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Improved integration of single-cell transcriptome data
demonstrates common and unique signatures of heart
failure in mice and humans
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Abstract

Background: Cardiovascular research heavily relies on mouse (Mus musculus) models to study disease mechanisms and to test novel
biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffective drugs.
Therefore, it is an open challenge of translational science to develop models with high similarities and predictive value. This requires
a comparison of disease models in mice with diseased tissue derived from humans.

Results: To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called Ortholnte-
grate, which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The
pipeline has been designed to be as easy to use and is fully integrable in the standard Seurat workflow.

We applied Ortholntegrate on sScRNA-seq from cardiac tissue of heart failure patients with reduced ejection fraction (HFrEF) and scRNA-
seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct
regulatory pathways between human HFrEF patients and the corresponding mouse model. Overall, 54% of genes were commonly
regulated, including major changes in cardiomyocyte energy metabolism. However, several regulatory pathways (e.g., angiogenesis)
were specifically regulated in humans.

Conclusions: The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice
models and human HFrEF and shows that results from the mice model should be validated carefully. Ortholntegrate is publicly acces-
sible (https://github.com/MarianoRuzJurado/Ortholntegrate) and can be used to integrate other large datasets to provide a general
comparison of models with patient data.

Keywords: cross-species analysis, cardiovascular disease, heart failure with reduced ejection fraction, coronary artery ligation, single-
cell integration, cross-species integration workflow

Introduction that do not occur naturally in mice like Alzheimer or Parkinson

Animal experiments are a powerful tool to improve our un-
derstanding of pathophysiological conditions and to predict re-
sponses to new therapeutic approaches [1]. However, due to ethi-
cal considerations, they are controversially discussed [2], and their
predictive capacity for toxicity and drug responses is limited [3,
4]. Especially mice are commonly used to model human diseases
as they are relatively inexpensive, have short generation times,
and have large numbers of offspring. Additionally, mice have a
relatively close physiological and phylogenetic relationship with
humans [5, 6]. Mice protein-coding genes are on average 85%
identical to humans [4], and over 90% of both genomes have re-
gional conserved synteny [7]. Due to these advantageous breed-
ing characteristics and their high sequencing conservation to hu-
mans, hundreds of different mouse models have been developed
to study human diseases [8] like heart failure [9] or even diseases

disease [10].

To study cardiovascular diseases, which remain the leading
cause of morbidity and mortality in the aging society, the liga-
tion of the left anterior descending coronary artery model (LAD)
is often used to induce myocardial infarction, which results in is-
chemic heart failure with reduced ejection fraction (HFrEF) [11,
12]. Thereby, the LAD is ligated to mimic the clotted artery as it
occurs after infarction. While short-term reperfusion then allows
to mimic the reopening of the coronary artery by catheter-based
interventions, often chronic ligation is used to induce heart fail-
ure over the course of >4 weeks. As this method describes a simi-
lar decline in heart function, scientists use LAD mouse models to
simulate HFrEF and develop and test new therapeutic strategies
[13-15]. Patients who have HFTEF are unable to pump sufficient
amounts of blood to meet the demands of body organs [16].
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To address the comparability of HFYEF in human to mouse
models, we used single-nuclei RNA sequencing data, enabling us
to assess transcriptional regulatory pathways in all cardiac cell
populations with high resolution and accuracy [17, 18]. In order to
analyze single-cell RNA sequencing (scRNA-seq) data from vari-
ous samples, integration pipelines were developed to combine in-
dividual cells from different subjects into clusters with similar ex-
pression patterns [18, 19]. Yet these bioinformatic tools can only
integrate datasets from identical species. Several studies devel-
oped algorithms to compare messenger RNA (mRNA) expression
patterns across species [20-22]. However, a standardized and easy
way to compare single-cell/nuclei RNA sequencing datasets of hu-
man and mouse by directly integrating the data is still missing
[18, 23, 24]. Overcoming these limitations and the highly increas-
ing demand for comparison of various organisms prompted us to
develop a R package called Ortholntegrate. It features a pipeline for
integration of single-cell datasets and ortholog assignment, allow-
ing the simple integration of data from animal models and human
patients. For the ortholog assignment process, we implemented an
algorithm in the workflow that adjusts the different nomenclature
between species before the integration takes place, by using the
databases of Ensembl, NCBI, and Uniprot [25-27]. Using our newly
established pipeline, which is completely compatible with stan-
dard seurat workflows, we explored the gene expression patterns
in mouse models of HFTEF compared to human samples. While
54% of genes were commonly regulated in both species, we also
observed significant differences in differentially expressed genes
and regulated pathways in patients with heart diseases compared
with the corresponding mouse model.

Results

1-to-1 ortholog assignments

To integrate single-cell data from different species, we established
a table of gene names, which contains 1 human gene for each
mouse gene, by which it will be replaced (1-to-1 orthologs). We per-
formed the same approach for generating a table of gene names
between human and zebrafish genes.

In order to generate these 1-to-1 orthologs, we utilized the
Needleman-Wunsch algorithm [28] to perform a pairwise global
alignment between possible orthologs retrieved by the Ensembl
database. This calculation determines alignment scores based on
differences in the amino acid or nucleotide sequences. In case
no orthologs were found or a protein or nucleotide sequence
was not available for a particular gene, a lowercase matching of
the human gene was searched for in the mouse gene database
(Supplementary Fig. S1A).

