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Background: Neonatal screening for inherited metabolic diseases (IMDs) has
been revolutionized by tandem mass spectrometry (MS/MS). This study aimed
to enhance neonatal screening for IMDs using machine learning
(ML) techniques.
Methods: The study involved the analysis of a comprehensive dataset
comprising 309,102 neonatal screening records collected in the Ningbo
region, China. An advanced ML system model, encompassing nine distinct
algorithms, was employed for the purpose of predicting the presence of 31
different IMDs. The model was compared with traditional cutoff schemes to
assess its diagnostic efficacy. Additionally, 180 suspected positive cases
underwent further evaluation.
Results: The ML system exhibited a significantly reduced positive rate, from 1.17%
to 0.33%, compared to cutoff schemes in the initial screening, minimizing
unnecessary recalls and associated stress. In suspected positive cases, the ML
system identified 142 true positives with high sensitivity (93.42%) and improved
specificity (78.57%) compared to the cutoff scheme. While false negatives
emerged, particularly in heterozygous carriers, our study revealed the potential
of the ML system to detect asymptomatic cases.
Conclusion: This research provides valuable insights into the potential of ML in
pediatric medicine for IMD diagnosis through neonatal screening, emphasizing
the need for accurate carrier detection and further research in this domain.
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1 Introduction

Inherited metabolic diseases (IMDs) comprise a group of genetic disorders, including

amino acid, organic acid, and fatty acid disorders (1). The application of tandem mass

spectrometry (MS/MS) in neonatal screening has revolutionized the early identification

of IMDs by analyzing and interpreting amino acids and acylcarnitines (2). At present,

MS/MS technology enables the screening of approximately 50 metabolites, facilitating

the detection of over 20 IMDs (3). However, the comprehensive metabolite

measurement involved in MS/MS screening comes with limitations, particularly in
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terms of false-positive (FPs) and false-negative results (FNs) (4–7).

The consequences of such inaccuracies were significant, often

subjecting families to unnecessary stress and healthcare costs or,

conversely, delaying vital treatment.

With the advancement of science and technology,

computational and machine learning (ML) methodologies

provide a promising approach for analyzing high-dimensional

data (8, 9). Recent applications of ML techniques have extended

to neonatal screening for the diagnosis of IMDs, improving

screening sensitivity and specificity (10, 11). ML techniques have

the potential to expedite the diagnosis of IMDs. In a previous

study conducted by our collaborative partners, 9 ML algorithms

were employed to predict 16 IMDs (12). As the repository of

screening and diagnostic data steadily accumulates, the ML

system model has now acquired the capacity to prognosticate the

presence of 31 IMDs (13). The present study aimed to conduct a

comprehensive evaluation of the diagnostic efficacy of the ML

system model using neonatal screening data from the Ningbo

area (China) in clinical practice.
2 Materials and methods

2.1 Patients’ data

The study population consisted of 309,102 neonatal screening

data collected from the Central Laboratory of Birth Defects

Prevention and Control Affiliated with the Ningbo Women and

Children’s Hospital (Ningbo, China) between July 2014 and

March 2020. In the large dataset of screening results, a total of

3,608 cases commenced recall procedures due to their initial

positive screening results. Subsequently, 398 cases exhibited

abnormal metabolic concentration or metabolite concentration

ratios during secondary screening, indicating their potential as

cases of IMDs. Among these, 180 cases underwent next-

generation sequencing (NGS) to confirm IMDs, while the

remaining 218 suspected cases did not proceed with NGS due to

various reasons. These reasons include normal results from

subsequent tandem mass spectrometry tests and urine organic

acid tests, or parental refusal of NGS testing for their children.

While these patients were included in the machine learning (ML)

analysis, the lack of genetic testing reports for them precludes a

definitive exclusion of disease presence. Therefore, our analysis

focused solely on the diagnostic efficiency of cases with a clear

genetic diagnosis, to ensure the integrity and reliability of our

findings.The study flowchart is depicted in Figure 1.
2.2 MS/MS analysis

Quantification of amino acids and acylcarnitines in dried blood

spots (DBS) was performed using the Xevo TQD tandem mass

spectrometers (Waters Corp., Milford, MA, USA) in conjunction

with the NeoBase Non-derivatized MSMS kit (PerkinElmer,

Helsinki, Finland). The analysis comprehensively included 11

amino acids, encompassing a wide range of metabolites
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associated with the investigated amino acid disorders. In

