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INTRODUCTION
Prostate cancer is one of the most common diseases 
and requires screening at an early stage.1 Conventional 
approaches to prostate cancer screening have involved 
prostate-specific antigen (PSA) testing, but PSA-based 
screening remains controversial due to high overdiag-
nosis rates.2,3 Recently, studies that utilized MRI for pros-
tate cancer detection before biopsy have been increasingly 
performed.4–9 In particular, multiparametric MRI (mp-
MRI) has been regarded as a standard clinical protocol 
for prostate MR imaging, which includes 2D T2 weighted 
turbo spin echo (TSE) sequences, diffusion-weighted 
imaging, and dynamic contrast-enhanced 3D T1 weighted 
imaging.4,7,10 However, mp-MRI requires scanning for 
several imaging sequences, leading to long scan times. 
Additionally, prostate MR imaging requires high-resolution 

data to detect the small size of lesions, which causes exten-
sion of scan times.8,9 Such long scan times for mp-MRI lead 
to sensitivity to motion and patient discomfort.

As an effort to reduce the scan time of MR acquisition, a few 
acceleration techniques have been proposed.11–16 The most 
common approach for MR acceleration is parallel imaging 
reconstruction. The approach accelerates the scan times by 
undersampling k-space along the phase encoding direction 
and reconstructs the images by utilizing the coil sensitivity 
profiles (referred to as sensitivity encoding; SENSE)13 or 
assuming the linear property of k-space data (referred to as 
generalized autocalibrating partially parallel acquisitions; 
GRAPPA).14 However, those methods showed perfor-
mance degradation in highly accelerated data, revealing 
the limits of scan time reduction.17,18 Unlike conventional 
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Objective: The aim of this study was to develop a deep 
neural network (DNN)-based parallel imaging recon-
struction for highly accelerated 2D turbo spin echo 
(TSE) data in prostate MRI without quality degradation 
compared to conventional scans.
Methods: 155 participant data were acquired for training 
and testing. Two DNN models were generated according 
to the number of acquisitions (NAQ) of input images: 
DNN-N1 for NAQ = 1 and DNN-N2 for NAQ = 2. In the 
test data, DNN and TSE images were compared by 
quantitative error metrics. The visual appropriateness 
of DNN reconstructions on accelerated scans (DNN-N1 
and DNN-N2) and conventional scans (TSE-Conv) was 
assessed for nine parameters by two radiologists. The 
lesion detection was evaluated at DNNs and TES-Conv 
by prostate imaging-reporting and data system.
Results: The scan time was reduced by 71% at NAQ 
= 1, and 42% at NAQ = 2. Quantitative evaluation 

demonstrated the better error metrics of DNN images 
(29–43% lower NRMSE, 4–13% higher structure similarity 
index, and 2.8–4.8 dB higher peak signal-to-noise ratio; 
p < 0.001) than TSE images. In the assessment of the 
visual appropriateness, both radiologists evaluated that 
DNN-N2 showed better or comparable performance 
in all parameters compared to TSE-Conv. In the lesion 
detection, DNN images showed almost perfect agree-
ment (κ > 0.9) scores with TSE-Conv.
Conclusions: DNN-based reconstruction in highly accel-
erated prostate TSE imaging showed comparable quality 
to conventional TSE.
Advances in knowledge: Our framework reduces the 
scan time by 42% of conventional prostate TSE imaging 
without sequence modification, revealing great potential 
for clinical application.
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parallel imaging reconstruction, a few methods have changed 
the sampling scheme of MR acquisition to reduce aliasing arti-
facts such as controlled aliasing in volumetric parallel imaging 
(CAIPIRINHA)11 and compressed sensing (CS).16 Although 
those methods show improved performance over conventional 
parallel imaging methods, they require sequence modification 
or a huge computational cost and have limited performance on 
highly accelerated MR data.19,20

To improve the reconstruction performance of parallel imaging, 
recent studies have proposed deep neural network (DNN)-based 
approaches that leverage image features from large amounts of 
data.21–27 Studies have shown that DNNs outperform conven-
tional approaches in highly accelerated scan data, demonstrating 
the potential usage of DNNs in parallel imaging reconstruction. 
This is because the image features from large amounts of data 
may have better representations for reconstruction than conven-
tional mathematical priors.28 Therefore, DNN approaches can 
be a promising tool for reducing substantial scan times of MR 
acquisition without image degradation.