The Ensembl database assigned a total of 21,428 mouse or-
thologs to our human gene ID symbols. However, only 77%
(16,573) of these were uniquely assigned. Through our Ortholnte-
grate pipeline, we increased the number of assignments to 82%
(17,504). Hereby, 714 mouse genes were assigned by protein se-
quence alignment, 89 through nucleotide sequence alignment, 42
by using the Levenshtein distance between gene names, and 86
using our lowercase matching approach. Most of the 86 matches
found by lowercasing were long noncoding RNAs with identical
gene names. We then proceeded by filtering the human and mice
data by these orthologs in our pipeline and replaced the mice
nomenclature by the human nomenclature for the correspond-
ing samples (Supplementary Fig. S1B). In the end, we could as-
sign ~82% of the mice genes to human orthologs (Supplementary
Table S2). Replacing mouse gene names with the human ortholog

allowed us to integrate the human patient data with the mouse
model data into 1 single-cell object (Fig. 1A). Moreover, we aimed
to underscore the versatility of Ortholntegrate. Therefore, we in-
tegrated and clustered scRNA-seq datasets related to Alzheimer
disease from human, mouse, and zebrafish with the Ortholntegrate
pipeline (Supplementary Fig. S6). We successfully created clusters
representing excitatory and inhibitory neurons, as well as astro-
cytes, in the 3 species (Supplementary Fig. S6A, B). Given the fo-
cus and the size of the human study and data, most of the exci-
tatory neurons found were of human origin, but we showed that
excitatory neurons found in mice were also assigned to the same
clusters and showed comparable marker genes (Supplementary
Fig. S6A-D). Similar results were obtained for inhibitory neurons
and astrocytes, proving a successful integration of all 3 datasets
(Supplementary Fig. S6C-F).

Cell-type composition in human and mouse
upon HFrEF

After demonstrating the practicality of the integrated dataset, the
biological differences of the human mouse datasets were ana-
lyzed. The absence of species-specific clusters in the combined
Uniform Manifold Approximation and Projection (UMAP) plot con-
firms that human and mouse hearts comprise similar cell types
and gene expression patterns (Fig. 1B). This is additionally veri-
fied by similar cell type-specific marker genes in both species in
the different cell clusters (Fig. 1E, F). The specific marker genes al-
lowed the annotation of the clusters into cardiomyocytes (CMs),
pericytes (PCs), smooth muscle cells (SMCs), fibroblasts (FBs), en-
dothelial cells (ECs), immune cells (ICs), and neuronal cells (NCs)
(Fig. 1C).In addition, we analyzed how the distribution of cell types
was affected by the heart failure phenotype. Thereby, a 20% de-
crease in human CMs was observed when comparing the control
samples with the HFrEF samples (45% — 25%) (Fig. 1D). However,
in mice, there was no difference in the numbers of CMs between
the infarcted and control mice (both comprise about ~25% CMs)
(Fig. 1D). Furthermore, we found differences in the distribution of
ECsin the human versus mouse samples. Specifically, we observed
a significant increase in the EC population in samples from HFTEF
patients (~30%) compared to healthy hearts (~8%). In contrast, we
noticed decreased EC numbers in mice upon infarction (from 25%
in controls to 18% after chronic infarction). Minor changes were
also observed in the contributions of other cell types (Fig. 1D).

Comparison to other integration methods

We carefully inspected our data to determine species-specific dis-
tribution by creating UMAP plots of all cells in our integrated ob-
ject. Figure 1B shows that cells of mouse and human origin com-
mingled in all clusters, which indicates a successful integration
based on the cell types and not on the species. We additionally
compared our Ortholntegrate pipeline to other ortholog databases
and tools to assess the advantages of our ortholog assignments.
For this purpose, we created the same scRNA-SEQ datasets us-
ing the different ortholog lists OMA, Biomart, and InParanoid [29-
31]. Visualization of the integration by UMAP plots shows an inte-
gration of human- and mouse-derived cells in the individual cell
clusters also with the alternative orthologous list (Supplementary
Fig. S2A-C). However, besides the visual impression, quantitative
metrics were used to assess the quality of the clustering, and
we calculated silhouette coefficients, which measure the quality
of the clustering independent from the number of clusters. In-
tegration by Ortholntegrate resulted in the highest silhouette co-
efficients compared to the other ortholog databases, suggesting
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Figure 1: Integrated human and mouse snRNA-seq data of healthy and heart failure samples. (A) Use case diagram of Ortholntegrate: shown are the
steps that are run by the user within their standard Seurat workflow. First, the Import function is used to create Seurat objects from scRNA-seq data;
second, orthologs are searched by the BuildOrtholog function, and the third step creates an integrated object with uniform nomenclature by using the
IntegrateObjects. (B) UMAP showing human cells (red) and mice cells (blue) in a common UMAP projection. In addition, cell types for the cell clusters
can be seen. (C) UMAP with defined clusters according to Seurat’s clustering, divided by species. Cells of mouse and human origin commingled in all
clusters. There are no clusters formed that originated from only 1 of the 2 species. The cells were identified as cardiomyocytes (red), fibroblasts
(vellow), endothelial cells (green), pericytes (turquoise), immune cells (blue), smooth muscle cells (purple), and neuronal cells (pink). (D) Bar plot
showing cell composition of cell types in human (red) and mice (blue) samples. Samples were grouped based on their origin into human controls from
the left ventricle (Human-CTRLIv), human HFrEF (Human-HFrEF), mouse controls (Mice-CTRL), and mouse HFTEF model (Mice-HFrEF). Cell types were
then analyzed for their composition from the previously mentioned groups and plotted. P values above the certain groups were calculated by 2-sided
Student’s t-test. (E) Dot plot depicting the average expression levels and expression proportions in human samples of the top 10 feature genes for the
found cell types. The size of the dot represents the proportion of cells expressing the indicated gene within a cell type, and the color indicates the
average expression level of cells. (F) Dot plot depicting the average expression levels and expression proportions in mice samples of the top 10 feature
genes for the found cell types. Similar to (E), the size of the dot represents the proportion of cells expressing the indicated gene within a cell type, and

the color indicates the average expression level of cells.

an improved clustering (Fig. 2A). Additionally, it is noteworthy to
mention that our pipeline achieved by far the most 1:1 protein
coding and IncRNA coding orthologous pairs in comparison to
the other described methods (Fig. 2B, C). To further determine the
clustering quality after integration, we computed supplementary
metrics recommended by the single-cell integration benchmark
scib package [32] and the Orthology Benchmark Service. We also
calculated the species mixing score and bioconservation score,
following the guidelines of the BENGAL pipeline (Fig. 2D) [32, 33].
Remarkably, our method not only achieved the highest number of
uniquely mapped orthologous pairs but also demonstrated high
performance across individual metrics in comparison with alter-
native tools (Fig. 2D-F).

