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INTRODUCTION
Triple-negative breast cancer (TNBC) is regarded as the 
most aggressive breast cancer, and it is immunohistochemi-
cally defined by the negative expression of estrogen receptor, 
progesterone receptor, and human epidermal growth factor 
receptor 2.1 The disease occurs in approximately 10–15% 

of all breast cancers, and it has a potential correlation with 
young age and mutation of the TP53 gene and a high degree 
of correlation with suppressed BRCA1 function.2 TNBC 
is a fatal tumor, and it shows less favorable outcomes. In 
addition, the possible causes of poor outcomes with TNBC 
include the high pathologic grade and absence of effectively 
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Objective: This study aimed to develop a radiomics 
nomogram that incorporates radiomics, conventional 
ultrasound (US) and clinical features in order to differen-
tiate triple-negative breast cancer (TNBC) from fibroad-
enoma.
Methods: A total of 182 pathology-proven fibroade-
nomas and 178 pathology-proven TNBCs, which under-
went preoperative US examination, were involved and 
randomly divided into training (n = 253) and validation 
cohorts (n = 107). The radiomics features were extracted 
from the regions of interest of all lesions, which were 
delineated on the basis of preoperative US examination. 
The least absolute shrinkage and selection operator 
model and the maximum relevance minimum redun-
dancy algorithm were established for the selection of 
tumor status-related features and construction of radi-
omics signature (Rad-score). Then, multivariate logistic 
regression analyses were utilized to develop a radiomics 
model by incorporating the radiomics signature and 
clinical findings. Finally, the usefulness of the combined 
nomogram was assessed by using the receiver oper-
ator characteristic curve, calibration curve, and decision 
curve analysis (DCA).

Results: The radiomics signature, composed of 12 
selected features, achieved good diagnostic perfor-
mance. The nomogram incorporated with radiomics 
signature and clinical data showed favorable diagnostic 
efficacy in the training cohort (AUC 0.986, 95% CI, 
0.975–0.997) and validation cohort (AUC 0.977, 95% CI, 
0.953–1.000). The radiomics nomogram outperformed 
the Rad-score and clinical models (p < 0.05). The cali-
bration curve and DCA demonstrated the good clinical 
utility of the combined radiomics nomogram.
Conclusion: The radiomics signature is a poten-
tial predictive indicator for differentiating TNBC and 
fibroadenoma. The radiomics nomogram associated 
with Rad-score, US conventional features, and clinical 
data outperformed the Rad-score and clinical models.
Advances in knowledge: Recent advances in 
radiomics-based US are increasingly showing poten-
tial for improved diagnosis, assessment of thera-
peutic response and disease prediction in oncology. 
Rad-score is an independent predictive indicator for 
differentiating TNBC and fibroadenoma. The radiomics 
nomogram associated with Rad-score, US conven-
tional features, and clinical data outperformed the 
Rad-score and clinical models.
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targeted therapies such as endocrine treatment or trastuzumab.1,3 
The immediate priorities include early detection and personal-
ized treatment.

Conventional breast ultrasonography is an indispensable 
imaging modality for detection and evaluation of masses in the 
breast. The predominant ultrasound (US) presentation found 
that approximately 21–40% of TNBC is oval or round, with 
a circumscribed margin, parallel orientation, and posterior 
acoustic enhancement; these morphological characteristics are 
also typically encountered in fibroadenoma.3–5 Early studies 
emphasized that these benign clinical features may impair the 
diagnostic performance of the US.3 Although US is a preopera-
tive assessment diagnosing TNBC with non-invasiveness, repro-
ducibility, and no additional cost, the specificity and accuracy 
should be improved.