In this study, we developed a DNN-based parallel imaging recon-
struction for highly accelerated 2D TSE data in prostate MR 
imaging. We demonstrate the performance of our DNN model 
for both quantitative evaluation in retrospectively undersampled 
data and qualitative evaluation in prospectively accelerated data.

METHODS AND MATERIALS
Participants
This study was approved by the institutional review board of The 
Catholic University of Korea, Eunpyeong St. Mary’s Hospital 
and informed consent was waived. We collected 2D T2 weighted 
prostate MR data from 155 patients (mean age = 71 years; range 
= 38–92 years) from January 2020 to February 2021. The patients 
were suspected to have prostate disease, and prostate MRI was 
performed as prebiopsy MRI. Demographic information was 
collected through a review of the medical records.

Data acquisition
A total of 155 subjects were scanned using a 3 T scanner 
(MAGNETOM Vida, Siemens Healthineers, Erlangen, Germany) 
with a 30-channel body coil and a 32- or 72-channel spine coil. 
The scanned data were stored in raw k-space data format by the 
Yarra framework (http://yarraframework.com/), which is public 
software for transfer of the MRI raw k-space data to external 
storage. For the training and evaluation of the DNN model, 
conventional reference scans only (from 115 subjects) or both 
reference scans and accelerated scans (from 40 subjects) were 
acquired. The reference scan and accelerated scan were acquired 
by a 2D TSE sequence in the axial plane with different accelera-
tion factors (R = 2 for the reference scan; R = 4 for the accelerated 
scan). Other parameters for both scans of the 2D TSE sequence 
were as follows: TR ranging from 2510 to 2890 ms, TE = 103 ms, 
FOV = 180 x 180 mm2, matrix size = 640 x 640 using zero-filling 
interpolation (ZIP), slice thickness = 3 mm with a total of 26 to 
30 slices, autocalibrating signal (ACS) lines = 32, and the number 
of acquisitions (NAQ) = 2. Note that the conventional scan time 

was 196 s while the accelerated scan times were 57 s for NAQ = 
1 and 114 s for NAQ = 2.

Data preprocessing
For parallel imaging reconstruction on a high acceleration factor 
(R = 4), a DNN framework was proposed. Figure 1 summarizes 
all procedures for training and testing of the DNN. To evaluate 
the feasibility of DNN-based parallel imaging reconstruction, 
two different DNN models, referred to as DNN-N1 and DNN-
N2, were generated with different NAQs (NAQ = 1 and 2). In the 
NAQ = 1 experiment, the raw k-space data of the reference scan 
were sampled with NAQ = 1. Then, retrospective undersam-
pling was performed with R = 4, followed by GRAPPA recon-
struction and root-sum-of squares (RSS) channel combining. 
The resulting coil-combined magnitude images were named 
TSE-N1retro and used for training inputs of DNN-N1. In the 
NAQ = 2 experiment, retrospective undersampling (R = 4) was 
performed in two separate k-spaces. In GRAPPA reconstruction 
of NAQ = 2, the two separate k-spaces were averaged followed 
by RSS channel combining, named TSE-N2retro. For the labels 
of both DNN-N1 and DNN-N2, conventional TSE (TSE-Conv) 
images were generated by GRAPPA reconstruction on the refer-
ence scan followed by RSS channel combining. All details of the 
data preprocessing are described in Supplementary Material 1 
(Supplementary Figure S1).

To evaluate DNN-N1 and DNN-N2, data for 40 subjects were 
acquired by both reference scans and accelerated scans and 
utilized. The retrospective test data were generated using the 
same data preprocessing of TSE-N1retro and TSE-N2retro, while 
the prospective test data were generated without retrospective 
undersampling on the accelerated scan (TSE-N1pros and TSE-
N2pros). TSE-Conv images from the reference scan were utilized 
as a reference for both retro- and prospective test sets.