Differential gene expression between mice and
humans

The differentially expressed gene (DEG) analysis showed strong
similarities in the regulated genes upon HFrEF. However, some

genes showed differences in their expression patterns, mainly
when the cell types were analyzed individually. Overall, we found
a comparable number of DEGs in both species (4,141 in humans,
4,654 in mice).

The average of commonly regulated genes per cell type (Fig. 3A,
left side) showed that around 54% of DEGs found in humans were
also regulated in mice, with minor differences between cell types.
Upregulated genes showed a generally higher comparability com-
pared to downregulated genes (Fig. 3B). Only in smooth muscle
cells were many more human-specific DEGs regulated in opposite
directions (Fig. 3B, right upper panel). Averaging the mouse regu-
lated DEGs (Fig. 3A, right side) showed that only about 34% of the
cell type-specific DEGs in mice were regulated in humans, indi-
cating a more substantial transcriptional effect of the LAD model
compared to the human disease.

Figure 3B separately shows the upregulated (top panel) and
downregulated (lower panel) genes in humans and their regula-
tion in mice. For the upregulated genes in humans, around 50-70%
of the corresponding mouse genes were also upregulated, around
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Figure 2: Comparison of snRNA-seq data integration with orthologs from Ortholntegrate and other ortholog databases. (A) Box plot showing the average
silhouette coefficient for clusterings based on different databases and tools. The dark blue box stands for the silhouette coefficient of the clustering
made with an orthologous list using the tool OMA (orthologous matrix). It is followed by the results for biomaRt (light blue), InParanoid (green), and
the pipeline Ortholntegrate (yellow). On the y-axis, you can see the value of the silhouette coefficient. Additionally, each silhouette coefficient was
calculated for each sample and depicted as a circle in their species-specific color. (B) Bar plot with number of orthologs found that codes for a protein
(C) and bar plot with number of orthologs found that codes for IncRNA. On the x-axis, the used tool is depicted. (D) Table showing results of different
metric calculations to comprehend batch correction and biological conservation of clusterings based on orthologous lists of OMA, biomaRt,
InParanoid, and Ortholntegrate (bASW: batch average silhouette width; BCS: bioconservation score; CCC: cell cycle conservation; GC: graph
connectivity; ILF1: isolated labels F1 score; NMI: normalized mutual information; PCR: principal component regression comparison; SC: silhouette
coefficient; SMS: species mixing score). The color code represents low and high values and is scaled per column (low = green, brown; high = blue,
yellow). (E) Schlicker similarity scores calculated for OMA (red), Biomart (green), InParanoid (blue), and Ortholntegrate (purple) in terms of enzyme
classification conservation (left) and gene ontology conservation (right). (F) Venn diagram highlighting the numbers of uniquely found orthologs
between human and mouse per tool and their overlap between each other (blue = OMA, red = biomart, green = biomart, yellow = Ortholntegrate).

25% were not regulated, and only about 5-20% were regulated in
the opposite direction, suggesting that overall activation occurs
mainly in similar expression pathways across all cell types. In
the downregulated genes in humans, we observed a strikingly low
number of commonly regulated genes in cardiomyocytes. There,
only 23.3% of the downregulated genes were also decreased in
mice. Most of them were either not regulated (48.2%) or even up-
regulated in mice (28.5%). The other cell types show a higher per-
centage of commonly downregulated genes.

We visualized all expression changes in 1 heatmap to further
validate individual gene changes upon HFrEF (Fig. 4A, B). Thereby,
we found that around 30% of the genes show no changes in their
expression upon heart failure (Fig. 4A, cluster 1). Most expres-
sion changes were consistently observable in all cell types (clus-
ters 2-23) and therefore appeared as general responses to injury
that could not be attributed to individual cell types. However, the
remaining 16 clusters showed cell type-specific expression pat-
terns (Fig. 4B). For example, cluster 25 held a set of genes that
showed increased expression of genes in human FBs, whereas
cluster 28 in human ECs contained many genes that were down-
regulated. These changes were not detectable in other cell types
for these genes and therefore of utmost interest to follow up on
specific gene expression changes in species-specific cells. Simi-
lar patterns were found by observing commonly regulated genes

(Fig. 4C). For humans, the largest number of DEGs was found in
all cell types (1,087 DEGs). The second largest groups contained
DEGs that were found only in the individual cell types (Fig. 4C;
Supplementary Fig. S4A). Thus, we identified 687 DEGs specific to
human CMs and 208 DEGs that could only be found in ECs. Deter-
mining the distribution of DEGs in mice revealed larger popula-
tions of cell type-specific genes and fewer DEGs, which were found
in all populations (n = 228). Notably, we found far fewer DEGs in
the mouse SMCs than in the human samples. However, this could
be related to the total number of SMCs in mice, which was far less
in mice than in human samples (Figs. 1C and 3A). This could ex-
plain the lower number of DEGs found in all cell types. When we
excluded SMCs from the common DEG population, we observed a
similar number of DEGs in all cell types as in humans previously
(Supplementary Fig. S4B).

Further, we analyzed the highest upregulated genes per cell
type in humans and mice along with the regulation of that gene
in the other species. Hereby, we observed how the genes with the
largest changes in human heart failure patients behave in the re-
spective mouse model (Supplementary Fig. S3).

We observed that the expression of the most regulated genes
in human cell types showed comparably less regulation in the
mouse models. For example, we found LDB2, a gene of the LIM-
domain family, in human CMs as highly upregulated (log2FC =
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Figure 3: Similarities and differences revealed by DEG analysis. (A) Sankey plot illustrating the distribution of DEGs in the corresponding cell types.
The width of the paths illustrates the number of DEGs that are human specific (yellow), detected in both species (light green), or mouse specific (dark
green). DEG analysis was performed for each cell type individually. Neuronal cells were omitted from all further analyses due to their insufficient
number of cells in the mouse data. (B) Bar graph of upregulated (top) and downregulated (bottom) genes in humans, along with the expression in mice.
The panels show genes that are either commonly regulated (left), regulated in humans, and not regulated in mice (middle) and regulated in opposite
directions.
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Figure 5: GSEA analysis reveals more regulated pathways in heart failure in human cardiomyocytes than in mice, with the terms found sharing many
keywords. (A) Heatmap clustering of significant GSEA results (P-adjusted < 0.25) of DEGs found in human and mouse cardiomyocytes by similar
GenelDs in the pathways. Bar graphs are shown on the left y-axis representing the number of pathways found in the respective cluster for the given
species and condition. In addition, the adjusted P value is color-coded from 1 (green) to the smallest P value found, ~0.025 (red). On the right side of
the y-axis, keywords describing the found pathways in that cluster are shown, where the size of the word represents its frequency in the terms (larger
= most, smaller = less). (B) Bar graph showing the first 20 GO terms found by analyzing genes in cluster 25. Terms were sorted by their logarithmized
and Bonferroni-adjusted P values, resulting in high significant pathways depicted first (P-adjusted < 0.05). (C) Bar graph similar to (B) terms found in a

subsection of genes in cluster 28.