addition, 31 fatty acids (acylcarnitines) and succinylacetone were

incorporated into the analysis, as they hold relevance to organic

acidemias and fatty acid oxidation defects. Integral to our

analysis, reference intervals for each metabolite were defined

within the 0.5th to 99.5th percentile range, using a

nonparametric ranking to address the non-normal distribution of

our dataset. This careful selection ensures our screening’s

precision, with intervals refined as our sample pool expands,

enhancing diagnosis accuracy by reducing false positives and

negatives. The detailed information regarding the analyzed

metabolites and their corresponding reference intervals can be

found in Table S1.
2.3 Genetic testing and bioinformatics
analysis

Genomic DNA was extracted from DBS or peripheral blood

obtained from patients using the OMEGA Genomic DNA

Extraction Kit (OMEGA Biotech, United States). Subsequently,

targeted sequencing was conducted using the basic edition panel

of IMDs (Genuine Diagnostic Laboratory, Hangzhou, China) to

detect 94 genes, including SLC22A5, PAH, PTS, MUT, and other

relevant genes. Target regions’ sequences were enriched through

multiple probe hybridizations using the Agilent SureSelect

Human Exon Sequence Capture Kit. Following enrichment,

capture products were purified using Agencourt AMPure XP

beads (Beckman Coulter). After purification and quality testing,

the sequencing libraries were quantified using the Illumina DNA

standard and Primer Premix Kit (Kapa), and subsequently

subjected to massively parallel sequencing using the Illumina

MiSeq platform. All potentially pathogenic variants were

validated through Sanger sequencing utilizing specific primers.

Polymerase chain reaction (PCR) conditions followed TaKaRa

LA PCRTM Kit Ver.2.1 (TaKaRa). The trans status of all

compound heterozygous variants was determined. Identified

variants underwent scrutiny against databases such as the

Human Gene Mutation (HGMD) Database, ClinVar, ExAC

consortium, gnomAD, 1,000 Genome Project database, the

laboratory’s internal database (∼20,000 mutations), and relevant

literature. Novel missense variants were further assessed for

potential pathogenicity using tools integrated into VarSome,

including SIFT, PolyPhen-2, and MutationTaster. Variant

classification followed the standards and guidelines set forth by

the American College of Medical Genetics and Genomics (ACMG).
2.4 Data collection and standardization for
ML system model

a. Laboratory Background Information: This category covered

various elements, including instrument models, types of

reagents (commercial or self-made), types of quality control

products, laboratory quality control rules, sizes of perforated

blood spots, types of filter paper, cold chain transportation of
frontiersin.org
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FIGURE 1

Workflow of the reference interval and machine learning for analyzing neonatal screening data of inherited metabolic diseases.
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blood samples, types of blood collection needles,

succinylacetone treatment methods, normal population

ranges, and interpretation rules.

b. Quality Control Data: This section comprised information such

as quality control numbers, types of quality control, quality

control batch numbers, amino acid internal standard batch

numbers, acylcarnitine internal standard batch numbers,

factory times, experimental times, and test values for each

quality control analyte.

c. Screening Test Data: Included data on screening numbers,

mother’s ages, gestational ages, gravidities, parities,

hyperthyroidism presence, anti-thyroid drug use, breastfeeding

methods, milk consumption, native places (provinces and

cities), places of residence (provinces and cities), baby genders,

birth dates, birth weights, initial screening conclusions, recall

review conclusions, sample numbers, screening times, blood

collection dates, delivery dates, experimental dates,

experimental methods (derivative or non-derivative), quality

control numbers, and detection concentrations for each analyte.

d. Positive Case Data: This category covered screening numbers,

confirmed diseases, urine organic acid tests, blood ammonia
Frontiers in Pediatrics 03
tests, blood gas analyses, blood routines, liver function tests,

vitamin B12 tests, imaging examinations, genetic test information.

e. Standardized median multiple (multiple of the medium, MoM)

methods were applied in which the median of the original

concentration divided by the biochemical indicators was

applied to the detection indicators to eliminate the influence

of regional and laboratory differences. We then trained the

disease model by combining the MoM, gestational week,

neonatal blood collection interval, neonatal weight, and

corresponding IMDs.

2.5 ML system model

The ML framework utilized in this study has been previously

established and published by our collaborative partners, as

detailed in the prior research (12, 13). This ML system model for

IMDs was crafted by Zhejiang Biosan Biochemical Technologies

Co. Ltd. To facilitate the training and testing of this model, an

extensive dataset encompassing over 3.67 million neonatal

screening data and 3,000 confirmed cases were collected from 31
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hospitals between February 2010 and September 2019. Nine

pertinent classification algorithms, comprising logistic regression,

linear discriminant analysis, decision trees, random forest,

extremely randomized trees, gradient boosting, adaptive boosting,

support vector machine, and k-nearest neighbors, were

systematically applied to analyze 31 IMDs. The detailed list of

IMDs was presented in Table 1.

The construction of the ML system model followed a

structured progression:

a. Indicator Construction and Selection: Core indicators were

selected using information gain and correlation coefficients,

culminating in the creation of feature combinations.

b. Model Selection and Training: During the model training phase,

the screening data was partitioned into training and test sets,

adhering to an 8:2 ratio. Subsequently, the most proficient

model was identified through the integration of various

learning models, including random forest, gradient boosting,

and artificial neural network algorithm.

c. Model Evaluation: Initially, a 100% identification rate for

positive cases was successfully achieved by the model.