Deep neural network
The proposed deep learning framework utilized 2D U-net29 as 
a foundational architecture of DNN (Figure 2). Note that U-net 
has been commonly utilized for DNN-based parallel imaging 
reconstruction.30 The DNN architecture is designed with 18 
convolutional blocks, 4 max-pooling layers (pool size = 2 x 2), 4 
upsampling layers (kernel size = 2 x 2), 4 feature concatenations, 
and 3 convolutional layers (kernel size = 1 x 1). The convolu-
tional block consists of a convolutional layer with kernel size = 3 
x 3, instance normalization (IN), and rectified linear unit (ReLU) 
activation function. In the first four parts of the network, each 
part consists of two convolutional blocks followed by a max-
pooling layer. The number of channels was 128 in the first part, 
and it doubled for each subsequent part. The middle part of the 
network consists of two convolutional blocks while maintaining 
the number of channels. Then, the feature concatenation was 
applied to an upsampling layer followed by two convolutional 
blocks in the next four parts. Finally, three 1 × 1 convolutional 
layers were applied to reconstruct the output images.

In the DNN training process, a total of 2856 slices and 260 slices 
were used for the training and validation, respectively. The loss 
function of DNN was defined as the structure similarity index 

http://birpublications.org/bjr
http://yarraframework.com/
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211378/suppl_file/Supplementary_Information.docx


Br J Radiol;95:20211378

BJR  Jung et al

3 of 13 birpublications.org/bjr

Figure 1. Schematic diagram of the experimental setup. DNN, deep neural network; NAQ, number of acquisitions; TSE, turbo spin 
echo.

http://birpublications.org/bjr
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(SSIM). The learning rate was exponentially decayed from 10−3 
at a step size of 20 and decaying ratio = 0.1. Other hyperparam-
eters for training were set as follows: batch size = 4, training 
epochs = 30, and Adam for optimization.31 PyTorch32 and four 
NVIDIA Titan Xp GPUs with 12 GB memory (NVIDIA Corpo-
ration, Santa Clara, CA) were utilized for DNN training. DNN 
processing time for the test was measured at about 0.3 s for a 
single slice.

Image quality evaluation
To evaluate the DNN model, quantitative and qualitative anal-
yses were performed. In the quantitative evaluation, four 
different types of images, DNN-N1retro, TSE-N1retro, DNN-
N2retro, and TSE-N2retro, were reconstructed in the retrospective 
test set. Quantitative error metrics such as normalized root mean 
squared error (NRMSE), SSIM, and peak signal-to-noise ratio 
(PSNR) were calculated with TSE-Conv images as a reference.

For qualitative evaluation, prospectively accelerated scan data 
were utilized to generate DNN-N1pros, TSE-N1pros, DNN-
N2pros, and TSE-N2pros images. Note that TSE-Conv images 
from the reference scan data (NAQ = 2 and R = 2) were utilized 
as references. To investigate the effects of NAQ on image 

quality, the prospective test set was divided into two groups: 
(DNN-N1pros, TSE-N1pros, TSE-Conv) and (DNN-N2pros, TSE-
N2pros, TSE-Conv). In each group, two experienced radiologists 
with more than 9 years of experience in prostate MRI blindly 
assessed image quality for the randomly presented image set 
of each patient. They reviewed the data set in the first group 
and then reviewed the data set in the second group. Eight image 
quality parameters, including overall image quality, perceived 
signal-to-noise ratio (SNR), artifacts, and sharpness of pros-
tate, seminal vesicle, rectal wall, urinary bladder, and obtu-
rator muscle, were scored by a 5-point Likert scale. The scoring 
criteria of each image quality parameter were defined as shown 
in Table 1. Note that higher scores indicate better image quality 
in all parameters.

To demonstrate the impact of DNN reconstruction on the 
images in patients with lesions, the presence of clinically signifi-
cant cancer was evaluated in TSE-Conv, DNN-N1pros, and DNN-
N2pros images, based on prostate imaging-reporting and data 
system (PI-RADS) v. 2.1 for T2 weighted imaging (T2WI)33 by 
the two radiologists (Table 2).

Figure 2. Deep neural network architecture for prostate imaging in accelerated scans. IN, instance normalization; ReLU, rectified 
linear unit.

