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Abstract

Studies typically use publication-based authorship data to study the relationships between 

collaboration networks and knowledge diffusion. However, collaboration in research often starts 

long before publication with data production efforts. In this project we ask how collaboration 

in data production networks affects and contributes to knowledge diffusion, as represented by 

patents, another form of knowledge diffusion. We drew our data from the metadata associated with 

genetic sequence records stored in the National Institutes of Health’s GenBank database. After 

constructing networks for each year and aggregating summary statistics, regressions were used to 

test several hypotheses. Key among our findings is that data production team size is positively 

related to the number of patents each year. Also, when actors on average have more links, we tend 

to see more patents. Our study contributes in the area of science of science by highlighting the 

important role of data production in the diffusion of knowledge as measured by patents.
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1 | INTRODUCTION

Studies of collaboration networks and knowledge diffusion have traditionally used 

publication-based authorship data as the primary data source to measure the extent, types, 

and networks of co-authorships, or research collaboration, such as the large scale study 

of scientific collaboration networks by Newman (2001a, 2001b, 2001c), and the types and 

levels of interdisciplinary research collaboration by Qin, Lancaster, and Allen (1997). These 

studies offer insight into the dynamics and structures of publication-based collaboration 

networks and provide evidence for the formation of science policy making.

Collaboration in research starts much earlier than the publication phase of a research 

lifecycle. Whether a collaboration can succeed in accomplishing the goal of a research 
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project is largely dependent on the success of data production, by which we mean all 

the work related to collecting/generating, cleaning, managing, aggregating/transforming 

research data. The data production phase of a research lifecycle is especially important 

and complex in data-intensive science and often requires specialized knowledge. While 

collaboration in the form of co-authorships tells the story at the end of a research life-cycle, 

the story of data production in the data-to-knowledge process has long been understudied 

since it falls under the shadow of publication glory.

The proliferation of data repositories and their importance in the science research enterprise 

prompted us to ask: how does collaboration in data production affect and contribute to 

knowledge diffusion (as represented by publications and patents)? In this paper we address 

this overarching research problem by looking at the following specific questions: How is 

the data production network related to knowledge diffusion? What variables in the data 

submission network help predict knowledge diffusion as measured by patents? How is the 

publication network related to knowledge diffusion, as measured by patents? What variables 

in the publication network help predict knowledge diffusion, as measured by patents?

Note that publication-based authorship data are insufficient to answer these questions 

because information about data production is left not included. Addressing the above 

questions requires new data sources that include the “footprints” from the data production 

phase in a research lifecycle as well as new perspectives that can help us gain insights into 

the missing links in data-to-knowledge networks. Thus, this work helps us gain a fuller 

understanding of the research life cycle.

To begin to address this research problem, we will first review relevant literature to provide 

some background and theoretical support for the rationale of this study as well as for data 

source selections. The computational framework will then be presented and argued in the 

methodology section. The longitudinal metadata from a data repository—GenBank1—will 

be analyzed using network science and multiple regression methods.

In this work we find a significant relationship between social network measures of the data 

production network for a given year and the number of patents for that year. Patents are a 

proxy measure for knowledge diffusion (for that year). This work also suggests that larger 

teams are getting a disproportionately larger number of patents; most data production teams 

are very small.

Our study makes a contribution in the area of science of science by highlighting the 

important role of data production in the diffusion of knowledge as measured by patents 

and suggests new avenues for future research.

2 | LITERATURE REVIEW

Collaboration in research has become the norm in modern science enterprise. The efficacy 

of collaborative research has an impact on the rate and scale of knowledge diffusion at 

all levels and is one of the main concerns of science policy makers and funding agencies 

1GenBank is a data repository that curates molecular sequence data (https://www.ncbi.nlm.nih.gov/genbank/)
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(Cummings, 2018). Addressing such concerns requires a sound theoretical framework and a 

set of measures that can explain phenomena emerging from research “footprints” or traces. 

From Derek de Solla Price’s Little Science, Big Science (1963) to the Fourth Paradigm 
(Hey, 2009), collaborations in research have changed not only in scale and capacity, but 

also in complexity and structures. This literature review focuses on two areas among the 

vast research publications on scientific collaboration: (a) metrics for research collaboration 

networks and (b) theory of knowledge transfer and diffusion.