2.15) (Supplementary Fig. S3A). The LIM-domain family genes
are well known as adapter molecules that allow the assembly of
transcriptional regulatory complexes in CMs. However, in mice,
LDB2 was only mildly regulated upon HFIEF (log2FC = 0.38). Other
genes such as the VEGF receptor FLT1, which is upregulated in hu-
man cardiomyocytes, showed a downregulation in mice CMs. This
demonstrates that some genes have completely different expres-
sion patterns in humans and mice. However, some genes share
similar regulation in their respective cell types. Thus, we observed
that phosphodiesterase 4D (PDE4D) and ADP ribosylation factor
like GTPase 15 (ARL15) showed similar changes in ECs. Among the
10 most upregulated genes in the mouse model data, we found
3 genes that also showed a significant increase in their expres-
sion in humans (RBPJ, SLCOA9, RUNX1) (Supplementary Fig. S3B).
The other genes, however, showed little to no change. In contrast,
if we investigate the expression changes in ECs, DEGs showed an
opposite direction in their expression change (RBPJ, PID1, SLC9A9).
These differential gene expressions in the cell types suggest that
some cell type-specific responses may be different between hu-
man patients and mouse models.

Pathway enrichment results in cardiomyocytes

To address whether the relatively high number of significantly
regulated genes indicates overall changes in pathways and patho-
logical processes or whether the differences relate more to the
alternative use of genes with similar functions in mice and hu-
mans, we further determined the implications for overall path-
ways in the individual cell types. Figure 4 shows a simplifyEnrich-

ment heatmap cluster with word clouds of Gene Ontology (GO)
terms regulated in human or mouse cardiomyocytes. We gener-
ally observed more significantly enriched gene set enrichment
analysis (GSEA) terms in humans than in mice (Fig. 5A). Important
pathway terms regarding mitochondrial energy production and
the electron chain were enriched in both species. Other terms in-
volving developmental processes were enriched in humans com-
pared to mice. Additionally, we investigated the set of genes found
in cluster 25 and cluster 28 in more detail (Fig. 4B and Fig. 5B, C).
GO analysis on subsections of genes found in these clusters re-
vealed a change in pathways associated with cell adhesion and
extracellular processes (Fig. 5B). The second subsection of clus-
ter 28 was associated with terms regarding cell differentiation
processes, like “epithelial cell differentiation” or “angiogenesis”
(Fig. 5C).

We identified cell-type specifically regulated pathways upon
HFrEF. Therefore, we investigated how the enriched signaling
pathways differ between humans and mice in cardiomyocytes.
We observed larger differences for pathways that were specif-
ically regulated in humans. Among the most regulated path-
ways, specifically detected in humans, we found the terms “actin
filament organization” and “angiogenesis” (Fig. 6A). Genes as-
sociated with these pathways were explicitly upregulated in
patients (Fig. 6B). These gene sets were not found among the reg-
ulated pathways in mice (Supplementary Table S4). Examples of
angiogenesis-related genes that are specifically induced in hu-
man heart failure but not in mouse models include receptors such
as the VEGF-receptor FLT1 or transcription factors like the mes-
enchyme homeobox protein 2 (MEOX?) (Fig. 6B). In addition, many
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Figure 6: Common and distinct regulated pathways found in human and mouse cardiomyocytes. (A) Dot plot visualizing the 10 most significant
pathways for terms only to be found regulated in humans, commonly regulated, and specific in mice. The size of the dots corresponds to the negative
log10 of the Benjamini-Hochberg adjusted P value, and the color code represents the normalized enrichment score (NES), with upregulated pathways
shown in red and downregulated pathways in blue. The y-axis depicts the description of the identified term. (B) Bar plot with mean values for the
amount of unique molecular identifiers (UMIs) in the cells for the shown genes. The genes are identified to be dissimilarly regulated between humans
and mice for pathways specifically found in humans. (C) Bar graph similar to (B) with mean values for UMIs in cells for genes downregulated in both

species for commonly found terms. (D) Bar graph similar to (B) and (C) with
regulated in terms specifically identified in mice. P values above the certain

GTPase regulatory genes were found specifically increased in hu-
mans, including MCF2L and RASGRF2, which are known to reg-
ulate RAC1, and SPATA13, which enables guanyl-nucleotide ex-
change factor activity [34, 35]. In contrast, we observed that sig-
naling pathways mainly dealing with energy metabolism were
commonly regulated in patients with heart disease as well as
in mouse models. The genes included in pathways such as “ATP
biosynthetic process,” “mitochondrial ATP synthesis,” “aerobic
electron transport chain,” and “cellular respiration” showed sig-
nificant downregulation compared to their corresponding control
(Fig. 6C). These data suggest conservation of disturbed mitochon-
drial metabolism in both mice and humans upon heart failure.

On the other hand, pathways such as “Wnt signaling path-
way,” “actin-myosin filament sliding,” and “regulation of cell mor-
phogenesis” were upregulated specifically in the mouse HFrEF
model (Fig. 6A). Genes associated with Wnt signalinginclude LRP6,
a known inhibitor of cardiomyocyte proliferation [36], and the
serine/threonine-protein kinase MARK2, which regulates the sta-
bility of microtubules through phosphorylation and inactivation
of several microtubule-associated proteins [36].

