSubstitutionMatrix function was 
sed to produce a substitution matrix for all IUPAC nucleic acid
odes based upon match and mismatc h par ameters. BLOSUM50
atrix was r etrie v ed fr om the NCBI Matrix Compendium for

he protein sequence . T he gene IDs with the highest amino acid
equence similarity between their canonical sequences were 
ssigned. If there were no entries for canonical sequences in
niprot, the nucleotide sequence similarity comparison was 

nitiated. For this step, the unpredicted mRNA sequences for 
he gene in the first species and for the possible orthologs in
he second species were obtained from the NCBI database and
ligned analogously to the previous step. If no unpredicted mRNA
as available for an entry, the function retrieved the unpredicted
oncoding RNA of the gene . T his ensured that noncoding genes
ithout mRNAs could still be assigned corr ectl y. In case both RNA

equences were not retrievable, predicted versions of mRNA and 

oncoding RN A w er e r etrie v ed. If all these assignment steps were
ot successful, the Le v enshtein distance was used to compare
he ID symbols for possible orthologs, and the ortholog with the
o w est Le v enshtein distance was selected. 

Many long noncoding RNAs are not listed in ortholog 
atabases; ther efor e, a final lo w er case matching step was per-
ormed to assign genes like Malat1 to the human MALAT1 . With
his globall y a pplicable list of orthologs between species, the
atasets were now filtered by these and then merged into 1 object
sing Seurat’s canonical correlation analysis (CCA) integration. 

lustering, metrics calculation, and annotation 

o classify cells into clusters based on their expressed genes, we
sed the FindNeighbors and FindClusters (r esolution par ameter =
.3) function implemented in Seurat. These clusters are deter- 
ined by a ppl ying the shar ed near est neighbors (SNN) clustering

lgorithm and the UMAP dimension reduction. 
Calculations of the silhouette coefficient are based on com- 

uting a distance matrix based on the cell embedding matrix for
rincipal component analysis (PCA) performed by Seurat. This 
istance matrix includes the information of cell–cell distance,
hich is necessary for calculating the silhouette coefficient with 

ur calculated clusters in the function silhouette of the cluster
ac ka ge (v ersion 2.1.4). Additionall y, the coefficients of the sam-
les were averaged for each object. For applying the Python scib
ac ka ge , we con v erted our Seur at objects into Anndata objects
sing the zellk onv erter pac ka ge (v ersion 1.10.1). We computed
r a ph connectivity, principal component r egr ession comparison,
ilhouette batch, kBET, LISI, and cell cycle conservation scores for
efining the species mixing scor e. Furthermor e, the bioconser-
 ation scor e w as calculated b y computing the species type LISI,
solated labels F1 score, and the previously mentioned silhouette 
oefficient. The total score was then calculated by a weighted
ddition of species mixing score and bioconservation score (0.5 ∗
pecies mixing score + 0.5 ∗ bioconservation score). We provided 

he UniprotIDs of the orthologous lists obtained with the tools
o be compared to the Orthology Benchmark web service to
alculate the Sc hlic ker similarity scores for enzyme classification
onservation and GO conservation. 

The orthologous lists for OMA, Biomart, and InP ar anoid wer e
reated b y follo wing their introductions on their tool descriptions
nd by using the same GTF files as before (GRCh38, GRCm38). 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae011#supplementary-data
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For the assignment of cell clusters to cell types, we used a ref-
rence object that we had pr e viousl y manuall y annotated with
arker genes from Tombor et al. [ 64 ]. Her e, the R pac ka ge SingleR

an be used to adopt marker genes that were used for the pre-
ious annotation of clusters of the r efer ence object. These wer e
hen tr ansferr ed and compar ed to marker genes of the cell clus-
ers of our object to be annotated. T hus , a r epr oducible annotation
an be guaranteed with the help of an exactly annotated dataset.