Radiomics is an emerging methodology for quantitative anal-
ysis of large-scale medical imaging data, and it can automat-
ically filter comprehensive data obtained from an image.6,7 
Recent advances in radiomics-based US are increasingly 
showing potential for improved diagnosis, assessment of ther-
apeutic response and disease prediction in oncology.8–12 In 
previous studies, Luo et al presented that the nomogram incor-
porating radiomics score and BI-RADS exhibited a potential 
diagnostic capacity in benign and malignant masses, particu-
larly in BI-RADS categories 4 or 5.11 Youk et al demonstrated 
that textural features based on US images had a potential 
diagnostic performance to distinguish benign and malignant 
breast cancer.13 To date, whether radiomics features can differ-
entiate TNBC and fibroadenoma and combined conventional 
US features and clinical findings can improve the predictive 
values for distinguishing TNBC from fibroadenoma have not 
been systematically investigated. Therefore, this study aimed 
to construct a radiomics nomogram based on conventional US 
morphological characteristics and clinical findings to differen-
tiate TNBC from fibroadenoma.

METHODS AND MATERIALS
Patients
This retrospective study was approved by the ethics committee 
of our hospital, and patient consent was waived. Between April 
2016 and January 2021, we identified pathology-proven fibroad-
enomas and pathology-proven TNBCs, which underwent preop-
erative US examination. The inclusion criteria were as follows: 
(1) verified lesions after inpatient surgery, (2) complete US and 
immunohistochemical data, (3) US images acquired from the 
same ultrasonic instrument, and (4) US images stored by Digital 
Imaging and Communications in Medicine. The exclusion 
criteria were as follows: (1) patients who had undergone neoad-
juvant chemotherapy, (2) extensive intraductal component, (3) 
patients receiving biopsy before US examination, and (4) tumor 
size not fully included in the same plane. Finally, 360 patients 
involved in our study were randomly separated into training (n 
= 253) and testing (n = 107) groups. The recruitment flowchart 
is shown in Figure 1a.

US examination and region-of-interest (ROI) 
segmentation
The flowchart of radiomics is summarized in Figure 1b, and it can 
be separated into three parts: imaging acquisition, ROI segmen-
tation, and feature extraction. In addition, the subsequent study 
flowchart included feature selection, model analysis, and model 
evaluation. All the US images from the institution were collected 
using the same US instrument (MyLab Twice, Esaote, Italy) 
equipped with a 5–13 MHZ linear array transducer. All of the 
patients were examined in a supine position with full exposure 
of the breast, including the area closest to the chest wall for good 
detection of the breast lumps.

In testing the interobserver and intraobserver of the repeatability 
and reproducibility based on the features extracted from the 
ROIs, we randomly selected 60 patients for ROI segmentation, 
and two radiologists with 3 years (Y.D.) and 15 years (H.W.) of 
experience in breast US scans who were unaware of the patho-
logical results were recruited. The maximal-diameter plane was 
selected on the basis of the US images of each breast lesion, and 
then two radiologists drew an ROI along the mass boundary 
using an open-source application called ITK-SNAP (http://
www.itksnap.org). Then, a radiologist (H.W.) repeated the same 
workflow after 1 month. Features with intraclass correlation 
coefficients (ICCs) higher than 0.80 in the interobserver and 
intraobserver agreement extraction were considered for subse-
quent analysis. The remaining ROI segmentation of the images 
was accomplished by a radiologist (H.W.).

Clinical information and US conventional features
Clinical characteristics such as age were acquired by reviewing the 
medical records. US features and the assessment of the BI-RADS 
category were retrospectively reviewed by two investigators 
(H.W. and Y.D.), who have 15 and 3 years of experience in breast 
US examination. Neither of the investigators was involved in the 
US examination, and both were unaware of the clinical infor-
mation and pathological data of the patients. They were asked 
to evaluate and record the imaging features of all the patients. 
The following image features of breast lesions were recorded 
and divided into various categories: (1) size (maximum tumor 
diameter:<3 or>3 cm), (2) shape (oval or round, irregular), (3) 
margin (well- or non-circumscribed), (4) orientation (parallel or 
antiparallel), (5) echotexture (hypoechoic or heterogeneous), (6) 
posterior echo feature (none or enhancement), and (7) BI-RADS 
category (3, 4A, 4B, 4C, or 5). In cases of discordance, consensus 
reading was performed, and the consensus data were used for the 
following analysis.