Subsequently, the FP rates were compared to discern and

select the optimal training model. Additionally, within the
TABLE 1 The list of inherited metabolic disorders in machine learning system

Abbreviations IMDs (OMIM code)
PAHD Phenylalanine hydroxylase deficiency (#261,600)

B4HD Tetrahydrobiopterin deficiency (#261,600)

PCD Primary carnitine deficiency (#212,140)

MMA Methylmalonic acidemia (#251,000, #251,100,#251,110,#613, 6

MMA-HCY Methylmalonic aciduria combined with homocystinuria (#277,4
#614, 857)

PA Propionic acidemia (#606,054)

SCADD Short-chain acyl-CoA dehydrogenase deficiency (#201,470)

IBDD Isobutyryl-CoA dehydrogenase deficiency (#611,283)

3-MCCD 3-methylcrotonyl-CoA carboxylase deficiency (#210,200 and #2

3-HMGD 3-hydroxy-3-methylglutaryl CoA lyase deficiency (#246,450)

BKD β-ketothiolase deficiency (#203,750)

HCSD Holocarboxylase synthetase deficiency (#253, 270)

NICCD Neonatal intrahepatic cholestasis citrin deficiency (#605,814)

CIT-I Citrullinemia type I (#215,700)

ASA Argininosuccinic aciduria (#207,900)

HMET Hypermethioninemia (#250,850)

HCY Homocystinuria (#236,200)

GA-I Glutaric acidemia I (#231,670)

IVA Isovaleric acidemia (#243,500)

2-MBDD 2-methylbutyryl-CoA dehydrogenase deficiency (#610,006)

MCADD Medium-chain acyl-CoA dehydrogenase deficiency (#201,450)

VLCADD Very-long-chain acyl-CoA dehydrogenase deficiency (#201,475

GA-II Glutaric acidemia II (# 231,680)

MSUD Maple syrup urine disease (#248,600)

CPT-I Carnitine palmitoyltransferase I deficiency (#255,120)

HPRO Hyperprolinuria (#239,500)

HTYR Tyrosinemia type I (# 276,700)

OTCD Ornithine transcarbamylase deficiency (#311,250)

CPSD Carbamoyl phosphate synthetase deficiency (# 237,300)

GCE Glycine Encephalopathy (# 605,899)

HARG Argininemia (# 207,800)

IMDs, inherited metabolic diseases; OMIM, online Mendelian inheritance in man.
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risk assessment process, risk predictions for test samples were

conducted by the ML model, estimating the risk associated

with samples affected by various inherited metabolic diseases.

These predictions were systematically converted into scores

ranging from 0 to 100 via a dedicated risk value mapping

algorithm. Distinct risk assessment reference interval was

established, guided by the risk score and the disease

prevalence specific to each location.

Finally, we used our ML technique to design an easy-to-operate

Web-based screening system for neonatal metabolic diseases. This

system was specifically designed to assess the risk of specific IMDs

in each screening dataset, where high- and low-risk cases were

classified as positive and negative, respectively.
3 Results

3.1 Neonatal screening and children with
positive diagnosis

In our research, a primary screening of 309,102 neonates led to

the identification of 3,608 infants with positive screening results,
model.

Gene
PAH

PTS,GCH1,QDPR, PCBD1

SLC22A5

46, and #614, 265) MUT,MMAA,MMAB,

00, #277,410, #277,380, #309,541 and MMACHC,MMADHC, LMBRD1, ABCD4,

PCCA, PCCB

ACADS

ACAD8

10,210) MCCC1, MCCC2

HMGCL

ACAT1

HLCS

SLC25A13

ASS1

ASL

MAT1A

CBS, CTH, MTHFR

GCDH

IVD

ACADSB

ACADM

) ACADVL

ETFA, ETFB, ETFDH

BCKDHA, BCKDHB, DBT

CPT1A

PRODH

FAH

OTC

CPS1

AMT, GCSH, GLDC

ARG1
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constituting a positive rate of approximately 1.17%. Further

investigation of this group uncovered 398 infants who presented

abnormal results during the secondary screening phase, prompting

considerations of IMDs. Consequently, NGS was employed in 180

of these cases, to confirm the presence of IMDs.