2.1 | Metrics for research collaboration networks

Collaboration in research is typically measured by coauthorship on publications. If two 

scientists wrote a paper together, they are considered collaborators. Coauthorship can occur 

at the international, inter-institutional (i.e., same country), interdepartmental (i.e., same 

institution), or departmental level (Qin, 1994). Researchers in a collaboration network are 

called nodes or vertices. The relationships (i.e., co-authorship) between nodes are called 

links or edges. Collaboration networks within a field can have very large numbers of nodes, 

reflecting the number of publishing researchers in a field. The distribution of the number 

of edges that nodes have tends to be highly skewed such that some researchers have many 

links, while most have a more modest number of edges. Repeated collaborations mean that 

some edges have greater weight than others. The skewed distribution of edges affects local 

network structures and such networks consist of clusters or communities of researchers, 

which are self-organized, may be interconnected in numerous ways, and evolve over time.

Over the last 50 years, since de Solla Price’s work Little Science, Big Science (1963), 

scientific collaboration networks have been studied extensively, from a wide range of 

disciplines (Bozeman & Corley, 2004; Girvan & Newman, 2002; Newman, 2001c; Powell, 

White, Roput, & Owen-Smith, 2005). Barabási et al. (2002) give an excellent summary of 

the research on collaboration networks, which include: (a) most networks have the “small 

world” property, (b) real networks have an inherent tendency to cluster, more so than 

comparable random networks, and (c) the distribution of the number of edges for nodes 

(degree distribution) “contains important information about the nature of the network, for 

many large networks following a scale-free power-law distribution” (p. 591).

Statistical measures for collaboration networks have gained increasing significance in 

the last two decades. Questions of interest for complex network researchers include the 

typologies and properties of complex networks, interaction between these two components 

in a network, and the tools and measurements for capturing “in quantitative terms” the 

underlying organizing principles of real networks (Albert & Barabási, 2002). Well-known 

theories include those of random graph, percolation, small-world networks, scale-free 

networks, networks with community structure, and evolving networks, for which Albert 

and Barabási (2002) and Costa, Rodrigues, Travieso, and Boas (2007) provided exhaustive 

surveys.

In the discussion of each of these theories and models, Albert and Barabási (2002) used 

the average path length, clustering coefficient, and degree distribution, among others, to 

explain the statistical mechanics of the theories and models, which are considered as three 

robust measures of a network’s topology (Albert & Barabási, 2002). A number of properties 
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of scientific collaboration networks have been identified in these studies: small worlds 

are common in scientific communities; the networks are highly clustered; and biomedical 

research appears to have a much lower degree of clustering compared to other disciplines 

such as physics (Newman, 2001c). The evolution of scientific collaboration networks shows 

that the degree distribution follows a power law and key network properties (diameter, 

clustering coefficient, and average degree of the nodes) are time dependent, that is, the 

average separation decreases over time and the clustering coefficient decays with time 

(Barabási et al., 2002).

The theories and models shed light on studying complex collaboration using large-scale 

data. Studies on scientific collaboration are abundant in scientometric and information 

science scholarly journals. Most of them are often limited in that the data used are filtered 

by discipline and time period from a single database and are almost exclusively publication-

based authorship data, as seen in the studies cited earlier. The limitations of single source, 

variant time scales, and ambiguous coverage boundaries make it very difficult, if not 

impossible, for understanding the complexity of scientific collaboration networks spanning 

from data production to publications to patents.

2.2 | Knowledge diffusion

Discussions of knowledge diffusion involves several “epistemological assumptions about 

human beings and the world to be known, and their interaction” (Spender, 2008). Simply 

put, the term refers to the diffusion of data and of meaning. Data diffusion is relatively 

straightforward as it helps “receivers distinguish, within an agreed field of possibilities, the 

noted from unnoted”, while diffusion of meaning must “rely on receivers to add something 

of their own construction…diffusion means creating a new practice, guided rather than 

determined by prior practice” (Spender, 2008, p. 282). From a social network point of view, 

knowledge diffusion is also “a social phenomenon in which people as potential adopters are 

engaged” (Klarl, 2014, p. 738). As such, the process of knowledge diffusion is driven by 

social ties between and within the group of adopters as well as by individual’s attributes.

