Skip to main content
. 2022 Feb 10;95(1133):20211378. doi: 10.1259/bjr.20211378

Table 3.

Comparison of quantitative error metrics in the retrospective test set between DNN and TSE

DNN-N1retro TSE-N1retro p-value DNN-N2retro TSE-N2retro p-value
(DNN-N1retro
vs TSE-N1retro)
(DNN-N2retro
vs TSE-N2retro)
NRMSE (%) 7.7 ± 1.0 13.4 ± 2.5 <0.001 5.7 ± 0.9 8.0 ± 1.9 <0.001
SSIM (0–1) 0.92 ± 0.03 0.81 ± 0.06 <0.001 0.95 ± 0.02 0.91 ± 0.04 <0.001
PSNR (dB) 34.9 ± 1.5 30.1 ± 1.9 <0.001 37.4 ± 1.7 34.6 ± 2.2 <0.001

N represents the number of acquisitions; DNN, a deep neural network; NRMSE, normalized root mean squared error; PSNR, peak signal-to-noise-ratio; SSIM, structure similarity index; TSE, turbo-spin echo images;retro, the retrospective undersampling was applied to the data.