The results showed that 152 out of 180 patients who underwent

NGS testing were positive for IMDs, of which 72 were homozygous

or compound heterozygous mutations and the other 80 were

heterozygous carriers. The results of our neonatal screening

displayed a broad spectrum of metabolic disorders, encompassing

16 types of IMDs. These included phenylalanine hydroxylase

deficiency (PAHD, 23 cases), tetrahydrobiopterin deficiency

(BH4D, 1 case), primary carnitine deficiency (PCD, 30 cases),

methylmalonic acidemia (MMA, 6 cases), short-chain acyl-CoA

dehydrogenase deficiency (SCADD, 8 cases), Isobutyryl-

CoA dehydrogenase deficiency (IBDD, 9 cases), 3-methylcrotonyl-

CoA carboxylase deficiency (3-MCCD, 41 cases), 3-hydroxy-3-

methylglutaryl CoA lyase deficiency (3-HMGD, 4 cases), neonatal
FIGURE 2

Number of patients with inherited metabolic diseases identified by next-gen
for inherited metabolic diseases, covering a diverse spectrum of 16 types o
PAHD, phenylalanine hydroxylase deficiency; BH4D, tetrahydrobiopterin
acidemia; SCADD, short-chain acyl-CoA dehydrogenase deficiency; IBDD,
CoA carboxylase deficiency; 3-HMGD, 3-hydroxy-3-methylglutaryl CoA lya
deficiency; CIT-I, citrullinemia type I; HMET, hypermethioninemia; 2-MBD
chain acyl-CoA dehydrogenase deficiency; GA-II, glutaric acidemia type
PHE, phenylalanine; CIT, citrulline; MET, methionine; ARG, arginine; C0,
hydroxy (OH) isovalerylcarnitine; C6, hexanoylcarnitine; C8, octanoy
myristoylcarnitine; C14:1, myristoleylcarnitine; C14:2, tetradecadienoylcarnit
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intrahepatic cholestasis caused by citrin deficiency (NICCD, 3

cases), citrullinemia type I (CIT-I, 8 cases), hypermethioninemia

(HMET, 9 cases), 2-methylbutyryl-CoA dehydrogenase deficiency

(2-MBDD, 4 cases), medium-chain acyl-CoA dehydrogenase

deficiency (MCADD, 3 cases), glutaric acidemia type II (GA-II,

1case), ornithine transcarbamoylase deficiency (OTCD, 1 case),

and argininemia (HARG, 1 case) (Figure 2). Other IMDs were not

found in our study.
3.2 ML system model vs. the reference
interval in the initial screening

To assess the effectiveness of the ML system model, this study

utilizes extensive neonatal screening data. Initially, we analyzed the

positive rate between the ML system model and pediatricians using

a predefined reference interval in the initial screening process. The

findings indicate that, based on the reference interval, 3,608
eration sequencing. A total of 152 patients were confirmed to be positive
f inherited metabolic diseases. ML, machine Learning; TP, true-positive;
deficiency; PCD, primary carnitine deficiency; MMA, methylmalonic
Isobutyryl-CoA dehydrogenase deficiency; 3-MCCD, 3-methylcrotonyl-
se deficiency; NICCD, neonatal intrahepatic cholestasis caused by citrin
D, 2-methylbutyryl-CoA dehydrogenase deficiency; MCADD, medium-
II; OTCD, ornithine transcarbamoylase deficiency; HARG, argininemia;
free carnitine; C3, propionylcarnitine; C4, butyrylcarnitine; C5OH, 3-
lcarnitine; C10, decanoylcarnitine; C12, dodecanoylcarnitine; C14,
ine.
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newborns received a positive diagnosis, while 305,494 cases were

categorized as negative during the initial screening phase, resulting

in a positive rate of 1.17%. On the other hand, the ML system

model identified 1,029 positive cases and 308,073 negative cases in

the initial screening, representing a positive rate of 0.33%. The

results showed that the positive rate of initial screening

significantly decreased from 1.17% to 0.33% compared with the

results achieved by the reference interval. This could minimize

false positives in the initial screening that cause unnecessary family

stress as well as potentially enable cost-effective screening.
3.3 Diagnostic efficiency of ML system
model for suspected positive cases

To interpret the potential of ML in enhancing diagnostic

efficiency, we employed data from 180 suspected positive cases

with NGS results. The application of ML system model

diagnosed 142 true-positives (TPs) and 22 true-negatives (TNs).

Compared with the reference interval, 144 TPs and 2 TNs were

identified. In addition, the application of ML system model

detected 6 FPs and 10 FNs, while the utilization of reference

interval detected 26 FPs and 8 FNs.

The application of ML system model significantly reduced the

number of FPs from 26 to 6, and the detailed numbers of TNs, TPs,

FNs, and FPs were presented in Table 2. The sensitivity of the ML

system model and the reference interval was 93.42% and 94.74%,

respectively. The specificity of the ML system model was 78.57%,

while that of the reference interval was 7.14%. Furthermore, the

ML system exhibited a positive predictive value (PPV) of 95.95%

and a negative predictive value (NPV) of 68.75%, whereas the

reference interval yielded a PPV of 84.71% and an NPV of 20%.

The ML system model showed a significant increase in both PPV

and NPV. The ML system exhibited a higher accuracy. The

values of sensitivity, specificity, PPV, NPV, and accuracy were

summarized in Table 3.
3.4 Comparative analysis of ML system
model and reference interval reveals
misdiagnosis in suspected inherited
metabolic disease cases

Different disorders showed varying diagnostic results when

using the ML system model (Table 3). BH4D, PCD, MMA,

SCADD, IBDD, NICCD, CPT I, 2-MBDD, GA II, OTCD, and

HARG accurately predicted positive cases. Nonetheless, a

comprehensive assessment revealed 10 instances of misdiagnosis.