Table 1. Scoring criteria for qualitative evaluation

Score Overall image quality Perceived SNR Artifacts Image sharpness
1 Non-diagnostic Poor Severe Very severe blurring, nondiagnostic

2 Poor, but still interpretable Fair Moderate Severe blurring, affecting diagnosis

3 Fair Average Mild Moderate blurring

4 Good Good Minimal Minimal blurring

5 Excellent Excellent None Sharp boundary

SNR, signal-to-noise ratio.

http://birpublications.org/bjr
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Statistical analysis
To evaluate the performance of DNN, statistical analyses were 
performed in both quantitative and qualitative evaluations. In the 
quantitative evaluation, a paired t-test was performed between 
the quantitative error metrics of DNN-N1retro and TSE-N1retro 
(or DNN-N2retro and TSE-N2retro) to demonstrate significant 
differences. In the qualitative evaluation, image quality param-
eters of DNN-N1pros (or N2pros), TSE-N1pros (or N2pros), and 
TSE-Conv were compared by a Wilcoxon signed-rank test. For 
multiple statistical analyses, Bonferroni correction was applied. 
The inter- and intraobserver agreement were demonstrated 
by intraclass correlation coefficients (ICCs) defined as poor 
(0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial 
(0.61–0.80), and almost perfect (0.81–1.00). Intraobserver agree-
ment was performed by one radiologist with a 3-month period 
between the first and second evaluations. In the lesion evaluation 
by T2WI PI-RADS, intermethod and interobserver agreements 
were estimated by weighted Cohen’s κ (κ) statistics. All statis-
tical analyses were performed by SPSS, v. 28.0 (IBM Corpora-
tion, Armonk, NY), and statistically significant differences were 
determined based on a threshold of 0.05.

RESULTS
Demographic characteristics
From the data set, the images from 115 subjects were used for 
deep neural network training and validation (mean age±stan-
dard deviation = 71.4±8.8 years), and those from 40 subjects 
were used for quantitative and qualitative evaluation (mean 
age±standard deviation = 70.3±9.7 years).

Quantitative evaluation
Table  3 reports the quantitative error metrics of DNN-N1retro, 
TSE-N1retro, DNN-N2retro, and TSE-N2retro. The mean and stan-
dard deviation of NRMSE, SSIM, and PSNR across the subjects 

were compared. Note that the comparison was performed inde-
pendently according to the NAQ. Compared to TSE, DNN 
showed lower NRMSE, higher SSIM, and higher PSNR with 
significant differences in both NAQ = 1 and NAQ = 2 (all, p 
< 0.001), revealing improved performance in DNN-based 
reconstruction.

Figure  3 displays DNN-N1retro, TSE-N1retro, DNN-N2retro, 
TSE-N2retro, and TSE-Conv images from the two represen-
tative subjects. In the second and fourth rows, the error maps 
were calculated with the TSE-Conv images as references. SSIM 
error metrics are shown in the right corner of the error maps. 
The highest SSIM values are shown in DNN-N2retro, confirming 
the best performance of DNN-N2 reconstruction among the 
methods.

Qualitative evaluation
Tables 4 and 5 show the results of qualitative evaluation of the 
two radiologists in NAQ = 1 and NAQ = 2 prospective test sets. 
In both NAQ = 1 and NAQ = 2 data evaluations, the images from 
conventional scans (NAQ = 2 and R = 2) were used as the gold-
standard. In NAQ = 1 results, two radiologists evaluated that 
DNN-N1pros showed improved overall image quality, perceived 
SNR, and sharpness of the structures compared to TSE-N1pros 
with statistically significant differences (all, p < 0.001; Table 4). 
As assessed by radiologist 1, the artifact score of DNN-N1pros 
was significantly higher than that of TSE-N1pros. In the compar-
ison between DNN-N1pros and TSE-Conv, DNN-N1pros showed 
an improved perceived SNR according to both radiologists (p 
< 0.003). Although the overall image quality of DNN-N1pros 
showed incompatible results between radiologists 1 (signifi-
cantly higher than TSE-Conv) and 2 (significantly lower than 
TSE-Conv), the median score of overall image quality in both 
image sets was 4 or higher.