Radiomics analysis and radiomics construction
Pyradiomics package 2.1.2 was used for the extraction of radio-
mics features from the ROIs.14 We used the maximum relevance 
minimum redundancy (mRMR) algorithm to develop TNBC-
related radiomics signatures. The most appropriate feature with 
non-zero coefficient in the training group among the 360 breast 
images features was selected using the least absolute shrinkage 
and selection operator (LASSO) logistic regression algorithm 
(Figure  2a and b). Then, penalty parameter tuning adjusted 
by 10-fold cross-validation was used to access the robust and 
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non-redundant features from the initial cohort. Each patient 
with a Rad-score was created by linear combination of selected 
features that were weighted by their respective coefficients.15 
The corresponding Rad-score was generated on the basis of the 
selected features and calculated in all patients in the training and 
validation groups.

A total of 1283 features were computed and divided into three 
categories: (1) Nine shape-based features were included for the 

evaluation of typical morphological features, such as shape and 
size information about the mass. (2) A total of 216 first-order 
statistics were considered as first-order parameters, which were 
used to calculate the distribution of individual voxel intensities 
through commonly used and basic metrics and ignore the spatial 
information within the tumors; among the first-order statis-
tics, entropy is consistently considered as a stable feature. (3) A 
total of 1058 second-order features, generally known as textural 
features, were included to encode valuable information about 

Figure 1. Workflow of radiomics analysis and study flowchart. (a) Radiomics analysis was divided into three parts: imaging, ROI 
segmentation, and feature extraction. (b). In the study flowchart, LASSO logistic regression was used to construct radiomics sig-
nature and combine with multivariate analysis of the clinical data to develop a nomogram, and then the nomogram was validated 
in the testing set.

http://birpublications.org/bjr
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the scene, and such features had a relative spatial arrangement of 
intensity values in a medical image. In the second-order features, 
we extracted gray-level co-occurrence matrix (GLCM) features, 
gray-level dependence matrix (GLDM) features, gray-level size 
zone matrix (GLSZM) features, gray-level run-length matrix 
(GLRLM) features, neighboring gray tone difference matrix 
(NGTDM) features, and wavelet-based features.16–19

Establishment and validation of the radiomic 
nomogram
In this study, the patients were divided into training (n = 253) and 
validation (n = 107) datasets using statistical software. One-way 
analysis of variance was used to compare demographic charac-
teristics and continuous variables as appropriate. The Chi-square 
test or Fisher’s exact test was used to establish significant differ-
ences in categorical variables as appropriate. Univariate analyses 
was used to the screened variables to determine the clinical char-
acteristics that could serve as a potential predictor for TNBC, 
and variables with p < 0.1 were subjected to subsequent analysis. 
Therewith, a clinical predictive indicator was developed through 
multivariate logistic regression analysis. Regarding multivariate 
logistic regression analysis, we applied the variance inflation 
factor (VIF) to estimate the collinearity diagnostics. The char-
acteristic features were integrated with radiomics signature, and 
then a radiomics nomogram was developed using multivariate 
analysis, which provided an individualized and visual model tool 
for distinguishing TNBC from fibroadenoma.

The potential predictive ability of the established model was 
assessed by using the receiver operating characteristic (ROC) 
curve analysis with the area under the curve (AUC). The model 

performance with a statistical difference of AUC was compared 
using Delong algorithm (p < 0.05). The nomogram model was 
well-adjusted in accordance with a calibration curve evaluated 
by the Hosmer–Lemeshow test and used to assess the predic-
tion capability of the nomogram. The discrimination diagnostic 
performance of the radiomics nomogram model was quanti-
fied using the concordance index (C-Index). The range of the 
C-index was defined as 0.5 to 1.0, with 1.0 corresponding to the 
best model prediction and 0.5 representing random prediction.20 
Bootstraps with 1000 resamples were calculated for the relatively 
corrected C-index of the prediction model, and a corrected 
model was developed. The internal performance of the model 
was used on all patients in the validation cohort.