ifferential gene expression analysis and GO 

nalysis 

etection of DEGs for the cell type–specific clusters was per-
ormed by the hurdle model of the MAST pac ka ge (v ersion 1.20.0).
esults were filtered by their Bonferroni-adjusted P value ( P -
djusted < 0.05). The totality of DEGs was r epr esented by Sank e y
lots created with the R package networkD3 (version 0.4). Addi-
ionally, bar plots were created using R package ggplot2, repre-
enting human DEGs and their regulation in mice. DEGs were also
ivided according to their species and cell-type assignment and
hen visualized for DEGs with a positive log2FC and separ atel y in
nother plot, for DEGs with a negative log2FC. Here, DEGs occur-
ing in both human and mouse for the r espectiv e cell type were
ooled. Visualization was done in the form of a Circos plot (R pack-
ge circlize 0.4.14). The gene regulation heatmap was created us-
ng the log2FC of all identified genes and a k -means clustering ( k =
0) (R pac ka ge ComplexHeatma p 2.16.0). Visualization of distinct
nd similar populations of genes in the analyzed cell types per
pecies was ac hie v ed by creating Venn diagrams with the Jvenn
ebtool. 
GSEA was performed using the R pac ka ge clusterPr ofiler (v er-

ion 4.2.2) and the GO Database. GSEA terms were calculated sep-
r atel y for eac h cell type . T he terms w ere sorted accor ding to the
enjamini–Hoc hber g adjusted P value and evaluated according to
heir “normalized enric hment distribution,” whic h giv es informa-
ion about the regulation of the genes in the described pathway. A
eatmap was created by clustering the GSEA terms by their sim-

lar geneIDs (R pac ka ge simplifyEnric hment 1.10.0). Additionall y,
he GSEA results were plotted in dot plots. Specifically, for genes
escribed in the pathway, the standard error of the mean bar plot
as created (for their averaged unique molecular identifiers) by
sing the R pac ka ge ggplot2. GO anal yses wer e performed using
he subsection of genes found in cluster 25 and cluster 28 as input
or the webtool Metascape. 

vailability of Source Code and 

equirements 

roject name: OrthoIntegrate 
Pr oject homepa ge: https:// github.com/ MarianoRuzJurado/

rthoIntegrate [ 38 ] 
Operating system(s): Platform independent 
Pr ogr amming langua ge: R 

Other r equir ements: certain R-pac ka ges (Seur at ( > = 4.2.0), gg-
lot2 ( > = 3.3.6), ggpubr ( > = 0.4.0), biomaRt ( > = 2.52.0), rtr ac k-

ayer ( > = 1.56.1), mygene ( > = 1.32.0), UniprotR ( > = 2.2.2),
ecordLinkage ( > = 0.4–12.3), Biostrings ( > = 2.64.1), r entr ez ( > =
.2.3), stringr ( > = 1.4.1), svglite ( > = 2.1.0), dplyr ( > = 1.1.2), tidyr
 > = 1.3.0) 

License: GNU GPL 
RRID: SCR_025029, OrthoIntegr a te 
dditional Files 

upplementary Fig. S1. Integr ation pr ocess of human/mouse
nRN A-seq data. (A) UML-Activity-Flo wchart sho wing ortholog
ssignment pipeline for human to mouse gene symbols. First,
he GTF for humans (GRCh38) is used to get all annotated gene
omenclatures . T hen all genes are filtered out, which are only
redicted and not clearly detected. This list is now searched for or-
hologs using the Ensembl database; all 1:1 assignments can be in-
luded in our orthologous list. In the case of multiple assignments,
ll possible replacements are examined according to their pro-
ein sequence and an alignment score is calculated according to
he global sequence alignment. If there is no protein sequence in
he Uniprot database, the alignment score is calculated based on
he nucleotide sequence using the NCBI database. Now the gene
ith the best result is set as an ortholog. All unassigned genes
r e additionall y compar ed with the GTF file of GRCm38 using a
o w er case matching, and if there is a match, they will be added to
he ortholog list. If all these a ppr oac hes for a gene do not result
n an ortholog, a Le v enshtein distance score is calculated based
n their gene names. (B) Single-cell integration pipeline showing
teps performed to integrate human and mouse scRNA-seq data
n a joined UMAP projection. The scRNA-seq data from our hu-