Table 2. Presence of clinically significant cancer scored by PI-RADS v. 2.1 in T2 weighted imaging

Score PI-RADS v 2.1
1 Very low (clinically significant cancer is highly unlikely to be present)

2 Low (clinically significant cancer is unlikely to be present)

3 Intermediate (the presence of clinically significant cancer is equivocal)

4 High (clinically significant cancer is likely to be present)

5 Very high (clinically significant cancer is highly likely to be present)

PI-RADS, prostate imaging-reporting and data system.

Table 3. Comparison of quantitative error metrics in the retrospective test set between DNN and TSE

DNN-N1retro TSE-N1retro

p-value

DNN-N2retro TSE-N2retro

p-value

(DNN-N1retro
vs TSE-N1retro)

(DNN-N2retro
vs TSE-N2retro)

NRMSE (%) 7.7 ± 1.0 13.4 ± 2.5 <0.001 5.7 ± 0.9 8.0 ± 1.9 <0.001

SSIM (0–1) 0.92 ± 0.03 0.81 ± 0.06 <0.001 0.95 ± 0.02 0.91 ± 0.04 <0.001

PSNR (dB) 34.9 ± 1.5 30.1 ± 1.9 <0.001 37.4 ± 1.7 34.6 ± 2.2 <0.001

N represents the number of acquisitions; DNN, a deep neural network; NRMSE, normalized root mean squared error; PSNR, peak signal-to-noise-
ratio; SSIM, structure similarity index; TSE, turbo-spin echo images;retro, the retrospective undersampling was applied to the data.

http://birpublications.org/bjr
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In the NAQ = 2 results, DNN-N2pros showed improved overall 
image quality, perceived SNR, and sharpness of the structures 
compared to TSE-N2pros with statistically significant differences 
for both radiologists (Table 5). As assessed by radiologist 2, the 
artifact score of DNN-N2pros was significantly higher than that 
of TSE-N2pros. When DNN-N2pros were compared with TSE-
Conv, all qualitative parameters were better than or comparable 
to those of TSE-Conv.

Interobserver agreements were fair to almost perfect for all image 
quality parameters in both NAQ = 1 and NAQ = 2 results (ICC 
= 0.434–0.926, p < 0.002), except for sharpness of the obturator 
muscle in NAQ = 2 (ICC = 0.224, p > 0.05). Intraobserver agree-
ments were fair to almost perfect for all image quality parame-
ters (ICC = 0.497–0.961, p < 0.001), supporting the reliability of 
qualitative evaluation. Each ICC value and corresponding 95% 

confidence interval and p-value are reported in Supplementary 
Material 1 (Supplementary Tables 1 to 4).

Figure 4 displayed the images of the two representative subjects 
in the prospective test set. The images from DNN and TSE recon-
struction on accelerated scans (NAQ = 1 for first and second 
columns; NAQ = 2 for third and fourth columns), and TSE-Conv 
(last column) were shown. Overall, DNN-reconstructed images 
showed comparable contrasts and quality to those from TSE-
Conv images. When zoomed-in for details (second and fourth 
rows), DNN-N1pros and DNN-N2pros showed better delineation 
of the structure than TSE-N1pros and TSE-N2pros, supporting the 
blind-test results from the radiologists in Tables 4 and 5.

Figure 3. Reconstructed images of two representative subjects in the retrospective test data set are displayed. DNN-N1retro, TSE-
N1retro, DNN-N2retro and TSE-N2retro images are shown with TSE-Conv images as references (last column). The second and fourth 
rows display the difference map with the label. For visualization, the difference maps were multiplied by 5. SSIM is reported in the 
right corner of each difference map. DNN shows higher SSIM than TSE on the retrospective undersampled data. DNN, deep neural 
network; SSIM, structure similarity index; TSE, turbo spin echo.

http://birpublications.org/bjr
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Presence of cancer
Table  6 shows the scores of the presence of clinically signif-
icant cancer based on T2WI PI-RADS v. 2.1 from the two 
radiologists. The results revealed that intermethod agree-
ment between DNN and TSE-Conv was almost perfect (all, κ 
> 0.9). In addition, the interobserver agreement between the 
two radiologists was moderate or substantial (κ, 0.58–0.61), 
supporting the reliability of the evaluation (Supplementary 
Material 1- Table 5).