There were 3 cases of PAHD, 3 cases of 3-MCCD, 3 cases of
TABLE 2 Comparison of diagnostic performance metrics between the ML sys

Methods TNs (n) TPs (n) FNs (n) FPs (n) Sensitiv
ML system model 22 142 10 6 93.4

Reference interval 2 144 8 26 94.7

ML, machine learning; TNs, true-positives; TPs, true-negatives; FNs, false-negatives; F
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HMET, and 1 case of MCADD, and the FN rates were 13.04%,

7.32%, 33.33%, and 33.33%, respectively. In the reference interval,

a total of 8 cases of misdiagnosis were found, including 3 cases of

PAHD, 1 case of PCD, 1 case of MMA, 1 case of 3-MCCD, 1 case

of NICCD, and 1 case of CIT I, and the FP rates were 13.04%,

3.33%, 16.67%, 2.44%, 33.33% and 12.50%, respectively (Table 3).

Remarkably, two cases of PAHD were missed by both methods.

Table 4 presents an overview of all of 16 misdiagnosed cases and

their metabolic indices. Among them, 3 cases were identified with

homozygous or compound heterozygous mutations, and the

remaining 13 cases were heterozygous carriers. This result suggests

that heterozygous carriers are easily misdiagnosed regardless of

whether the ML method or the reference interval scheme is used

for analysis. It is important to note that misdiagnosis occurs

mainly among heterozygous carriers. In some heterozygous

carriers, metabolic alterations were observed despite a low-risk

designation by the ML system. In contrast, in other heterozygous

carriers, indicators of normal metabolism were classified as high

risk by the ML system.
3.5 Diagnostic acccuracy and alterations in
metabolic indicators in patients with
homozygous and compound heterozygous
mutations vs. heterozygous carriers

The results of the present study revealed a remarkable diagnostic

accuracy of 97.22% in a cohort of 72 patients with homozygous and

compound heterozygous mutations, as assessed by the ML system.

Similarly, the ML system demonstrated a diagnostic accuracy of

88.75% for 80 heterozygous carriers. Importantly, the metabolic

indicators revealed significant differences between patients

harboring homozygous mutations and those harboring compound

heterozygous mutations compared with heterozygous carriers.

Patients with IMDs harboring homozygous mutations and

compound heterozygous mutations exhibited more significant

alterations in metabolic indicators.

Table 5 provides a comprehensive overview of the diagnostic

outcomes and alterations in metabolic indicators identified in

patients with IMDs harboring homozygous and compound

heterozygous mutations, as well as heterozygous carriers. This

table presents detailed insights into the diagnostic efficacy and

metabolic changes within these populations.
4 Discussion

In our study, a total of 309,102 newborns underwent screening,

leading to the identification of 152 cases with IMDs. The incidence
tem model and reference interval in suspected cases.

ity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)
2 78.57 95.95 68.75 91.11

4 7.14 84.71 20 81.11

Ps, false-positives; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 4 The misdiagnosis results and genetic analysis for IMDs.

IMDs Cases ML system Reference interval
PAHD Case 1 High risk Normal (PHE = 78.66 μmol)

Case 2 Low risk Abnormal (PHE = 103.02 μmol/L

Case 3 Low risk Normal (PHE = 54.05 μmol/L)

Case 4 Low risk Normal (PHE = 56.19 μmol/L)

PCD Case 5 High risk Normal (C0 = 9.79 μmol/L)

MMA Case 6 High risk Normal (C3 = 3.96 μmol/L)

3-MCCD Case 7 Low risk Abnormal (C5OH = 0.56 μmol/L

Case 8 Low risk Abnormal (C5OH = 0.53 μmol/L

Case 9 Low risk Abnormal (C5OH = 0.54 μmol/L

Case 10 High risk Normal (C5OH = 0.48 μmol/L)

NICCD Case 11 High risk Normal (CIT = 24.69 μmol/L)

CIT I Case 12 High risk Normal (CIT = 28.14 μmol/L)

HMET Case 13 Low risk Abnormal (MET = 55.49 μmol/L

Case 14 Low risk Abnormal (MET = 51.7 μmol/L)

Case 15 Low risk Abnormal (MET = 63.0 μmol/L)

MACCD Case 16 Low risk Abnormal (C10:1 = 0.28 μmol/L

C6 = 0.18 μmol/L

C8 = 0.34 μmol/L

C8:1 = 0.6 μmol/L

C10 = 0.3 μmol/L)

ML, machine Learning; PAHD, phenylalanine hydroxylase deficiency; PCD, primary car

carboxylase deficiency; NICCD, neonatal intrahepatic cholestasis caused by citr

dehydrogenase deficiency; PHE, phenylalanine; CIT, citrulline; MET, Methionine; C0,

C6, hexanoylcarnitine; C8, octanoylcarnitine; C8:1, octenoylcarnitine; C10, decanoylc

TABLE 3 Diagnosis and false negative rates of different IMDs: comparison
between ML system and reference interval for neonatal screening.