an and mouse samples are first converted into Seurat objects
nd normalized. After that, clustering takes place and cell types
an be determined. Using the orthologous list from our ortholog
ssignment algorithm, the objects can be subsetted according to
he genes found and their nomenclature unified. This is follo w ed
y an integration into a single object and a clustering step. 
upplementary Fig. S2. Ov erla pping of human and mouse cells
fter Seurat integration with a tool-specific orthologous list. (A)
MAPs showing human cells (red) and mice cells (blue) in a com-
on UMAP projection for each tool used for integrating the data.

irst, UMAP was performed on an object made with an orthol-
gous list of OMA, follo w ed b y Biomart and InP ar anoid. The last
MAP shows the projection for the OrthoIntegrate pipeline. (B) Sim-

lar to (A), UMAPs are shown to visualize the clustering created
ith the R pac ka ge Seur at using the Louv ain algorithm. The ob-

ects are found in the same order as pr e viousl y described. (C) Simi-
ar to (A) and (B), UMAPs are shown with the cell-type annotation.
he order is maintained as in (A) and (B) (same parameters are
sed for each UMAP; resolution = 0.3). 
upplementary Fig. S3. Circos plots of DEGs show specific and
imilar expressed DEGs. (A) Circos plot showing the 10 most up-
egulated genes in human HFrEF (log2FC), separated for all cell
ypes. Red line indicates the log2FC for human DEGs, while the
lue line indicates the log2FC of the corresponding mouse gene.
B) Circos plot similar to (A) illustrates the 10 most upregulated
enes in mice HFrEF samples in comparison to the regulation of
hese genes in humans. 
upplementary Fig. S4. DEG analysis shows population of shared
nd cell type–specific genes across cell types in humans and mice.
A) Upset plot of human DEGs found in the analyzed cell types.
he groups are sorted by their intersection size and plotted on
he x-axis of the plot. Additionally, the overlapping groups are vi-
ualized by a connected dot plot. The size of the DEGs per cell type
s shown on the y-axis. (B) Upset plot of mouse DEG populations
imilar to pr e vious plot in (A). 
upplementary Fig. S5. GSEA anal ysis shows r egulated pathways
pon heart failure in human and mouse endothelial cells. (A) Dot
lot visualizing the 10 most significant pathways for terms only
o be found regulated in humans, commonly regulated, and spe-
ific in mice endothelial cells . T he size of the dots corresponds to

https://github.com/MarianoRuzJurado/OrthoIntegrate
https://scicrunch.org/resolver/RRID:
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the negative log10 of the Benjamini– Hoc hber g adjusted P value,
and the color code r epr esents the normalized enrichment score 
(NES), with upregulated pathways shown in red and downregu- 
lated pathways in blue. The y-axis depicts the description of the 
identified term. (B) Bar plot with mean values for the amount of 
unique molecular identifiers (UMIs) in the cells for the shown 

genes . T he genes are identified to be dissimilarly regulated be- 
tween humans and mice for pathways specifically found in hu- 
mans. (C) Bar gr a ph similar to (B) with mean v alues for UMIs in 

cells for genes downregulated in both species for commonly found 

terms. (D) Bar gr a ph similar to (B) and (C) with mean values for 
UMIs in cells for genes that are uniquely found to be regulated 

in terms specifically identified in mice . P values abo ve the certain 

gr oups wer e calculated by the 2-sided Student’s t -test. 
Supplementary Fig. S6. Integration of human, mouse, and 