In Figure 5, the images of one representative patient, who had 
clinically significant lesions in the prostate, in the prospective 
test data set are displayed. Each image was reconstructed DNN-
N1, TSE-N1, DNN-N2, TSE-N2, and TSE-Conv pipelines. When 
compared to TSE-N1pros or TSE-N2pros, DNN-N1pros and DNN-
N2pros showed better contrast and image quality. Additionally, 
both DNN images showed good agreement with TSE-Conv in 
lesion delineation as indicated by yellow arrows, supporting the 
T2WI PI-RADS scoring results in Table 6.

DISCUSSION
In this study, we proposed DNN-based parallel imaging recon-
struction in highly accelerated 2D TSE prostate imaging. The 
proposed DNN model is based on the U-net architecture, which 
aims to reconstruct the images from accelerated scans (R = 4, 
NAQ = 1 or 2) into the images from conventional scans (R = 2, 
NAQ = 2). Note that the conventional scan time was 196 s while 
the accelerated scan times were 57 s for NAQ = 1 and 114 s for 
NAQ = 2. The high-quality performance of DNN was demon-
strated in the accelerated scan by the two analyses: quantitative 
evaluation in the retrospective test data set and qualitative eval-
uation in the prospective test data set. Both evaluations showed 
that DNN reconstruction on NAQ = 2 showed improved or 
comparable image quality to conventional scans despite a 42% 
reduction of scan time.

In the results of the quantitative evaluation, DNN images showed 
better quantitative error metrics, lower NRMSE, higher SSIM, and 
high PSNR, than TSE images with statistically significant differ-
ences in both NAQ = 1 and NAQ = 2 scans; such error metrics 

Table 4. Image quality comparison in the prospective test set with number of acquisitions = 1 (Median [Q1–Q3])

Accelerated Scan p-value

Qualitative metrics Reader DNN-N1pros TSE-N1pros TSE-Conv
DNN-N1pros vs 
TSE-N1pros

DNN-N1pros vs 
TSE-Conv

Overall image quality

1 5 [4–5] 3 [3–3] 4 [4–4] <0.001 <0.001

2 4 [4–5] 3 [2–3] 5 [5–5] <0.001 <0.001a

Perceived SNR

1 5 [5–5] 3 [3–3] 4 [4–4] <0.001 <0.001

2 5 [5–5] 3 [3–3] 5 [4–5] <0.001 <0.004

Artifacts

1 3 [2–4] 3 [2–4] 3 [3–4] 0.002b 0.825

2 4 [4–4] 4 [3–4] 4 [4–5] 0.102 <0.001a

Sharpness

 � Prostate 1 5 [4–5] 4 [3–4] 4 [4–5] <0.001 0.052

2 5 [4–5] 3 [3–4] 5 [5–5] <0.001 0.013

 � Seminal vesicle 1 5 [4–5] 4 [3–4] 5 [3–5] <0.001 0.272

2 5 [4–5] 3 [3–3] 5 [4–5] <0.001 0.366

 � Rectal wall 1 5 [4–5] 4 [3–4] 4 [4–5] <0.001 0.134

2 5 [4–5] 4 [3–4] 5 [5–5] <0.001 0.132

 � Urinary bladder 1 4 [4–5] 4 [4–4] 4 [4–4] <0.001 0.007

2 4 [4–5] 3 [3–4] 4 [4–5] <0.001 0.285

 � Obturator muscle 1 5 [5–5] 5 [4–5] 5 [5–5] <0.001 >0.999

2 5 [5–5] 4 [4–4] 5 [5–5] <0.001 0.025

N represents the number of acquisitions; DNN, a deep neural network; SNR, Signal-to-noise ratio; TSE, turbo spin echo images; 
TSE-Conv, turbo spin echo images from conventional scans;pros, the prospective test set was acquired with accelerated scans.
Bold numbers indicate statistically significant p-value with Bonferroni correction (p < 0.05/2).
aindicates that DNN shows significantly lower values than TSE.
bDNN-N1pros shows significantly higher artifact scores than TSE-N1pros (Averaged score: DNN-N1pros = 3.3 and TSE-N1pros = 2.8).

