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Abstract

Medical image analysis typically includes several tasks such as enhancement, segmentation, and 

classification. Traditionally, these tasks are implemented using separate deep learning models 

for separate tasks, which is not efficient because it involves unnecessary training repetitions, 

demands greater computational resources, and requires a relatively large amount of labeled data. 

In this paper, we propose a multi-task training approach for medical image analysis, where 

individual tasks are fine-tuned simultaneously through relevant knowledge transfer using a unified 

modality-specific feature representation (UMS-Rep). We explore different fine-tuning strategies 

to demonstrate the impact of the strategy on the performance of target medical image tasks. We 

experiment with different visual tasks (e.g., image denoising, segmentation, and classification) 

to highlight the advantages offered with our approach for two imaging modalities, chest X-ray 

and Doppler echocardiography. Our results demonstrate that the proposed approach reduces 

the overall demand for computational resources and improves target task generalization and 

performance. Specifically, the proposed approach improves accuracy (up to ∼ 9% ↑) and decreases 

computational time (up to ∼ 86% ↓) as compared to the baseline approach. Further, our results 

prove that the performance of target tasks in medical images is highly influenced by the utilized 

fine-tuning strategy.
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1. Introduction

Deep learning has significantly advanced the frontiers of visual task analysis, with 

applications in a large number of domains including automated driving, robotics, biometrics, 

and biomedical imaging, to name a few. With breakthrough advances in medical image 
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analysis, there has been a surge in research interest in health applications and biomedical 

research. Some common visual tasks across various medical imaging modalities include (i) 

region of interest (ROI) detection (e.g. Refs. [1,2], (ii) segmentation (e.g. Refs. [2–5], (iii) 

registration (e.g. Ref. [6], and (iv) classification (e.g., Refs. [2–4].

While these approaches have achieved promising performance, they tend to use individual 

pre-trained models (e.g., VGG16 and ResNet with ImageNet weights) for individual tasks. 

Training and deploying multiple individual models with high computational complexity 

for multiple tasks is feasible, but is constrained by limited computational resources and 

repetitive sequential training. These factors can significantly impact future advances and 

pose challenges in deploying applications with a large number of models in real-world 

clinical settings. Additionally, using as many models as there are tasks limits the potential 

offered by deep learning by constraining it from transferring knowledge from the source 

domain to a target domain or task.

These challenges can be alleviated through multi-task learning (MTL), a machine learning 

concept that transfers the knowledge from a shared source to multiple target tasks 

[7], thereby improving target tasks generalizability and aiding overall performance. The 

target tasks can be homogeneous with similar annotations or heterogeneous with diverse 

annotations. For example, two target tasks, such as semantic and instance segmentation, 

that use similar annotations can be jointly learned via a shared encoder and task-specific 

decoders. Joint learning strategy involves learning a joint loss function that takes into 

consideration the inter-task relationship. Other fine-tuning strategies include independent 

and alternating strategies [7–9]. We further discuss these strategies in Section 2.3.

MTL techniques have been widely used for natural images but few researches [[10,11]] 

have been carried out to apply these techniques on medical images. Inspired by the success 

of MTL with natural images, we propose an MTL-based training approach in medical 

image analysis, where individual target tasks are learned simultaneously through relevant 

knowledge transfer across a shared medical modality-specific feature representation. This 

approach enables reduced requirements for computational resources and enhances target 

tasks generalization.

The main contributions of this paper are as follows:

• We propose an approach that uses a shared source, called unified modality-

specific representation (UMS-Rep), to simultaneously fine-tune target medical 

image tasks with diverse and similar annotations.

• We show that the shared source (UMS-Rep) can be constructed on a specific 

medical imaging modality using any learning techniques including unsupervised 

(ex nihilo without annotations) or supervised (with limited annotations). Also, 

we show that UMS-Rep can simultaneously learn pre-processing tasks such as 

image denoising and enhancement.

• We explore three fine-tuning strategies, namely independent, alternating, and 

joint, to investigate their impact on the performance of target tasks in medical 

images.
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• We define derivable tasks, which can be any task derived from the learned target 

tasks. An example of a derivable task includes visual interpretation of machine 

learning decisions, derived from a classification target task.