Clinical utility of the radiomics nomogram
The discrimination and predictive performance of the estab-
lished models were assessed on the basis of decision curve anal-
ysis (DCA) of the training and validation datasets. DCA was 
developed to ascertain the clinical utility of the nomogram by 
quantifying the net benefits at different threshold probabilities in 
the whole cohort.21

Statistical analysis
Statistical analyses were conducted with SPSS (v.26.0) and R 
statistical software (v.4.0.5）). An independent sample T-test 
was used to compare continuous data as appropriate. Categor-
ical variables were compared using Fisher’s exact test or Chi-
square test. LASSO logistic regression analysis was running by 
“glmnet” package. The “mRMRe” package was applied to imple-
ment mRMR algorithm. The VIF values were computed using 
the “car” package. The ROC curves were plotted using “pROC” 

Figure 2. Selection of the radiomics features by using a parametric algorithm was performed in the LASSO binary logistic regres-
sion model. (a) Selection of the tuning parameter (λ) was performed in the LASSO model by 10-fold cross-validation based on 
minimum criteria. A dotted vertical black line was depicted at the optimal value by using the one standard error of the minimum 
and minimum criteria. The number along the upper axis indicates the average number of predictors. The lower x-axis represents 
the log(λ), and the y-axis represents binomial deviances. The optimal λ value of 0.040 with log (λ) = −3.688 was selected. (b). 
LASSO coefficient profiles through the 1283 features. The dotted vertical line was shown at the optimal value using 10-fold cross-
validation in A. Features with 12 non-zero coefficients are constructed by using the optimal λ in the plot.

http://birpublications.org/bjr
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package. The nomogram and calibration curve were constructed 
using the “rms” package. The decision curve was plotted using 
the “dca.r” package. A two-tailed P-value of <0.05 indicated 
statistical significance.

RESULTS
Clinical characteristics and clinical model
The study flowchart is summarized in Figure 1. Table 1 presents 
the comparisons of US-based morphology characteristics and 
clinical data. The training cohort included 54 (50.5%) fibro-
adenomas and 53 (49.5%) TNBCs, and the validation cohort 
included 128 (50.6%) fibroadenomas and 125 (49.4%) TNBCs. 
The results demonstrated no statistical difference between the 
training and validation cohorts with regard to lesion size, age, 
and US morphological features (p = 0.061–0.762). Univariate 
analysis showed that age, tumor size, shape, margin, orienta-
tion, posterior echo feature, BI-RADS category, and Rad-score 

were associated with good statistical significance in the training 
cohort (Table  2). Based on multivariate analysis, patients’ age 
(odds ratio [OR]: 1.16; 95% CI: 1.09–1.24; p < 0.001), a BI-RADS 
final assessment category of 3 (OR: 0.04; 95% CI: 0.01–1.24; p = 
0.001) or 4 (OR of 4B: 7.43; 95% CI: 1.72–32.142; p = 0.007; OR 
of 4C: 17.84; 95% CI: 2.84–112.23; p = 0.002) or 5 (OR: 23.85; 
95% CI: 1.05–539.60; p = 0.001), and Rad-score (OR: 1.06; 95% 
CI: 1.18–1.32; p < 0.001) were considered as independent predic-
tors of the predictive model associated with TNBC. The clinical 
model was constructed on the basis of age and BI-RADS cate-
gory, which showed favorable discrimination with an AUC of 
0.942 (95%CI: 0.914–0.971) in the training datasets and 0.943 
(95% CI: 0.901–0.984) in the testing datasets, respectively.