Furthermore, we repeated the GSEA analysis with the identi-
fied ECs in the human and mouse model data to gain further in-
sightinto the different cell types (Supplementary Fig. S5). Here, we
found human-specific regulated terms such as “cardiac contrac-
tion” and “regulation of axonogenesis” (Supplementary Fig. S5A)
only in ECs but not in the previously analyzed CMs. The genes
in these sets showed a distinct regulation only observed in hu-
man data (Supplementary Fig. S5B). When we examined the com-
monly regulated metabolic pathways, we found similar terms
and changes in gene expression related to impaired mitochon-

n o«

mean values for UMIs in cells for genes that are uniquely found to be
groups were calculated by 2-sided Student’s t-test.

drial metabolism in ECs as we had previously observed in CMs
(Supplementary Fig. S5C). In ECs, we also found similar mouse-
specific terms such as “cell morphogenesis” and the “Wnt signal-
ing pathway” but also newly discovered pathways such as “pos-
itive regulation of steroid hormone secretion.” Steroid hormones
have been shown to coordinate microvascular function in obese
mice endothelium [37]. Based on these results, one might specu-
late that this regulatory function is mouse specific. GSEA analysis
for all other cell types can be found in [38]. All source code for this
study can be found in the article-specific GitHub repository [39].

Discussion

The ever-growing number of published single-cell experiments
enables scientists to deepen the knowledge about transcriptional
changes of individual cell types and species-specific regulatory
changes upon disease conditions. A particular combination of
single-cell datasets from different species in the same UMAP pro-
jection allows the detection of well-conserved or species-specific
regulatory networks [40-42].

Therefore, integrating datasets from different species with a
well-curated list of orthologs has significant advantages and sim-
plifies comparisons among species.

Here we propose Ortholntegrate, an R-package that enables sci-
entists to integrate single-cell datasets from different species
into a shared dimensional space. To generate high-quality and
uniquely mapped orthologous lists between different species, we
implemented a new pipeline that increases the 1-to-1 assign-
ment of ontologies to improve single-cell integration. Compared
to the Ensembl orthologous list (Biomart), our pipeline results
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in up to 10% more uniquely assigned orthologs between human
and mouse. Compared to the other databases OMA and InPara-
noid, Ortholntegrate contains 8.6% and 9.3% more 1-to-1 orthologs
(Fig. 3F).

Ortholntegrate additionally contains functions that use the ex-
tended orthologous assignments to streamline the integration of
single-cell datasets from humans and mice. Moreover, it is highly
adaptable and can be easily customized to support other species.

We demonstrated the usability of combining cross-species
single-cell data by using datasets of human and mouse heart fail-
ure with reduced ejection fraction.

In order to evaluate the species mixing and the biological con-
servation of different integration methods, we applied certain
metrics from the scib package [32, 43], which were also suggested
by Song et al. [32, 33, 43]. The results are summarized in Fig. 2D.
We found that most batch correction scores improved by using
Ortholntegrate.

For biological conservation scores, we demonstrate that some
metrics, like the “cell cycle conservation,” were improved by us-
ing Ortholntegrate, which means that the variance caused by dif-
ferent cell cycle states of the cells was conserved via Ortholn-
tegrate. Other parameters, like the normalized mutual informa-
tion (NMI) score, were reduced. But this score, for example, was
strongly influenced by the cell-type labeling [33], which focused
only on main cell-type groups in these datasets, regardless of the
existence of subpopulation or mixed cell-type population clus-
ters. In other words, subclusters of different cell types were not
annotated in detail. Due to the increased numbers of features
that are included in Ortholntegrate, the clustering might be more
diverged, likely by species-specific noncoding RNAs or other fea-
tures, which are not included in the other databases. Therefore,
the more divergent clustering, due to the increased number of
features in Ortholntegrate combined with the broad cell-type la-
beling, might explain the slightly reduced NMI scores. However,
since various publications have shown that long noncoding RNAs
have important regulatory roles in the heart [44-46], we think that
these additional noncoding RNAs are an important resource to
study species-specific responses to different disease conditions,
especially in the field of heart failure.

Commonly regulated pathways upon heart failure reflect an
evolutionary conserved transcriptomic answer to severe dam-
age in heart cells. One example is the conserved downregula-
tion of critical mitochondrial metabolic pathways, which pro-
vide ATP for the heart (Fig. 5 and Fig. 6A, C). As the heart is the
most energy-consuming organ, maintaining mitochondrial func-
tion plays a critical role, and the decline in energy production lim-
its heart function [47]. We could show that genes important for
ATP biosynthesis and electron transport (e.g., PGAM2, NDUFAI,
and TMEM126A) are consistently downregulated in heart failure.
PGAM?2 and NDUFA1 have been described in the context of heart
disease in mice [48] and rats [49], respectively, but their role in
humans is unknown.

Besides commonly regulated pathways, we found differences
between humans and mice upon heart failure. In cardiomyocytes,
genes associated with “angiogenesis” were specifically enriched
in humans. For example, the VEGF receptor FLT1 was specifically
increased in the human samples. FLT1 primarily mediates VEGF
signaling in endothelial cells, but its role in cardiomyocytes, be-
sides high expression [50], is less clear [51]. Functionally, FLT1 was
shown to partially mediate VEGF-induced cardiomyocyte differ-
entiation [52] and regulate cardiomyocyte contractility in the em-
bryonic zebrafish heart [53]. Cardiomyocyte-specific deletion of
FLT1 was shown to worsen cardiac remodeling and hypertrophy

induced by pressure overload [54], suggesting that the specific up-
regulation in humans may represent a compensatory cardiopro-
tective mechanism that might not be conserved in mice.

A second human CM-specific gene is MEOX2, which was as-
signed to “angiogenesis” because of its role in endothelial fatty
acid transport [55]. MEOX2 plays a critical role in the development
of all muscle lineages [56]. In cardiomyocytes, MEOX2 overexpres-
sion blocks proliferation during heart morphogenesis [57]. All of
these human CM-specific genes have not been studied in mouse
cardiomyocytes, and their human-specific regulation upon heart
failure might be of utmost interest for future studies.

Among the pathways specifically enriched in mice, we found
predominant expression of genes associated with Wnt signaling.
Although most identified genes have not been directly linked to
cardiomyocyte-specific functions, Wnt signaling critically regu-
lates cardiac hypertrophy, remodeling, and regeneration [36, 58].
Therefore, these findings and the other identified species-specific
pathways deserve more in-depth validation and investigation.