Our empirical evaluations show that the proposed sequence of training each part of the 

network, first the shared UMS-Rep with pre-processing tasks, second the task-specific 

heads (target tasks) with the suitable fine-tuning strategy, and finally derivable tasks, 

is more efficient for medical image analysis. Particularly, our evaluations on medical 

image benchmarks demonstrate the superiority and efficiency of our approach, in terms of 

performance, resources, and computation, as compared to the baseline approach of training 

as many models as there are tasks.

The rest of this paper is organized as follows. Section 2 discusses different types of target 

tasks and fine-tuning strategies. Section 3 presents the medical image datasets used in this 

paper and describes our training approach for medical image analysis. Then, we present the 

experimental results and a comparison with the baseline approach in Section 4. Finally, we 

discuss the results and conclude the paper in Section 5.

2. Background

MTL methods have attracted attention as they show remarkable success in improving 

the generalizability of target tasks [7]. These target tasks can be divided based on data 

annotations into homogeneous tasks (similar annotation) and heterogeneous tasks (diverse 

annotation). Next, we present homogeneous and heterogeneous target tasks and discuss 

different strategies for fine-tuning.

2.1. Homogeneous target tasks

MTL-based methods have been widely used to jointly learn target tasks with similar 

annotations. For example [12], proposed a MTL-based method to jointly learn the following 

target tasks from a face image: pose, gender, wear glasses, and smiling. These target tasks 

have global image labels (presence/absence of a smile, a glass, etc.) as the ground truth 

(GT) annotations. The inter-task relationship or correlation was learned using a joint loss 

function as presented in Ref. [12]. Another method is proposed by Ref. [13] to jointly learn 

the category and pose of objects. Similar to Ref. [12]; both target tasks have image-level 

label annotations (i.e., category label and pose label) and the relationship between these 

tasks is learned using a joint loss function. Other methods for learning target tasks with 

homogeneous annotations are presented in Refs. [10,14–16].

2.2. Heterogeneous target tasks

[17] proposed a method for modeling three heterogeneous tasks in natural images, namely 

street classification, vehicle detection, and road segmentation, with diverse annotations 

(global, box coordinates, and pixel-level labels). Each task is trained individually, and the 

final loss is given as the sum of the losses for segmentation, detection, and classification. 

YOLO network [18] is another example of a method that learns tasks with diverse 

annotations. Specifically, YOLO uses a head for the bounding box (coordinates) and another 
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head for classification (image label). YOLO uses a loss function with a localization loss term 

for the bounding box task and classification loss for the classification task.

Unlike natural images, medical images are not only limited in the number of annotations, but 

they also exhibit different visual characteristics (e.g., color homogeneity, texture subtlety, 

shape variation, and highly similar appearance). An approach has been attempted by Ref. [9] 

for learning heterogeneous medical image tasks. They built a set of models, called Genesis, 

and used them as the starting point to learn classification and segmentation tasks. Both tasks 

are fine-tuned independently using two individual loss functions.

2.3. Fine-tuning strategies

We group the fine-tuning strategies for the target tasks into: joint fine-tuning, alternating 

fine-tuning, and independent fine-tuning.

Joint fine-tuning strategy involves optimizing the entire network to minimize a single 

loss function that accumulates the losses of all target tasks. This strategy allows learning 

relationships between target tasks. Mathematically, the joint loss function can be expressed 

as follows: Ljoint = ∑i = 1
N wiLTi where LTi, wi, and N represent the loss of a specific task, 

its weight, and the total number of tasks, respectively. The weights (wi) of losses can 

be either weighted or unweighted. In case of unweighted summation, the loss functions 

for all tasks receive equal weights. Otherwise, the optimal weights for tasks’ losses can 

be hand-tuned or learned through extensive empirical experiments. Other approaches for 

weighting losses include homoscedastic uncertainty which was introduced by Ref. [14] and 

cross-task consistency as proposed by Ref. [19].