This connotation of knowledge diffusion helps explain the phenomenon of scientific 

collaboration and, in particular, cyberinfrastructure (CI)-enabled scientific collaboration. 

The CI-enabled collaboration can be characterized as networks of collaborating researchers 

connected not only by social and disciplinary ties but also supported by a plethora of CI 

services such as data submission, sharing, and reuse in additional information discovery 

services (Costa, Qin, & Bratt, 2016). The large number of different types of data repositories 

and search tools at the National Center for Biotechnology Information (NCBI) is an example 

of cyberinfrastructure on which collaborative research is conducted and knowledge is 

diffused through interactions between scientists, between scientists and data/information, 

and between data and information. Much of these activities and interactions falls into 

the domain of scientific dissemination, which is considered as “an activity of knowledge 

diffusion” (Tarango and Machin-Mastromatteo, Tarango & Machin-Mastromatteo, 2017).

How is knowledge diffused in a collaboration network situation? Most of research on this 

topic has been focused on building mathematical models, for example, Kim and Park’s 

model for examining the relationships between network structures and knowledge diffusion 
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(Kim & Park, 2009). Another model focused on the concentration of knowledge flows inside 

firm boundaries to measure how collaboration networks informed or drove the knowledge 

diffusion patterns (Singh, 2005). From a theoretical standpoint, a tighter network decreases 

the time distance between early and late adoptions by moving late adoption decisions from 

the future to the present as heterophilicity2 in subgroups of the network is decreasing which 

accelerates knowledge diffusion (Klarl, 2014).

Previous research on collaboration networks and knowledge diffusion have developed 

metrics and theories for measuring and interpreting the phenomenon of research 

collaboration while raising new questions, particularly as data production becomes 

increasingly integrated as part of the knowledge diffusion process. This paper addresses 

four major questions brought about by the data-intensive science:

1. How is the data production network related to knowledge diffusion?

2. What variables in the data submission network help predict knowledge diffusion 

as measured by patents?

3. How is the publication network related to knowledge diffusion, as measured by 

patents?

4. What variables in the publication network help predict knowledge diffusion, as 

measured by patents?

3 | METHODOLOGY

3.1 | Data

The data source used for this paper is a subset of data from an ongoing project (Bratt, 

Hemsley, Qin, & Costa, 2017; Costa et al., 2016; Qin et al., 2014, 2015) analyzing 

GenBank metadata. In the GenBank repository, an annotation record consists of a metadata 

section and the molecular sequence data section. The metadata section documents the 

nature, authorship, associated references, and release date of a sequence as well as data 

submission information. These annotation records are available from the GenBank FTP 

server as compressed semi-structured text files. We downloaded all the annotation records 

from 1982 to 2018 and extracted the metadata section from all annotation records in January 

2019, which were then parsed into a relational database (we excluded the genetic sequence 

data, which comprised 80% of the data volume). This process resulted in 227,905,057 

annotation records, in which 44,480,172 publications were referenced. This data collection 

also includes 42,511,832 patent references.

Similar to other scientometric research that uses metadata as the data source, we performed 

author name disambiguation for all years, accomplishing 89% accuracy by using the Kaggle 

solution from Chin et al. (2014) and by cross-checking the results with author metadata 

from Web of Science, SCOPUS, and Microsoft Academic graph. After the disambiguation 

process, the collection has 877,134 unique authors names (nodes), of which 519,719 are in 

2Connection between actors of different categories or classes.
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the publication network, 523,013 in the submission network, and 214,197 unique scientists 

in the patent network.

We then selected subsets of the data to generate scientific collaboration networks. The 

subsets consisted of three different types of research activities: co-production of data 

submissions, co-authorship of publications, and co-ownership of patents. The longitudinal 

analysis range selected was from 1992–2018. This range was chosen because a substantive 

level of data submissions started only in 1992 with a more stabilized user base and policies 

around submission, as compared to that in GenBank’s early years (1982 – 1991).