To further demonstrate the functionality of Ortholntegrate, we
integrated scRNA-seq data from human [43], mouse [59] and ze-
brafish [59, 60] brain tissue under an Alzheimer disease condi-
tion. Besides the evolutionary distance between these species,
we could jointly cluster different cell types via Ortholntegrate
(Supplementary Fig. S6A-C) and detect commonly expressed
marker genes within these cell clusters (Supplementary Fig.
S6D-F).

In summary, our publicly available bioinformatic tool Ortholn-
tegrate simplifies the comparison of scRNA-seq datasets from hu-
mans and mice, and thereby we could identify conserved regula-
tory pathways upon heart failure. Furthermore, we identified cell
type-specific differences in both species. Also, we showed path-
ways such as angiogenesis regulated explicitly in humans, and
Wnt signaling pathways specifically regulated in mice.

We anticipate that this study shows the benefits of the
joint analysis of scRNA-seq data through Ortholntegrate. Due to
the growing number of scRNA-seq datasets, we hope that Or-
tholntegrate encourages other scientists to perform comparative
analysis between different species, thereby increasing knowl-
edge about conserved or species-specific pathway responses
in various diseases. This could improve the effective develop-
ment of novel treatment strategies for heart failure or other
diseases.

Limitations

The main limitation of our ortholog assignment and sample in-
tegration pipeline is the dependence on reliable databases for or-
thologous lists. Another problem with this approach is that it fails
to consider the biological functions of the possible orthologs but
selects the ortholog with the highest sequence similarity. Sec-
ond, our biological example has some limitations. While a de-
cent number of healthy controls are available, the number of pa-
tients with HFrEF is limited. Knowing the biological heterogeneity
of heart failure and comorbidities, variations are expected and the
samples may not represent the representative and most common
spectrum of heart failure. Finally, although the mouse model used
is commonly applied in cardiovascular research, there are signifi-
cant limitations due to the lack of underlying coronary artery dis-
ease and therapeutic pharmacological and interventions as done
in humans. The integration of increasingly available published
data both from alternative mice models and data derived from
human samples will allow a refined comparative analysis in the
future.
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Methods
Study samples

The human heart samples used as controls were provided from
the PRJEB39602 (Human Cell Atlas) project published in 2020.
The heart tissue was obtained from deceased transplant organ
donors who were between 45 and 70 years old and showed un-
remarkable cardiovascular history. The healthy mice samples
(CTRL: n4-n9) were gathered by Vidal et al. (2019) [61] and can
be found using the Array Express Data Portal under E-MTAB-7869
(Supplementary Table S1).

Heart samples from patients with HFrEF were gathered for
this study from the Frankfurt University Hospital and subse-
quently processed at the Institute of Cardiovascular Regeneration
(Frankfurt am Main, Germany), where the processed mice sam-
ples (CTRL: n1-n3, HFrEF: n1-n4) were also gathered and sourced.

Nuclear isolation steps and single-nucleus RNA sequencing li-
brary preparation were conducted as described in Nicin et al. [62].

The human heart failure samples as well as the mice control
and heart failure samples are published in Array Express with the
accession E-MTAB-13264 (Supplementary Table S1).

In order to provide another species and disease condition,
we applied Ortholntegrate on humans, mice, and zebrafish in the
Alzheimer disease (AD) condition. Therefore, we gathered scRNA-
seq data from the prefrontal cortex (location matched) of human,
mouse, and zebrafish via scRead (human and mouse data; disease,
n = 2; healthy, n = 2) [63] and GEO (GSE118577; n = 3). The human
and mouse samples originate from GSE129308 [43] and GSE143758
(AD) & GSE143758 (Healthy), respectively.

Single-cell preprocessing

Single-cell RNA-seq results were processed by CellRanger (10x Ge-
nomics) version 6.1.1 software. The first step consisted of demul-
tiplexing and processing raw base count files by the implemented
mkfastq tool. The human raw reads were mapped to the reference
genome hg38 (GRCh38-2020) using CellRanger count, whereas the
mouse raw reads were mapped to the reference genome mm10
(GRCm38-2020). The secondary data analysis was conducted us-
ing the Seurat 4.1.0 package in R. The datasets were first combined
into a Seurat object and then subjected to a filtering process. Bar-
codes with too low (<300) or too high number of genes (>6,000)
were sorted out and not considered further in the data analy-
sis. In addition, barcodes with too low (<500) and too high read
counts (>15,000) were also sorted out. To further ensure no apop-
totic cells or doublets were analyzed, we discarded barcodes with
a high percentage of mitochondrial content (>5%). The filtered
gene counts were then logarithmized and normalized according
to the tutorial for data analysis with Seurat. Baseline characteris-
tics for the samples can be found in Supplementary Table S1.

Ortholog assignment and sample integration

In order to ensure the integration of single-cell datasets from
different species, we coded a function to assign animal model
orthologs to the human nomenclature (or vice versa) using
gene transfer format (GTF) files provided by Ensembl (GRCh38,
GRCm38). In order to detect only well-annotated genes between
the species, predicted genes were removed. Afterward, orthologs
to the human genes were determined using the R package
biomaRt. This assigned the majority of genes in our human
GTF file to at least 1 ortholog. If there were several entries of
possible orthologs in the Ensembl database, a protein sequence
comparison was initiated. Therefore, protein sequences were

ates common and unique signatures of heart failure in mice and

retrieved from the Uniprot database for the human gene and all
possible orthologs in the second species. These sequences were
then aligned using the R package Biostrings 2.60.2. The alignment
score was calculated based on the Needleman-Wunsch global
alignment algorithm [28] with substitution matrices. For nu-
cleotide sequences, the nucleotideSubstitutionMatrix function was
used to produce a substitution matrix for all IUPAC nucleic acid
codes based upon match and mismatch parameters. BLOSUM50
matrix was retrieved from the NCBI Matrix Compendium for
the protein sequence. The gene IDs with the highest amino acid
sequence similarity between their canonical sequences were
assigned. If there were no entries for canonical sequences in
Uniprot, the nucleotide sequence similarity comparison was
initiated. For this step, the unpredicted mRNA sequences for
the gene in the first species and for the possible orthologs in
the second species were obtained from the NCBI database and
aligned analogously to the previous step. If no unpredicted mRNA
was available for an entry, the function retrieved the unpredicted
noncoding RNA of the gene. This ensured that noncoding genes
without mRNAs could still be assigned correctly. In case both RNA
sequences were not retrievable, predicted versions of mRNA and
noncoding RNA were retrieved. If all these assignment steps were
not successful, the Levenshtein distance was used to compare
the ID symbols for possible orthologs, and the ortholog with the
lowest Levenshtein distance was selected.