Features selection and Rad-score building
A total of 1283 radiomics features were selected, and 26 
features were extracted by mRMR associated with TNBC. The 

Table 1. Comparisons of clinical and US morphological features in training and validation cohorts

Characteristic
Training cohort

(n = 253)
Testing cohort

(n = 107) P
Agea 44.23 ± 13.14 42.71 ± 13.75 0.323

Tumor size

 � <3 cm 205 (81.0%) 89 (83.2%) 0.630

 � >3 cm 48 (19.0%) 18 (16.8%)

Shape

 � Oval or round 128 (50.6%) 56 (52.3%) 0.762

 � Irregular 125 (49.4%) 51 (47.7%)

Margin

 � Well circumscribed 126 (49.8%) 64 (59.8%) 0.642

 � Non-circumscribed 127 (50.2%) 43 (40.2%)

Orientation

 � Parallel 213 (84.2%) 88 (82.2%) 0.061

 � Non-parallel 40 (15.8%) 9 (17.8%)

Echotexture

 � Hypoechoic 198 (78.3%) 91 (85.0%) 0.234

 � Heterogeneous 55 (21.7%) 16 (15.0%)

Posterior echo feature

 � None 178 (70.4%) 79 (73.8%) 0.505

 � Enhancement 75 (29.6%) 28 (26.2%)

BI-RADS category

 � 3 71 (28.1%) 32 (29.9%) 0.673

 � 4A 66 (26.1%) 26 (24.3%)

 � 4B 61 (24.1%) 31 (29.0%)

 � 4C 34 (13.4%) 13 (12.1%)

 � 5 21 (8.3%) 5 (4.7%)

Rad-scorea −0.07 ± 2.06 0.25 ± 1.95 0.160

NOTE: Unless otherwise noted, data are shown as the number of patients, with the percentage in parentheses.
aData are means ± standard deviations.

http://birpublications.org/bjr
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intraobserver ICCs ranged from 0.824 to 0.988, and the interob-
server ICCs ranged from 0.807 to 0.973, indicating satisfactory 
reproducibility in ROI segmentation. Finally, the features were 
reduced to 12 potential predictive factors from features with 
non-zero coefficients using the LASSO regression algorithm 
(Figure 3). The formula used to calculate by the Rad-score asso-
ciated with the 12 radiomic features was as follows:

Rad-score = −0.107*exponential_glszm_ZoneEntropy + 
−0.444*square_glszm_LargeAreaLowGrayLevelEmphasis 
+ 0.551*log-sigma-3–0 mm-2D_firstorder_Skewness + 
0.007*squareroot_ngtdm_Coarseness + 0.326*square_
ngtdm_Contrast + 0.195*log-sigma-5–0 mm-2D_
glcm_Imc1 + −0.284*lbp-2D_glszm_ZoneVariance + 
0.35*log-sigma-5–0 mm-2D_glszm_SmallAreaEmphasis + 
0.305*log-sigma-5–0 mm-2D_glrlm_ShortRunLowGrayLev-
elEmphasis + −0.233*gradient_firstorder_Kurtosis + 

0.579*wavelet-H_firstorder_Skewness + 0.131*exponential_
gldm_DependenceEntropy + −0.071

The Rad-score presented an acceptable diagnostic accuracy in 
predicting TNBC with an AUC of 0.890 (95% CI: 0.851–0.929) 
in the training set and 0.886 (95% CI: 0.825–0.948) in the valida-
tion set, respectively.