3.2 | Hypotheses

We used regression analysis to answer our research questions. Our unit of analysis is the 

overall activity and network for a year for a type of research activity. That is, the variables 

for the regression were drawn from descriptive statistics and network measures from the 

subsets of data for each year, for each of the three research activities. Descriptive statistics 

included measures like overall number of data submissions to GenBank, publications or 

patents for the year. The network measures are described in more detail below.

The networks were constructed from co-authorships for each of the research activity types, 

for each year. For example, the data submission network consists of authors as the nodes 

who were listed in the data submission metadata. If two authors showed up in the same 

submission record, they were linked in the network. This is a typical approach for a 

co-author network (Costa et al., 2016). Variables like team size were calculated by parsing 

individual authors from the author list and counting individuals on a single data submission 

or publication. All network measures were calculated using the iGraph package (https://

igraph.org/r/) in R.

We used a standard ordinary least squares (OLS) multivariate regression (Faraway, 2014) 

to answer our questions. For each regression (models and variables described below), 

we validated the model assumptions by examining diagnostic plots and running variance 

inflation factor to check for multicollinearity (Faraway, 2014). We found that while the 

models basically adhered to the requirement for normality, the models did suffer from some 

mild heteroscedasticity. As such we also ran a robust regression for each model. Since the 

robust models’ results were quite similar to the OLS regressions, we have opted to report the 

OLS regression results.

Based on the three questions (see the end of literature review section), we constructed the 

following hypotheses:

H1: The number of data submissions in a given year is positively related to the 

increase in number of patent applications.

This hypothesis addresses the first research question about the relations between data 

production and knowledge diffusion. In the era of data-intensive science, sequencing 

technologies has increased the capability and scale of data production while the publication 

output remained relatively flat, which increased the ratio of data submissions per 

publication.
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Certainly, knowledge diffusion is a broad topic with many factors that can be related to it. 

Here we are focused patents as one proxy measure for knowledge diffusion and elements of 

data production, including its network, as independent variables.

H2: The team size in data submission networks are positively related to the number 

of patent applications for a given year.

H3: How well-connected actors are in the data submission network is positively 

related to the number of patent applications for a given year.

These two hypotheses address the second research question about which network measures 

predict the impact on knowledge diffusion. Equation [1] was developed as a general 

regression model to test H1 – H3.

Y = β0 + β1x1 + β2x2 + β3x3 + e

(1)

where x1 = submission count, x2 = submission mean team size, and x3 = submission mean 

degree.

Variable x1 is the number of data submissions per author to GenBank in a given year. It is 

used to test H1. The variable assumes that a higher number of data submissions over time 

would generate more patent applications during that time. Realizing the lagging between 

publication date and date of patent application, we looked at last year’s number of data 

submissions as it related to this year’s patents, but such models tended not to perform as 

well. This may indicate that data are typically entered into GenBank upon the completion of 

a project.

Variable x2 is the mean number of data submitters on the annotation record. That is, the 

distinct count of the disambiguated individual names associated with the dataset. We opted 

to use mean over median because between the two centrality measures, mean is sensitive to 

extremes. Thus, mean will be pulled up higher in years where very large teams are present. 

This variable tests H2.

Variable x3 tests H3 and measures how many links, or co-authors, each author has for a 

given year in the data submission network. Mean is used for a similar reason as it is for team 

size: capturing the presence of highly well-connected authors in the network.

H4: The number of publications is positively related to the number of patent 

applications for a given year.

This hypothesis test addresses the third research question about the relationship between the 

number of publications in a given year and knowledge diffusion, as measured by patents.

H5: Publication team size is positively related to the number of patent applications 

for a given year.

The last research question, number 4, is addressed with H5, which tests if team size is 

predictive of knowledge diffusion. The model for H4 and H5 is similar to equation [1], but 

the variables are drawn from the publication network dataset. Thus, model 2 is shown in 
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equation [2]. The independent variables are drawn from the publication research activity 

network and thus our model looks at the relationships between knowledge creation and 

knowledge diffusion.