Many long noncoding RNAs are not listed in ortholog
databases; therefore, a final lowercase matching step was per-
formed to assign genes like Malatl to the human MALAT1. With
this globally applicable list of orthologs between species, the
datasets were now filtered by these and then merged into 1 object
using Seurat’s canonical correlation analysis (CCA) integration.

Clustering, metrics calculation, and annotation

To classify cells into clusters based on their expressed genes, we
used the FindNeighbors and FindClusters (resolution parameter =
0.3) function implemented in Seurat. These clusters are deter-
mined by applying the shared nearest neighbors (SNN) clustering
algorithm and the UMAP dimension reduction.

Calculations of the silhouette coefficient are based on com-
puting a distance matrix based on the cell embedding matrix for
principal component analysis (PCA) performed by Seurat. This
distance matrix includes the information of cell-cell distance,
which is necessary for calculating the silhouette coefficient with
our calculated clusters in the function silhouette of the cluster
package (version 2.1.4). Additionally, the coefficients of the sam-
ples were averaged for each object. For applying the Python scib
package, we converted our Seurat objects into Anndata objects
using the zellkonverter package (version 1.10.1). We computed
graph connectivity, principal component regression comparison,
silhouette batch, kBET, LISI, and cell cycle conservation scores for
defining the species mixing score. Furthermore, the bioconser-
vation score was calculated by computing the species type LIS,
isolated labels F1 score, and the previously mentioned silhouette
coefficient. The total score was then calculated by a weighted
addition of species mixing score and bioconservation score (0.5 x
species mixing score + 0.5 x bioconservation score). We provided
the UniprotIDs of the orthologous lists obtained with the tools
to be compared to the Orthology Benchmark web service to
calculate the Schlicker similarity scores for enzyme classification
conservation and GO conservation.

The orthologous lists for OMA, Biomart, and InParanoid were
created by following their introductions on their tool descriptions
and by using the same GTF files as before (GRCh38, GRCm38).
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For the assignment of cell clusters to cell types, we used a ref-
erence object that we had previously manually annotated with
marker genes from Tombor et al. [64]. Here, the R package SingleR
can be used to adopt marker genes that were used for the pre-
vious annotation of clusters of the reference object. These were
then transferred and compared to marker genes of the cell clus-
ters of our object to be annotated. Thus, a reproducible annotation
can be guaranteed with the help of an exactly annotated dataset.

Differential gene expression analysis and GO
analysis

Detection of DEGs for the cell type-specific clusters was per-
formed by the hurdle model of the MAST package (version 1.20.0).
Results were filtered by their Bonferroni-adjusted P value (P-
adjusted < 0.05). The totality of DEGs was represented by Sankey
plots created with the R package networkD3 (version 0.4). Addi-
tionally, bar plots were created using R package ggplot2, repre-
senting human DEGs and their regulation in mice. DEGs were also
divided according to their species and cell-type assignment and
then visualized for DEGs with a positive log2FC and separately in
another plot, for DEGs with a negative log2FC. Here, DEGs occur-
ring in both human and mouse for the respective cell type were
pooled. Visualization was done in the form of a Circos plot (R pack-
age circlize 0.4.14). The gene regulation heatmap was created us-
ing the log2FC of all identified genes and a k-means clustering (k =
40) (R package ComplexHeatmap 2.16.0). Visualization of distinct
and similar populations of genes in the analyzed cell types per
species was achieved by creating Venn diagrams with the Jvenn
webtool.

GSEA was performed using the R package clusterProfiler (ver-
sion 4.2.2) and the GO Database. GSEA terms were calculated sep-
arately for each cell type. The terms were sorted according to the
Benjamini-Hochberg adjusted P value and evaluated according to
their “normalized enrichment distribution,” which gives informa-
tion about the regulation of the genes in the described pathway. A
heatmap was created by clustering the GSEA terms by their sim-
ilar genelDs (R package simplifyEnrichment 1.10.0). Additionally,
the GSEA results were plotted in dot plots. Specifically, for genes
described in the pathway, the standard error of the mean bar plot
was created (for their averaged unique molecular identifiers) by
using the R package ggplot2. GO analyses were performed using
the subsection of genes found in cluster 25 and cluster 28 as input
for the webtool Metascape.

Availability of Source Code and
Requirements

Project name: Ortholntegrate

Project homepage: https://github.com/MarianoRuzJurado/
Ortholntegrate [38]

Operating system(s): Platform independent

Programming language: R

Other requirements: certain R-packages (Seurat (>= 4.2.0), gg-
plot2 (>= 3.3.6), ggpubr (>= 0.4.0), biomaRt (>= 2.52.0), rtrack-
layer (>= 1.56.1), mygene (>= 1.32.0), UniprotR (>= 2.2.2),
RecordLinkage (>= 0.4-12.3), Biostrings (>= 2.64.1), rentrez (>=
1.2.3), stringr (>= 1.4.1), svglite (>= 2.1.0), dplyr (>= 1.1.2), tidyr
(>=1.3.0)