zebr afish scRNA-seq pr efr ontal cortex data of healthy and 

Alzheimer disease patients. (A) UMAP showing human cells (red),
mice cells (blue), and zebrafish cells (green) in a common UMAP 
projection. (B) UMAP with defined clusters according to Seurat’s 
clustering. Cells of mouse, human, and zebrafish origin commin- 
gled in the astrocyte cluster (green). Excitatory (red) and inhibitory 
(gr een) neur ons ar e mostl y pr esent in human data. (C) Bar plot 
showing cell composition of cell types in human (red), mice (blue),
and zebrafish (green) samples. Samples were grouped based on 

their origin into human, mouse, and zebrafish controls from the 
pr efr ontal cortex (Healthy) and Alzheimer disease human, mouse,
and zebrafish (Alzheimer). Cell types were then analyzed for their 
composition from the previously mentioned groups and plotted. 
(D) Dot plot depicting the av er a ge expr ession le v els and expr es- 
sion proportions in human samples of the top 15 feature genes 
for the found cell types . T he size of the dot r epr esents the propor- 
tion of cells expressing the indicated gene within a cell type, and 

the color indicates the av er a ge expr ession le v el of cells. (E) Dot 
plot depicting the av er a ge expr ession le v els and expr ession pr o- 
portions in mice samples of the top 15 feature genes for found 

types. Similar to (D), the size of the dot r epr esents the pr opor- 
tion of cells expressing the indicated gene within a cell type, and 

the color indicates the av er a ge expr ession le v el of cells. (F) Dot 
plot depicting the av er a ge expr ession le v els and expr ession pr o- 
portions in zebrafish samples of the top 15 feature genes for the 
found cell types. Similar to (D and E), the size of the dot r epr e- 
sents the proportion of cells expressing the indicated gene within 

a cell type, and the color indicates the av er a ge expr ession le v el 
of cells. 
Supplementary Table 1: Baseline c har ac hteristics of human and 

mouse samples. 
Supplementary Table 2: Number of mouse genes before and after 
ortholog assignement 
Supplementary Table 3: Human and mouse DEGs upon HFrEF 
Supplementary Table 4: Human and gene-set-enrichment anal- 
ysis (GSEA) upon HFrEF 
Supplementary Table 5: Human and gene-set-enrichment anal- 
ysis (GSEA) upon HFrEF in endothelial cells 
Supplementary Table 6: Number of cells per sample and celltype 

Da ta Av ailability 

The single nuclei data for humans have been deposited in the 
Human Cell Atlas database and can be accessed through the 
HC A Data P ortal [ 65 ]. T he mice sequencing data ar e av ailable 
thr ough Arr ayExpr ess under the accession number E-MTAB-7869.
All supporting data and materials ar e av ailable in the GigaScience 
database, GigaDB [ 66 ]. 
bbreviations 

D: Alzheimer disease; bASW: batch average silhouette width; 
CS: bioconserv ation scor e; CCA: canonical corr elation anal ysis;
CC: cell cycle conservation; CM: cardiomyocyte; DEG: differen- 

iall y expr essed gene; EC: endothelial cell; FB: fibr oblast; GC: gr a ph
onnectivity; GO: Gene Ontology; GSEA: gene set enrichment anal- 
sis; GTF: gene transfer format; HFrEF: heart failure patients with
 educed ejection fr action; IC: imm une cell; ILF1: isolated labels
1 score; LAD: left anterior descending coronary artery model; 
ncRNA: long-non coding RNA; mRNA: messenger RNA; NC: neu- 
onal cell; NES: normalized enrichment score; NMI: normalized 

utual information; PC: pericyte; PCA: principal component anal- 
sis; PCR: principal component r egr ession comparison; SC: silhou-
tte coefficient; scRNA-seq: single-cell RNA sequencing; SnRNA- 
eq: single-nucleitide RNA sequencing; MC: smooth muscle cell; 
MS: species mixing scor e; SNN: shar ed near est neighbor; UMAP:
niform Manifold Approximation and Projection; UMI: unique 
olecular identifier. 
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