IMDs ML system model Reference interval Total

High risk
(n = 142)

False
negative
rate (%)

Positive
(n = 144)

False
negative
rate (%)

PAHD 20 13.04 20 13.04 23

BH4D 1 0 1 0 1

PCD 30 0 29 3.33 30

MMA 6 0 5 16.67 6

SCADD 8 0 8 0 8

IBDD 9 0 9 0 9

3-MCCD 38 7.32 40 2.44 41

3-HMGD 4 0 4 0 4

NICCD 3 0 2 33.33 3

CIT I 8 0 7 12.50 8

HMET 6 33.33 9 0 9

2-MBDD 4 0 4 0 4

MCADD 2 33.33 3 0 3

GA II 1 0 1 0 1

OTCD 1 0 1 0 1

HARG 1 0 1 0 1

ML, machine Learning; PAHD, phenylalanine hydroxylase deficiency; BH4D,

tetrahydrobiopterin deficiency; PCD, primary carnitine deficiency; MMA,

methylmalonic acidemia; SCADD, short-chain acyl-CoA dehydrogenase

deficiency; IBDD, Isobutyryl-CoA dehydrogenase deficiency; 3-MCCD, 3-

methylcrotonyl-CoA carboxylase deficiency; 3-HMGD, 3-hydroxy-3-methylglutaryl

CoA lyase deficiency; NICCD, neonatal intrahepatic cholestasis caused by citrin

deficiency; CIT-I, citrullinemia type I; HMET, hypermethioninemia; 2-MBDD, 2-

methylbutyryl-CoA dehydrogenase deficiency; MCADD, medium-chain acyl-CoA

dehydrogenase deficiency; GA-II, glutaric acidemia type II; OTCD, ornithine

transcarbamoylase deficiency; HARG, argininemia.
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of IMDs with our study population was 1: 2,034, a finding that

consistently mirrors the reported rates in Suzhou (1: 3,163) (14)

and Quanzhou (1: 2,804) (15). Notably, the most frequent IMDs

within our cohort included PADH and 3-MCCD, exhibiting

incidence rates of 1 in 13,429 and 1 in 7,539, respectively. It is

pertinent to acknowledge that the incidence rates of IMDs

exhibit substantial variations when examined across diverse

geographical regions.

Recent research endeavors have witnessed the application of

ML methodologies in the study of IMDs, albeit often focusing on

individual or limited categories of IMDs (16). For instance,

Zaunseder et al. (17) endeavored to enhance specificity in

neonatal screening for IVA through the adept utilization of

machine learning techniques. Similarly, Zhu et al. (18) pioneered

the development of a machine learning logistic regression

analysis model aimed at ameliorating the diagnostic accuracy

associated with Phenylketonuria. Furthermore, Peng et al. (19)

conducted an insightful analysis of the Random Forest machine’s

performance concerning GA-I, MMA, OTCD, and VLCADD. In

contrast, our investigation adopts a holistic approach, harnessing

the potential of nine distinct algorithms that collectively

empower our ML system model to predict and scrutinize 31

distinct IMDs across a broad spectrum. This comprehensive

strategy not only extends the scope of applicability but also

augments the clinical value of our study, promising multifaceted

insights into IMDs diagnosis and management.

It is imperative to acknowledge that ML techniques commonly

exhibit enhanced predictive capabilities when applied to substantial
Zygosity Genetic analysis
Heterozygous PAH, c.1197A>T (p.V399V)

) Compound heterozygous PAH, c.1315 + 6T>A; c.158G>A (p.R53H)

Heterozygous PAH, c.527G>A (p.R176Q)

Heterozygous PAH, c.510T>A (p.H170Q)

Homozygous SLC22A5, c.1400C>G (p.S467C)

Homozygous MUT, c.1663G>A (p.A555T)

) Heterozygous MCCC1, c.1331G>A (p.R444H)

) Heterozygous MCCC1, c.639 + 2T>A (p.S164Rfs*3)

) Heterozygous MCCC1, c.1681 + 34T>A

Heterozygous MCCC1, c.1679dup (p.N560Kfs*10)

Heterozygous SLC25A13, c.775C>T (p.Q259*)

Heterozygous ASS1, c.207_209del (p.E71del)

) Heterozygous MAT1A, c.1070C>T (p.P357l)

Heterozygous MAT1A, c.1070C>T (p.P357l)

Heterozygous MAT1A, c.315C>A (p.N105K)

Heterozygous ACADM, c.709-1G>A

nitine deficiency; MMA, methylmalonic acidemia; 3-MCCD, 3-methylcrotonyl-CoA

in deficiency; HMET, hypermethioninemia; MCADD, medium chain acyl-CoA

free carnitine; C3, propionylcarnitine; C5OH, 3-hydroxy (OH) isovalerylcarnitine;

arnitine.
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TABLE 5 Ml system true positive rates, and metabolic indicators in homozygous/compound heterozygous and heterozygous carriers for inherited
metabolic disorders.