http://birpublications.org/bjr
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have been used to calculate image differences in various aspects. 
For example, NRMSE represents the averaged voxelwise errors. 
SSIM reflects the ability of the human visual system to reveal 
perceptual differences such as distortion and blurring.34,35 PSNR 
is highly sensitive for assessing the noise in images.36 In previous 
DNN-based MR acceleration studies, DNN showed improved 
performance compared to conventional parallel imaging 
reconstruction with 27–65% lower NRMSE,23,26  2–22% higher 
SSIM,23,26,37,38 and 2.8–6.1 dB higher PSNR,37,38 which is similar 
to our results (29–43% lower NRMSE, 4–13% higher SSIM, and 
2.8–4.8 dB higher PSNR). Thus, the results of quantitative eval-
uation revealed that the reconstruction of highly accelerated 2D 
TSE prostate data can be improved by the DNN-based model.

In the qualitative evaluation using the prospective data, both 
radiologists rated DNN images above TSE images in all param-
eters except for the artifact observed by reader 2 in DNN-N1pros 

and by reader 1 in DNN-N2pros. The results proved that DNN 
reconstruction could significantly improve image quality. When 
comparing DNN images and TSE-Conv, both DNN-N1pros and 
DNN-N2pros demonstrated better or comparable performance 
in most parameters. Higher scores were noted in overall image 
quality and perceived SNR in both DNN-N1pros and DNN-
N2pros than TSE-Conv by reader 1. Reader 2 evaluated the 
overall image quality of DNN-N2 as comparable to TSE-Conv 
and that of DNN-N1pros as lower than TSE-Conv, even though 
the median image quality score of DNN-N1pros was 4, which 
is a good score. Such different results for the two readers may 
be explained by the fact that each reader has a different prefer-
ence for MRI images. The results showed that there was no item 
in DNN-N2pros with worse results than TSE-Conv, suggesting 
that DNN reconstruction on NAQ = 2 scans is more clinically 
feasible than NAQ = 1.

Figure 4. Reconstructed images of two representative subjects (DNN-N1pros, TSE-N1pros, DNN-N2pros, TSE-N2pros, and TSE-Conv) 
in the prospective test data set are displayed. Scan times were reduced by 71 and 42% in NAQ = 1 and 2, respectively. DNN images 
showed improved quality in TSE images on the accelerated scans, which is more comparable to TSE-Conv. DNN, deep neural 
network; TSE, turbo spin echo.
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The slightly worse performance of DNN-N1pros may be attributed 
to two reasons. First, compared to the reference scan, the acceler-
ated scan with NAQ = 1 was acquired with 71% reduction in scan 
time, leading to a substantially low SNR in the input images. Low 
SNR images indicate that the amounts of prior information to 
be used by DNNs have decreased,39,40 resulting in performance 

degradation of DNN reconstruction. Second, the motion between 
the scan interval may affect the quality of DNN-N1pros. Note that 
DNN-N1 was trained by using NAQ = 1 data as inputs and NAQ 
= 2 data as labels. Since involuntary anatomic motion from peri-
stalsis and rectal distention occurs during prostate MR scans,41,42 
misregistration between NAQ = 1 and 2 data can be generated. 

Table 6. Intermethod agreement of the presence of clinically significant cancer scoring by T2 weighted imaging PI-RADS v. 2.1

Reader Method

PI-RADS score

Weighted κ value with TSE-Conv1 2 3 4 5
1
 �
 �

First set DNN-N1 32 0 0 5 3 0.947

TSE-N1 32 0 0 5 3 0.947

TSE-Conv 31 0 0 6 3 -

2
 �
 �

DNN-N1 33 2 2 2 1 0.901

TSE-N1 33 2 2 2 1 0.901

TSE-Conv 33 1 2 2 2 -

1
 �
 �

Second set DNN-N2 29 0 0 8 3 1.000

TSE-N2 29 0 0 8 3 1.000

TSE-Conv 29 0 0 8 3 -

2
 �
 �

DNN-N2 32 2 1 3 2 1.000

TSE-N2 32 2 2 2 2 0.971

TSE-Conv 32 2 1 3 2 -

N represents the number of acquisitions; DNN, a deep neural network; PI-RADS, prostate imaging-reporting and data system;TSE-Conv, turbo spin 
echo images from conventional scans.