Y = β0 + β1x1 + β2x2 + e

(2)

where x1 = publication count and x2 = publication team size mean.

The Variable x1 in equation [2] is simply the. Publication count3 for a given year in the 

database and used to test H4. The authors of these publications make up the publication 

network. Here we are testing for an overall relationship between number of publications for 

a given year and number of patents.

The Publication team size mean variable (x2 in equation [2]) tests if larger (smaller) teams 

of authors on publications is related to a higher (lower) number of patents each year. Like 

model 1, we find the mean number of authors on publications, and the mean is used for its 

sensitivity to very large teams.

4 | RESULTS

4.1 | Key statistical properties

To give an overall sense of how the trends in the numbers of patents, data submissions, 

and publications have changed over time, we first include a plot (Figure 1) showing the 

growth in each over time. Of particular interest is the rapid and sustained growth of data 

submissions, compared to the others.

Based a diagnostic analysis of the data, we selected three measures—mean team size, mean 

degree, and clustering coefficient—to provide an overview of the key features of these 

networks.

Figure 2 shows that the mean team sizes for the submission network doubled at the turn 

of the millennium, then spiked almost in parallel during the first 5 years after 2000 before 

settling on a stable development state. Note that while the publication team size has grown 

slowly over time, the patent team size has remained almost unchanged over the 27 years.

The mean value of degrees was calculated for each node, and then averaged for each year. 

This measure reflects how connected researchers were to other researchers over the years. 

In Figure 3, the mean degree for the publication network was consistently higher than those 

of the other two networks throughout the entire period measured here. The mean degree of 

the data submission network reflects a similar pattern as that of the publications network, 

though with a much lower magnitude, while that of the patent network was consistently 

the lowest and more stable among the three. We observed similar distribution patterns in 

3There are also white papers, conference proceedings, and pre-prints though they comprise a minority at about 10%. These 
publications are selected by the dataset submitter as “relevant,” that is, papers in GenBank are those containing an explanation 
of the dataset, its processing, and other details to provide context for the next user.
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the three networks such that the team sizes and mean degree for the publication network 

remained the highest among the three networks in both Figures 2 and 3. These two measures 

for the patent network showed smaller changes and were consistently lower, compared to the 

submission and publication network.

Clustering coefficient measures the degree to which nodes in a network tend to cluster 

together. In other words, the greater the value of clustering coefficient, the tighter the 

nodes are clustered in a network. This means that not only does a node itself have many 

connections to other nodes but also these other nodes are connected among themselves. The 

distribution of clustering coefficient for three networks in Figure 4 show a decreasing trend 

as time went on and the values for publication and data submission networks decreased at 

a faster rate than in the patent network. Of note in Figure 4 is that overall it remained quite 

steady with only small fluctuations, while the value for patent network was much lower 

compared to the other two networks.

In the last decade (from approximately 2009–2018) the clustering coefficient for patent 

network was at about the same level as the other two and started growing higher in the last 

2 years (Figure 4). The decrease in clustering coefficient presents evidence that the networks 

became flatter, that is, nodes were becoming less clustered around a small number of highly 

connected “hubs” and more smaller clusters emerged that are likely local and not necessarily 

have direct links to the hub nodes.

4.2 | Hypothesis tests

Table 1 shows the results from model 1. All of the theoretical variables included in the 

model are positive and significant. The submission count of 0.185 indicates that for each 

data submissions in GenBank, patents increase by 0.185. This significant and positive 

relationship means that for H1, we reject the null hypothesis. This suggests a positive 

relationship between data submission efforts and patent output, or between collaboration in 

data production and knowledge diffusion. But it also shows that it takes many submissions, 

on average and holding all else constant, for patents to emerge.

In addressing H2 we find that team size is significant and positive. The interpretation is that, 

while holding other factors constant, for each new team member, patents would increase by 

286. This sounds like a pretty big effect, but again, it is while holding the other variables 

constant. Also, if we look at the mean data submission team size for most years it is around 

4. And in fact, the data is skewed such that there is a very large number of very small 

teams and just a few large ones. Given this, it is reasonable to interpret this such that larger 

teams are going to be getting more, probably most, of the patents. In any case, this suggests 

support for H2.