Construction and validation of radiomics 
nomogram
Clinical and Rad-score models were constructed in accordance 
with the above-mentioned methods, and both models ascer-
tained the independent predictors of TNBC in the training and 
testing groups. The radiomics nomogram model incorporated 
significant clinical morphological predictors with the fusion Rad-
score of US images. Among multivariate logistic regression anal-
yses, age, BI-RADS, and Rad-score were identified as potential 

Table 2. Results of univariate and multivariate analyses of the potential predictors based on the training cohort

Factors
Univariate analysis

OR (95% CI) P
Multivariate analysis

OR (95% CI) P
Age 0.86 (0.82–0.89) <0.001 1.16 (1.09–1.24) <0.001

Tumor size

 � <3 cm 1 (ref) NA

 � >3 cm 0.58 (0.30–1.10) 0.092

Shape

 � Oval or round 1 (ref) NA

 � Irregular 3.51 (2.10–5.90) <0.001

Margin

 � Well circumscribed 1 (ref) NA

 � Non-circumscribed 2.34 (1.41–3.87) 0.001

Orientation

 � Parallel 1 (ref) NA

 � Non-parallel 2.14 (1.16–4.32) 0.034

Echotexture

 � Hypoechoic 1 (ref) NA

 � Heterogeneous 0.73 (0.43–1.26) 0.265

Posterior echo feature

 � None 1 (ref) NA

 � Enhancement 2.62 (1.55–4.44) <0.001

BI-RADS category

 � 3 0.19 (0.08–0.49) <0.001 0.04 (0.01–1.24) 0.001

 � 4A 1 (ref) 1 (ref)

 � 4B 4.18 (1.99–8.80) <0.001 7.43 (1.72–32.14) 0.007

 � 4C 18.08 (4.99–65.49) <0.001 17.84 (2.84–112.23) 0.002

 � 5 33.00 (4.41–277.38) 0.001 23.85 (1.05–539.60) 0.046

Rad-score 1.26 (1.19–1.37) <0.001 1.16 (1.08–1.32) <0.001

BI-RADS, Breast Imaging Reporting and Data System; CI, confidence interval; OR, odds ratio; TNBC, triple-negative breast cancer; ref, reference.
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predictors associated with TNBC. The VIF values of the three 
predictors ranged from 1.13 to 1.19, indicating that no collin-
earity was found during collinearity diagnosis. A nomogram 
incorporated with the predictors was established (Figure 4).

The combined model also showed improved diagnostic effi-
ciency in ROC analysis compared with the Rad-score and clin-
ical models (Figure 5a and b). By comparing the models, the 
combined model presented an optimal performance and the 
best AUC value (0.986; 95% CI: 0.975–0.997) in the training 
group. The model also presented the highest AUC (0.977; 95% 
CI: 0.953–1.000) in the testing cohort. Therefore, we suggested 
that the nomogram integrated with Rad-score and clinical 
model for TNBC prediction, with a satisfactory discrimina-
tion ability. Figure  5c illustrates the calibration curve of the 
nomogram in the training cohort, and the Hosmer–Leme-
show test yielded a non-significant statistic (p = 0.732). The 
calibration curve of the nomogram in the validation cohort 
and the Hosmer–Lemeshow test showed favorable calibration 
(Figure  5d) with a non-significant statistic (p = 0.807). The 
recommended nomogram was integrated with Rad-score and 
clinical model, with favorable discrimination (C-index, 0.984 

in the training cohort and 0.985 in the validation cohort). 
Hence, our nomogram demonstrated favorable precision in the 
training and validation cohorts.

In addition, the combined model outperformed the Rad-score 
model (AUC values of 0.986 vs 0.890; p < 0.001) and clinical 
model (AUC values of 0.986 vs 0.942; p < 0.05) in the training 
cohort based on the Delong test. In the validation cohort, the 
combined model also exhibited a better predictive capability 
than the Rad-score (AUCs of 0.977 vs 0.886; p < 0.001) and clin-
ical models (AUCs of 0.977 vs 0.943; p < 0.001).