Figure 5. Reconstructed images of one representative patient in the prospective test data set are displayed. Note that TSE-Conv 
images were used as a reference. Although scan times were reduced in DNN-N1pros and DNN-N2pros, both images showed good 
agreement with TSE-Conv in lesion delineation (yellow arrows) with better image quality than TSE-N1pros and TSE-N2pros. DNN, 
deep neural network; TSE, turbo spin echo.
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Thus, training by the misregistration data may generate blur-
ring artifacts on the output images,43,44 leading to low scores in 
DNN-N1pros. On the other hand, the data preprocessing step of 
DNN-N2pros is less affected by SNR degradation and misregis-
tration. Therefore, all quantitative parameters showed improved 
or comparable quality to TSE-Conv according to both readers.

DNN-based image reconstruction, which is advantageous in 
terms of reducing the acquisition time, should not impair the 
diagnostic performance of MRI. In this study, the cancer detec-
tion analysis by T2WI PI-RADS score demonstrated that DNN-
N2pros and DNN-N1pros showed almost perfect interobserver 
and intermethod agreement with TSE-Conv. Intermethod and 
interobserver agreement are important in prebiopsy prostate 
MRI because performing subsequent biopsies depends on the 
MRI results. The reason why there is no difference in diagnostic 
performance despite the difference in image quality evaluation 
among DNN images and TSE-Conv may be that image quality in 
all images was secured above a certain level and did not impact 
diagnosis.

Compared to our study, a few studies have proposed DNN-based 
acceleration in prostate MRI, revealing similar results in terms 
of image quality evaluation and diagnostic performance.45–47 
However, none of the previous studies performed a statistical 
quantitative evaluation with various error metrics. In addition, 
the DNN architecture of the previous studies used the k-space 
data as inputs while our model used image data as inputs, which 
is easily obtainable as the digital imaging and communications in 
medicine format. Considering the difficulty of accessing k-space 
data in a clinical setting, our model may be more feasible for clin-
ical application.

There are a few limitations to our study. First, while the proposed 
framework demonstrated the improved performance of the 
U-net architecture, we did not compare our results to the state-
of-the-art DNN models.21,22,25–27 To optimize the reconstruction 
performance, a comparison with various DNN models needs 
to be conducted. Second, the generalization of DNN on scan 
parameters or sequences was not demonstrated in this study. It is 
worth demonstrating the proposed DNN framework on different 
sequences since the mp-MRI scan protocol including diffusion-
weighted imaging and dynamic contrast-enhanced imaging is 
recommended as a routine sequence. For example, DNN recon-
struction on highly accelerated prostate diffusion-weighted 

imaging has been demonstrated.44,47 One caveat is that the input 
image quality affects DNN-based reconstruction.48 Thus, the 
accelerated scan parameters need to be set up differently across 
the sequence protocols. Reducing the scan times of all mp-MRI 
sequences by DNN reconstruction may have the potential to 
reduce patient discomfort originating from the long scan times 
involved in prostate imaging. Third, the undersampling factor 
on the accelerated scan was limited to R = 4 because the refer-
ence data was acquired with R = 2. If the full-sampled k-space 
data set is collected, DNN reconstruction on various accelera-
tion factors can be tested. Fourth, the data preprocessing for 
training DNN requires the k-space data. Thus, the accessibility 
to the k-space data, which depends on vendor and institution, 
may limit the DNN development using the proposed frame-
work. Lastly, pathology results were unavailable in this study as 
we included patients who underwent prostate MRI for suspected 
prostate cancer regardless of whether the following biopsy was 
performed. However, all MRI examinations were performed 
without prior biopsy and diagnostic performance was evalu-
ated by two radiologists. We thought that the results showed the 
usefulness of DNN-based reconstruction in the clinical diag-
nostic process using prebiopsy MRI.

In conclusion, we developed DNN-based reconstruction on 
highly accelerated 2D TSE prostate MR imaging without image 
quality degradation. Compared to the conventional scan, a 42% 
reduction in scan time was achieved. The proposed framework 
has great potential to reduce the overall scan times of prostate 
MR imaging protocols.
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