Finally, mean degree is also significant and positive, and so H3 is supported. Again, this 

looks like a very big effect. That is, for each additional link, we see many more patents. But 

again, this distribution is highly skewed such that there are a very large number of actors 

with just a few links. So being well connected confers a great advantage in terms of getting 

patents and thus having knowledge diffuse.
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Model 2, shown in table 2, uses the publication network to predict patent output. The model 

results suggest that the number of publications is not significantly related to patent output at 

the 0.05% level. Thus, we cannot reject the null hypothesis for H4 (p = .0517).

However, we also note that the p-value is significant at the 0.10 level. Given that we do 

find a correlation between number of patents and number of publications (PPMCC: 0.81, 

p-value: .0508), we suspect with more years of data we would have more degrees of freedom 

and our model would find a significant relationship. That said, in model 1 the number of 

data submissions does have a significant relationship to the number of patents. We will 

revisit this point in the discussion.

Finally, for H5 the results show a positive significant relationship between patent output 

and mean team size on publications (p-value .0137). This suggests support for H5. We can 

interpret the team size for publications in a similar way to how we interpreted team size for 

submissions. That is, it’s probable that larger teams tend to get most of the patents.

Note that we also examined how clustering coefficient performed in the models, but that 

variable was not significant and was dropped. In an effort to examine and control for other 

network factors, we experimented with other network measures (e.g., closeness, density, 

betweenness), but none were significant. However, we know that for each variable we add to 

the models, the regression loses degrees of freedom and so becomes less powerful. Given the 

age of GenBank, we are limited to 27 years for our analysis. Future work in 5 or 10 years 

may be able to rely on more powerful models and add more variables.

We also note that in the GenBank data we do not have direct links between submissions and 

patents or publications and patents. As such, we cannot trace the flow of knowledge creation 

and diffusion at the individual reference level. Rather, in this work, by aggregating by year 

and using regression modeling we examine factors that contribute to macro-level trends over 

time. We hope this work can inform future work that can dig deeper.

5 | DISCUSSION

The overarching research problem this paper tries to address is how collaboration in data 

production affects and contributes to knowledge diffusion as represented by publications 

and patents. Authorship data in GenBank data submissions was used as a novel data source 

together with traditional publication and patent authorship data to expand the collaboration 

networks from data production to publications to patent applications. In the knowledge 

diffusion processes, research data are facts, evidence that are unfiltered, uncondensed and 

generated from the early stage of a research lifecycle. The diffusion journey from data to 

knowledge as is embodied in publications and patents entails close interactions between 

scientists and between scientists and information. These interactions in many ways are 

embedded in research collaborations at various levels and scales. The novel data source – 

GenBank genetic sequence submissions – enabled us to examine the knowledge diffusion 

journey from an unprecedented scale and gain insights into the relationship between data 

production and knowledge diffusion that were little known to science of science researchers.
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Since data submission to open repositories became a mandatory policy in the mid-1990’s, 

data submissions to GenBank has been doubling roughly every 18 months since 1982 

(NCBI, 2020). But how is the increase in data production related to knowledge diffusion? 

The key statistical properties of data submission, publication, and patent networks offer 

some explanation from a scientific collaboration perspective. The spikes in the average 

team size for GenBank data submissions coincided with large projects such as the Human 

Genome Project (1990–2003), while advances in sequencing technologies that afforded 

much faster and lower cost in sequencing production (Mardis, 2008) may have contributed 

to the flat mean team size for data submissions after the spikes in early 2000s.

The mean degree distribution for three networks in Figure 3 offers some insights into 

the knowledge diffusion phases in terms of data, publications, and patents. If data are a 

more atomic-level representation of information, then publications can be considered as 

the products from the action of diffusing data – analysis, generalization, synthesis, and 

summarization – into knowledge. Patents are one phase further in that they provide detailed 

description of the invention, which usually are built on publications. Data production 

can often require specialized scientific-technical (S&T) human capital. An implication of 

specialization is that the process of diffusing data to create formal knowledge – that is 

publications – is not done only for the purpose of scientific knowledge creation but also as 

a crediting action. Although not all data authors will be included in publication authors, the 

opposite is also true because a paper author may not be involved in data production at all. 