IMDs Zygosity ML system TP rate Metabolic indicators
PAHD Homozygous/compound heterozygous 93.75% (15/16) PHE (966.45 ± 618.33 μmol/L)

Heterozygous carriers 71.43% (5/7) PHE(270.15 ± 256.90 μmol/L)

BH4D Heterozygous carriers 100% (1/1) PHE(196.22 μmol/L)

PCD Homozygous/compound heterozygous 100% (14/14) C0 (6.98 ± 1.73 μmol/L)

Heterozygous carriers 100% (16/16) C0 (8.84 ± 9.44 μmol/L)

MMA Homozygous/compound heterozygous 100% (5/5) C3 (5.96 ± 1.96 μmol/L)

Heterozygous carriers 100% (1/1) C3 (4.38 μmol/L)

SCADD Homozygous/compound heterozygous 100% (5/5) C4 (0.94 ± 0.30 μmol/L)

Heterozygous carriers 100% (3/3) C4 (0.79 ± 0.08 μmol/L)

IBDD Homozygous/compound heterozygous 100% (8/8) C4 (1.10 ± 0.25 μmol/L)

Heterozygous carriers 100% (1/1) C4 (0.70 μmol/L)

3-MCCD Homozygous/compound heterozygous 100% (12/12) C5OH (4.35 ± 4.44 μmol/L)

Heterozygous carriers 89.66% (26/29) C5OH (1.52 ± 1.99 μmol/L)

3-HMGB Heterozygous carriers 100% (4/4) C5OH (0.87 ± 0.33 μmol/L)

NICCD Homozygous/compound heterozygous 100% (3/3) CIT (38.01 ± 22.54 μmol/L)

CIT-I Homozygous/compound heterozygous 100% (3/3) CIT (120.82 ± 20.39 μmol/L)

Heterozygous carriers 100% (5/5) CIT (42.42 ± 9.79 μmol/L)

HMET Homozygous/compound heterozygous 100% (1/1) MET (375.44 μmol/L)

Heterozygous carriers 62.5% (5/8) MET (91.4 ± 62.59 μmol/L)

2-MBDD Homozygous/compound heterozygous 100% (4/4) C5 (1.43 ± 1.00 μmol/L)

MCADD Homozygous/compound heterozygous 100% (2/2) C6 (0.34 ± 0.04 μmol/L)

C8 (1.69 ± 0.57 μmol/L)

Heterozygous carriers 0% (0/1) C6 (0.18 μmol/L)

C8 (0.34 μmol/L)

GAII Homozygous/compound heterozygous 100% (1/1) C6 = 0.2 μmol/L

C8 = 0.29 μmol/L

C10 = 0.57 μmol/L

C12 = 0.87 μmol/L

C14 = 0.45 μmol/L

C14:1 = 0.41 μmol/L

C14:2 = 0.07 μmol/L

OTCD Homozygous/compound heterozygous 100% (1/1) CIT = 2.47 μmol/L

HARG Heterozygous carriers 100% (1/1) ARG = 93.93 μmol/L
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datasets (20). In our study, the ML system showcased a notable

diminished the initial positive screening rate in contrast to the

traditional reference interval. These observations not only signify

a reduction in the count of suspected cases but also hold

promise for curtailing the necessity of patient recall.

In our investigation, ML model was successfully deployed,

accumulating data from the Ningbo region. The experimental

outcomes furnish compelling evidence substantiating the

effectiveness of the ML system in the diagnosis of IMDs via

neonatal screening. In direct comparison with the traditional

reference interval, our ML system exhibited a sensitivity level

akin to that of 93.42%, thereby maintaining diagnostic acumen.

However, it notably improved specificity, elevating it from a

mere 7.14% to a substantial 78.57%. This enhancement translated

into a noteworthy reduction in the number of FPs, diminishing

their count from 26 to a mere 6. This achievement is in

alignment with prior research conducted by Peng et al. (19).

Furthermore, our ML system demonstrated a markedly

heightened PPV of 95.95%, outperforming the traditional reference

interval which yielded a PPV of 84.71%. These findings are

congruent with the work of Zhu et al. (18), who reported a

notable increase in the PPV for PAHD through the application of
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an ML model, surging from 19.14% to an impressive 32.16%. The

substantial reductions in FPs and the concurrent augmentation of

PPV underscore the significant improvements in screening

efficiency realized through the application of ML methodologies.

However, in the relentless pursuit of augmented diagnostic

precision and efficiency, it becomes imperative to address and

comprehend the emergence of FNs, a pivotal concern inherent to

any diagnostic framework. In the work of Tang et al. (21), four

instances of NICCD were erroneously overlooked, signifying the

susceptibility to FN outcomes. Similarly, Lin et al. (22) reported

the misdiagnosis of a MADD patient whose acylcarnitine levels

resided within the normal reference range upon recall. Within

our findings, it’s noteworthy that our ML model exhibited the

omission of 10 cases, while the traditional reference interval

missed 8 cases. The ML system model demonstrated an elevated

false negative rate for 3-MCCD, HMET, and MCADD in

comparison to the reference interval.

To elucidate the underpinnings of these FNs within the ML

system model, we conducted a comprehensive analysis

encompassing genetic results and metabolite concentrations for

the missed cases. Within the cohort of cases missed by the ML

model, which includes 3 cases of HMET, 3 cases of 3-MCCD, 3
frontiersin.org
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cases of PAHD, and 1 case of MCADD, all cases, except for one

PAHD case harboring a compound heterozygous mutation in

PAH, were identified as heterozygous carriers of these conditions.