License: GNU GPL

RRID: SCR_025029, Ortholntegrate

Additional Files

Supplementary Fig. S1. Integration process of human/mouse
snRNA-seq data. (A) UML-Activity-Flowchart showing ortholog
assignment pipeline for human to mouse gene symbols. First,
the GTF for humans (GRCh38) is used to get all annotated gene
nomenclatures. Then all genes are filtered out, which are only
predicted and not clearly detected. This list is now searched for or-
thologs using the Ensembl database; all 1:1 assignments can be in-
cludedin our orthologous list. In the case of multiple assignments,
all possible replacements are examined according to their pro-
tein sequence and an alignment score is calculated according to
the global sequence alignment. If there is no protein sequence in
the Uniprot database, the alignment score is calculated based on
the nucleotide sequence using the NCBI database. Now the gene
with the best result is set as an ortholog. All unassigned genes
are additionally compared with the GTF file of GRCm38 using a
lowercase matching, and if there is a match, they will be added to
the ortholog list. If all these approaches for a gene do not result
in an ortholog, a Levenshtein distance score is calculated based
on their gene names. (B) Single-cell integration pipeline showing
steps performed to integrate human and mouse scRNA-seq data
in a joined UMAP projection. The scRNA-seq data from our hu-
man and mouse samples are first converted into Seurat objects
and normalized. After that, clustering takes place and cell types
can be determined. Using the orthologous list from our ortholog
assignment algorithm, the objects can be subsetted according to
the genes found and their nomenclature unified. This is followed
by an integration into a single object and a clustering step.
Supplementary Fig. S2. Overlapping of human and mouse cells
after Seurat integration with a tool-specific orthologous list. (A)
UMAPs showing human cells (red) and mice cells (blue) in a com-
mon UMAP projection for each tool used for integrating the data.
First, UMAP was performed on an object made with an orthol-
ogous list of OMA, followed by Biomart and InParanoid. The last
UMAP shows the projection for the Ortholntegrate pipeline. (B) Sim-
ilar to (A), UMAPs are shown to visualize the clustering created
with the R package Seurat using the Louvain algorithm. The ob-
jects are found in the same order as previously described. (C) Simi-
lar to (A) and (B), UMAPs are shown with the cell-type annotation.
The order is maintained as in (A) and (B) (same parameters are
used for each UMAP; resolution = 0.3).

Supplementary Fig. S3. Circos plots of DEGs show specific and
similar expressed DEGs. (A) Circos plot showing the 10 most up-
regulated genes in human HFIEF (log2FC), separated for all cell
types. Red line indicates the log2FC for human DEGs, while the
blue line indicates the log2FC of the corresponding mouse gene.
(B) Circos plot similar to (A) illustrates the 10 most upregulated
genes in mice HFrEF samples in comparison to the regulation of
these genes in humans.

Supplementary Fig. S4. DEG analysis shows population of shared
and cell type-specific genes across cell types in humans and mice.
(A) Upset plot of human DEGs found in the analyzed cell types.
The groups are sorted by their intersection size and plotted on
the x-axis of the plot. Additionally, the overlapping groups are vi-
sualized by a connected dot plot. The size of the DEGs per cell type
is shown on the y-axis. (B) Upset plot of mouse DEG populations
similar to previous plot in (A).

Supplementary Fig. S5. GSEA analysis shows regulated pathways
upon heart failure in human and mouse endothelial cells. (A) Dot
plot visualizing the 10 most significant pathways for terms only
to be found regulated in humans, commonly regulated, and spe-
cific in mice endothelial cells. The size of the dots corresponds to
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the negative log10 of the Benjamini- Hochberg adjusted P value,
and the color code represents the normalized enrichment score
(NES), with upregulated pathways shown in red and downregu-
lated pathways in blue. The y-axis depicts the description of the
identified term. (B) Bar plot with mean values for the amount of
unique molecular identifiers (UMIs) in the cells for the shown
genes. The genes are identified to be dissimilarly regulated be-
tween humans and mice for pathways specifically found in hu-
mans. (C) Bar graph similar to (B) with mean values for UMIs in
cells for genes downregulated in both species for commonly found
terms. (D) Bar graph similar to (B) and (C) with mean values for
UMIs in cells for genes that are uniquely found to be regulated
in terms specifically identified in mice. P values above the certain
groups were calculated by the 2-sided Student’s t-test.
Supplementary Fig. S6. Integration of human, mouse, and
zebrafish scRNA-seq prefrontal cortex data of healthy and
Alzheimer disease patients. (A) UMAP showing human cells (red),
mice cells (blue), and zebrafish cells (green) in a common UMAP
projection. (B) UMAP with defined clusters according to Seurat’s
clustering. Cells of mouse, human, and zebrafish origin commin-
gled in the astrocyte cluster (green). Excitatory (red) and inhibitory
(green) neurons are mostly present in human data. (C) Bar plot
showing cell composition of cell types in human (red), mice (blue),
and zebrafish (green) samples. Samples were grouped based on
their origin into human, mouse, and zebrafish controls from the
prefrontal cortex (Healthy) and Alzheimer disease human, mouse,
and zebrafish (Alzheimer). Cell types were then analyzed for their
composition from the previously mentioned groups and plotted.
(D) Dot plot depicting the average expression levels and expres-
sion proportions in human samples of the top 15 feature genes
for the found cell types. The size of the dot represents the propor-
tion of cells expressing the indicated gene within a cell type, and
the color indicates the average expression level of cells. (E) Dot
plot depicting the average expression levels and expression pro-
portions in mice samples of the top 15 feature genes for found
types. Similar to (D), the size of the dot represents the propor-
tion of cells expressing the indicated gene within a cell type, and
the color indicates the average expression level of cells. (F) Dot
plot depicting the average expression levels and expression pro-
portions in zebrafish samples of the top 15 feature genes for the
found cell types. Similar to (D and E), the size of the dot repre-
sents the proportion of cells expressing the indicated gene within
a cell type, and the color indicates the average expression level
of cells.

Supplementary Table 1: Baseline charachteristics of human and
mouse samples.

Supplementary Table 2: Number of mouse genes before and after
ortholog assignement

Supplementary Table 3: Human and mouse DEGs upon HFTEF
Supplementary Table 4: Human and gene-set-enrichment anal-
ysis (GSEA) upon HFTEF

Supplementary Table 5: Human and gene-set-enrichment anal-
ysis (GSEA) upon HFrEF in endothelial cells

Supplementary Table 6: Number of cells per sample and celltype

Data Availability

The single nuclei data for humans have been deposited in the
Human Cell Atlas database and can be accessed through the
HCA Data Portal [65]. The mice sequencing data are available
through ArrayExpress under the accession number E-MTAB-7869.
All supporting data and materials are available in the GigaScience
database, GigaDB [66].
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