Under these assumptions, well-connected nodes, that is higher mean degrees, are more likely 

to reside in multiple networks at the same time and be high performers for a relatively longer 

period of time.

The decrease in clustering coefficient in all three networks raises an interesting question: 

what factors have contributed to the flattening – less hierarchical – networks? In relation to 

the other two key statistical properties of GenBank collaboration networks, we may reason 

from a broader perspective. On the one hand, the cyberinfrastructure and services, as well 

as advances in sequencing technology, made it easier for small teams to collaborate and 

perform at a more productive level than before. On the other hand, advantages in small team 

operations allow for more disruptive discoveries (Wu, Wang, & Evans, 2019).

The regression models described in this paper examine the relationships between the number 

of patents in a given year with the number of data submissions and network measures from 

the submission networks in the first model and the number of patents and publications and 

publication networks for the second model. Specifically, we find that the number of patents 

is positively related to the number of data submissions, how big data teams are, and how 

well-connected the researchers are in the data submission networks. We also find that the 

number of patents is positively related to the number of publications and to publication team 

size. This work also suggests that larger teams are getting a disproportionately larger number 

of patents.

The significant and positive relationship between data submission network measures and 

patent counts indicates the value for including data production in studying knowledge 

diffusion in research collaboration, a promising area that needs further investigation. 
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Although the null hypothesis for H4 cannot be rejected, we expect it to become significant if 

more years of data become available as GenBank matures.

6 | CONCLUSION

This paper presented the analysis of metadata from GenBank data submissions in the 

effort to identify the role of collaboration networks in data production, publications, and 

patent applications. By aggregating data by year, the novel data source of GenBank data 

submission metadata shows macro level trends in the study of data-to-knowledge and has 

proved to be valuable for examining the role and impact of collaboration networks in 

knowledge diffusion. The analysis results presented in this paper show some promising leads 

to further research in uncovering high performers’ career trajectories, and collaboration 

capacity vs. its enablers in policy, cyberinfrastructure, and S&T human capital.

We see this work as a start and suggest that future work can focus on a range of different 

areas around data production in research, not just the relationship between data production 

and knowledge diffusion. For example, in this work we did not study the relationship 

between data production and publications, and we did not trace authors throughout the 

research cycle, that is, the stages of production from data to publication and patent. Work in 

those areas could yield rich insights into the science of science.
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FIGURE 1. 
Number of data submissions, publications, and patents for 1992–2018
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FIGURE 2. 
Mean team sizes for the data submission, publication, and patent networks: 1992–2018
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FIGURE 3. 
Mean degrees for the data submission, publication, and patent networks: 1992–2018
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FIGURE 4. 
Clustering coefficient for the data submission, publication, and patent networks: 1992–2018
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Table 1:

Model 1: predicting patent outputs with the submission network variables

Coefficients Estimate Std. Err. t-value p-value

(intercept) −4802.623 874.884 −5.489 0.000014 ***

Sub count 0.185 0.022 8.478 0.000000 ***

Sub team size mean 286.044 93.593 3.056 0.005598 **

Sub mean degree 1476.184 360.298 4.097 0.000442 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1020 on 23 degrees of freedom

Multiple R-squared: 0.9619, Adjusted R-squared: 0.9569

F-statistic: 193.6 on 3 and 23 DF, p-value: < 0.00000000000000022
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Table 2:

Model 2 examines the relationship between the publication research process and knowledge diffusion as 

measured by the number of patents in a given year

Coefficients Estimate Std. Err. t-value p-value

(intercept) −29705.4297 3504.1025 −8.477 0.0000000111 ***

Pub count 0.3133 0.1524 2.056 0.0508.

Pub team size mean 6020.0500 882.0403 6.825 0.0000004650 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1740 on 23 degrees of freedom

Multiple R-squared: 0.8891, Adjusted R-squared: 0.8746

F-statistic: 61.47 on 3 and 23 DF, p-value: 0.00000000003889
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