This observation suggests a proclivity for heterozygous carriers to

be susceptible to misclassification by the ML system model,

emphasizing the intricacies of carrier identification within

diagnostic frameworks.

This study stands as an innovative endeavor in the realm of

medical science, pioneering the application of ML techniques for

the precise diagnosis of patients afflicted with IMDs harboring

pathogenic mutations. Among the cohort of 80 patients classified

as heterozygous carriers, the ML system displayed a remarkable

capacity by accurately identifying 71 cases, thus underscoring its

consistent performance across a spectrum of diverse metabolic

indices. It is imperative to note that heterozygous carriers,

particularly those bearing partially functional alleles, exhibited

discernible variations in metabolic profiles when compared to

cases characterized by classical mutations (23–25). The presence

of a single mutated allele induced noteworthy alterations in

associated proteins and enzymes, thereby engendering variations

in pertinent metabolic markers. A compelling observation

emerged, revealing that the concentration of metabolites in

heterozygous carriers registered a significant reduction when

juxtaposed with patients harboring homozygous or compound

heterozygous mutations. This revelation has profound

implications for heterozygous carriers, particularly within the

domain of neonatal screening practices as administered by

pediatricians. Our findings provide cogent evidence to posit that

heterozygous carriers may manifest variations in metabolic

indicators, thereby precipitating potential misclassification. To

surmount this challenge, it becomes imperative to embark on

further research endeavors aimed at the refinement and

augmentation of ML algorithms, with a specific emphasis on

enhancing the capacity for accurate carrier detection.

The differences in metabolite profiles observed in heterozygous

carriers, especially in PAHD patients, may affect gene expression

due to variations in noncoding regions or deep introns, thereby

forming compound heterozygous mutations affecting gene

function, which also highlights the limitations of targeted region

capture sequencing in the detection of noncoding regions and

deep intron regions. These undetected mutations significantly

affected metabolic profiles, suggesting that genetic interactions

are more complex than previously understood and that the

availability of NGS could make whole-exome and whole-genome

sequencing more affordable and compensate for the lack of

targeted region capture. In order to cope with these limitations,

ML has become an indispensable supplement. Its ability to

analyze large data sets, including metabolic profiles and clinical

measures, improves predictive accuracy and reduces diagnostic

errors. Newborn screening could be more effective by combining

the pattern recognition and prediction capabilities of machine

learning with the genetic insights provided by NGS.

To address the risk of missed diagnoses in newborns with

initially normal screening results, as well as those born

prematurely or with low birth weight, our institution has

implemented a seven-year follow-up program. This method is
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aimed at maximizing the detection of late-onset symptoms of

metabolic disorders that may not be evident in initial screenings.

Specifically, this long-term monitoring ensures that children who

may show symptoms of IMDs are promptly identified and

assessed, significantly reducing the risk of missed diagnoses. By

adopting this comprehensive follow-up, our study addresses the

concerns regarding the limitations of DBS acquisition. The

follow-up program was guided by the ‘Expert Consensus on

Chinese Pediatric Health Examination’ to monitor and ensure

the health of newborns (26). Two key assessments were initiated

within the first month after discharge, and during the first year,

children underwent quarterly examinations that included a

history review, physical examination, physical measurements

(e.g., height, weight, body-mass index, and head circumference),

laboratory and imaging studies, and cognitive, neuromotor,

developmental, language, hearing, vision, and dental health.

Subsequently, the follow-up period was a biannual assessment,

which was gradually changed to annual. Children with an

increased risk of metabolic diseases due to genetic factors should

be examined and evaluated intensively.

An intriguing case in our study involved a patient with MMA

who harbored a homozygous mutation of the MUT gene

c.1663G>A, despite no abnormal changes in metabolic indicators

(C3 = 3.96 μmol/L). This highlights that certain IMDs may not

manifest obvious changes in MS/MS neonatal screening during

the early stages, resulting in FN results. As more cases of this

nature are unveiled, the capability of our ML system to identify

asymptomatic cases will be increasingly evident, emphasizing its

potential toimprove the detection of such cases.

Furthermore, ML algorithms typically benefit from large

datasets, as larger datasets theoretically result in improved

predictive performance. As our model continues to be

implemented in Ningbo, we anticipate that the utilization and

advancement of ML algorithms will gain increasing popularity in

the near future. This trend is expected to further enhance the

prediction accuracy and computational performance of risk

assessment models for neonatal IMDs.
5 Conclusions

In conclusion, the application of our ML system exhibited

promising effectiveness in pediatric diagnostic screening of IMDs.

The model achieved a sensitivity of 93.42% and a specificity of

78.57%, surpassing the performance of the reference interval.

Furthermore, the ML system demonstrated increased PPV and

NPV. Notably, the ML system proved to be valuable in

identifying carrier patients, providing novel insights into the

application of ML in pediatric medical practice for diagnosing

IMDs through neonatal screening.
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