Clinical usefulness of the nomogram
The decision curves for the clinical model, Rad-score model, 
and combined nomogram in the training cohort are presented 
in Figure  6a. The results showed that using the nomogram to 
predict the risk of TNBC adds more net benefit than the “treat 
all” or “treat none” strategies and achieves the most net benefit 
when threshold probabilities ranged from 0.1 to 1.0. Similar 
results could be found in the testing cohort (Figure 6b).

Figure 3. Result of feature selection and the verified set of Rad-score. Twelve non-zero coefficients features are presented, includ-
ing first-order statistics, textural features, and wavelet-based features.

http://birpublications.org/bjr
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DISCUSSION
In this study, we developed a nomogram-incorporated radio-
mics signature, US conventional features, and clinical findings to 
differentiate TNBC from fibroadenoma. The Rad-score not only 
served as a potential predictive indicator in differentiating TNBC 
and fibroadenoma but also showed a good performance when 
combined with the clinical findings.

Radiomics is a computer-aided diagnosis model that uses an 
automated high-throughput extraction of large amounts of 
quantitative phenotypic characteristics of medical images and 
converts features into mathematical models that can provide 
more and better information than those found by a radiolo-
gist.22–24 The evaluation criteria and reporting guidelines must 
be completed to develop radiomics analysis and mature disci-
pline.25 In previous studies, texture analysis demonstrated a 
favorable performance in the clinical diagnosis based on US 
morphological features, distinguishing benign and malignant 
lesions, differentiating breast cancer subtypes, and assessment 
of therapeutic responses to neoadjuvant chemotherapy, which 
illustrated the clinical application of radiomics.9,10,13 Lee et al 
demonstrated that the Rad-score based on US texture presented 
a favorable diagnostic performance for differentiating TNBC and 
fibroadenoma with an AUC of 0.91.13 In addition, Moon et al 
designed US-based texture features of computer-aided diagnosis, 
which can be used to differentiate TNBC from fibroadenoma 
with an AUC of 0.84. However, 169 patients were involved in 
this study; thus, the application of this CAD system in every US 
examination is impossible, and computer feature sets may waste 
a considerable amount of time when deviating from the multi-
resolution gray-scale invariant texture.26 In our present research, 
we developed a Rad-score consisting of 12 radiomic features 
to differentiate TNBC from fibroadenoma, and the Rad-score 
demonstrated sufficient discrimination performance between 
the TNBC and fibroadenoma, which further emphasizes the 
robust capability of radiomics features. Moreover, the Rad-score 
was in accordance with that of previous studies, and it can serve 
as a potential indicator for predicting TNBC and fibroadenoma.

In general, US morphological features depend on conventional 
clinical practices for differentiating variable subtypes of breast 
cancer. Conventional sonographic features are intuitive, and 
TNBC has atypical features that are an underestimation of the 
diagnostic accuracy. Yoon et al presented that TNBC usually 
showed more suspicious US characteristics with posterior 
echo enhancement, irregular shape, and a non-circumscribed 
margin than fibroadenoma.4 In addition, Yeo et al reported a 
study predicting TNBC and fibroadenoma based on US alone 
of 131 patients, showing dissatisfactory results with an AUC of 
0.65.27 This conclusion on TNBCs can be confused with diag-
nosis because of several distinct sonographic criteria, and it may 
be associated with benign tumor such as fibroadenoma. In our 
study, univariate analysis indicated that most US characteris-
tics showed a good diagnostic ability in distinguishing TNBC 
and fibroadenoma. Multivariate analysis presented that age 
and BI-RADS category were associated with a predictive clin-
ical model, which can be an effective tool for predicting TNBC 
and fibroadenoma. Thus, US characteristic is important in 
constructing a clinical predictive model. However, image acqui-
sition depends on the experience of the radiologist, and different 
radiologists are skilled in different fields, such as breast, thyroid, 
and liver. This condition may explain why the AUC of the clinical 
model was inferior to the radiomics nomogram in this study.

Rapid nomograms are widely used in the response of treatment 
and prediction of treatment in oncology.28–30 To our knowledge, 
this research is the first study that is developed and validated 
to predict breast lesions with TNBC and fibroadenoma using 
a radiomics signature-based nomogram. Substantial overlap 
exists in the conventional US features of TNBC and fibroade-
noma. Previous studies have constructed a US-based radiomics 
signature and proven a radiomics nomogram, which can be used 
to distinguish benign and malignant lesions and preoperatively 
predict TNBC.25,31,32 Luo et al reported a nomogram combined 
with BI-RADS and radiomics, which showed potential applica-
tion value for the diagnosis and discrimination of category four 
or five lesions in BI-RADS.11 In our study, we constructed and 

Figure 4. Combined radiomics nomogram constructed by Rad-score and clinical characteristics for predicting TNBC in the train-
ing cohort. The predictors include age, BI-RADS, and Rad-score.
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identified radiomics nomogram-incorporated Rad-score and 
clinical findings to easily distinguish TNBC and fibroadenoma. 
The nomogram presented an enormous potential for differen-
tiating such lesions with a satisfactory C-index and good cali-
bration. First, we observed that the radiomics signature has a 
good accuracy to differentiate TNBC and fibroadenoma. Next, 
we used multivariate logistic regression analysis to construct 
a combined nomogram. We observed its excellent calibration 
and attempted to unravel its predictive capacity for differenti-
ating TNBC and fibroadenoma. The nomogram showed a better 

diagnostic discrimination performance than the Rad-score or 
clinic model alone, and it can be more intuitive and easily used 
in distinguishing breast lesions with TNBC and fibroadenoma. 
Future directions can be associated with the prognostic indicator 
and treatment schedule and the identification of a risky radio-
mics signature.

Our present study has several limitations. First, our study 
was retrospective, and it possessed a potential selection 
bias. Second, ROIs were drawn manually, and the lack of 

Figure 5. (a, b)Comparison of the AUCs for the clinical model, Rad-score model, and radiomics nomogram in the training and 
validation cohorts. (c).Calibration curves of the radiomics nomogram in the training cohort. (d).Calibration curves of the radiomics 
nomogram in the validation cohort. The X-axis represents the predictive probability; Y-axis denotes the observed probability. The 
45° blue diagonal line represents the perfect prediction of TNBC, and the red line indicates the prediction model of the radiomics 
nomogram. The closer the red line fits to the ideal line, the better the discrimination of the nomogram.
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standardization caused by differences in selection can be 
encountered, although the two radiologists showed excel-
lent interobserver and intro-observer agreement in our 
study. Fully automatic segmentation tools associated with 
good diagnostic accuracy should be applied in future studies 
to avoid such potential faults. Third, the radiomics nomo-
gram may be difficult to generalize because all breast lesions 
were examined using the same machine and US examination 
protocol. Further studies are required for multiple types of 
US and multicenter validation with a larger sample to achieve 
higher predictive accuracy for clinical application. Fourth, 
large lesions were not included in this study because of the 

inability of US to completely present the entire lesion on a 
single plane.

In conclusion, the present study used US-based images to 
construct a Rad-score model, which can be an independent 
biomarker for risk prediction in patients with TNBC. In addi-
tion, our study presented a nomogram, with a combination of 
Rad-score and clinical findings, which exhibited a favorable 
performance in differentiating TNBC and fibroadenoma. The 
combined model may possess practicability and value of popu-
larization to reduce the number of biopsies and provide a suit-
able treatment strategy in the future.

Figure 6. Decision curve for the clinical findings, Rad-score, and radiomics nomogram. The gray line represents the assumption 
that all patients are TNBC cases; the black line refers to the assumption that all patients are fibroadenoma cases. The x-axis 
denotes the high-risk threshold, and the y-axis indicates the net benefit. The blue, orchid, and light-pink lines represent the clinical 
model, Rad-score model, and radiomics nomogram, respectively.
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