Instead of optimizing a single joint function, the alternating strategy requires each target task 

to have a separate loss function; i.e., N loss functions for N tasks [8]. The loss function 

for each task has two terms, the first term (Θsrc) represents the parameters for the shared 

source and the second term represents the task-specific parameters (ΘTN) for N tasks. The 

optimization process is performed by alternately optimizing the loss of a specific target task 

using a task-specific batch followed by optimizing the loss of another task using its specific 

batch, and so on [8]. Fig. 1 shows the optimization procedure for alternating fine-tuning 

strategy, which involves fine-tuning a specific task for a fixed number of batches before 

switching to the batches of the next task [8]. In each switch, we update the task-specific 

loss with its terms (Θsrc and ΘTi). The ratio of task-specific batches can be fixed for all tasks, 

determined based on other factors such as performance, importance, and dataset size, or 

calculated using specific methods such as the method proposed in Ref. [20]. By alternating 

the learning among tasks and updating the weights (Θsrc and ΘTi = 1:N), this strategy allows to 

learn the similar latent representations across the target tasks.

Finally, the independent strategy involves fine-tuning target tasks independently while 

freezing Θsrc. This strategy allows all target tasks to share a common representation 

followed by task-specific layers. Each task-specific head is fine-tuned using its own loss 

and optimizer. In other words, we freeze the shared representation parameters (Θsrc) and use 

task-specific optimizers to minimize task-specific losses on task-specific data.
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In summary, joint fine-tuning strategy optimizes the entire network (shared source and 

task-specific heads) by minimizing a single joint function that accumulates the losses of all 

target tasks. The alternating strategy optimizes a specific-task by minimizing its loss for a 

fixed number of batches before switching to the next task. In each switch, both the source 

and task-specific parameters are updated. In the independent fine-tuning strategy, we freeze 

the parameters of the shared representation and independently optimize task-specific heads 

by minimizing their losses. It has been reported [21] that independent strategy leads to better 

performance when used for fine-tuning competing (or different) tasks while joint strategy 

leads to better performance with cooperating (or similar) tasks. This is attributed to the fact 

that competing tasks may lead to the transfer of irrelevant information when learned jointly 

(i.e., negative transfer between unrelated tasks). Further, the gradients may interfere, which 

makes the optimization landscape of multiple summed losses more difficult.

3. Materials and methods

3.1. Medical image datasets

Two medical imaging modalities are used to evaluate the proposed approach described 

in Section 3.2. These modalities are chest X-ray (CXR) and Doppler echocardiography 

(Doppler echo). Table 1 provides a summary of the CXR and Doppler echo datasets used in 

this work.

3.1.1. CXR collections—We used four publicly available CXR collections in our 

evaluation of the proposed approach. These collections are the Radiological Society of North 

America (RSNA) [22]; the Shenzhen TB [23]; the Montgomery TB [23]; and the Pediatric 

pneumonia dataset [24].

The RSNA dataset includes 26,684 normal and abnormal frontal CXRs that are provided as 

DICOM images with 1024 × 1024 spatial resolution. In addition to the labels, GT disease 

bounding boxes are made available for CXRs containing pneumonia-related opacities. The 

Shenzhen dataset contains 662 CXR images (336 abnormal and 326 normal image-level 

labels) and GT binary masks for the lungs (pixel-level labels). The size of the images in 

this collection varies, but it is approximately 3000 × 3000 pixels. The Montgomery dataset 

has 138 posterior-anterior CXRs of which 80 CXRs are normal and 58 are abnormal with 

TB manifestations. The images have 4020 × 4892 pixel resolution. The abnormal class for 

Montgomery dataset includes a wide range of abnormalities, including tuberculosis-related 

manifestations, effusions, and miliary patterns. Finally, the Pediatric pneumonia dataset was 

collected from 624 patients and labeled as described in Ref. [24]. The train set contains a 

total of 5232 chest X-ray images, including 3883 labeled as pneumonia (2538 bacterial and 

1345 viral) and 1349 labeled as normal. The test set contains 234 normal images and 390 

pneumonia images (242 bacterial and 148 viral). Fig. 2 shows labeled image examples from 

the aforementioned CXR datasets.

The images of all datasets were resized to 256 × 256 using bicubic interpolation (OpenCV 

built-in function). We also performed mean normalization to ensure that the images have a 

similar distribution. As it is well known, data normalization can speed up convergence while 

training the network.
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3.1.2. Doppler echo—We used a private dataset of 2444 images showing continuous 

wave and pulsed wave Doppler flows collected from 100 patients who were referred for 

echocardiographic examination in the Clinical Center at the National Institutes of Health 

(NIH). The use of these de-identified images was approved by the NIH Ethics Review Board 

(IRB#18-NHLBI-00686). The Doppler traces of the mitral valve flow (MV), mitral annular 

flow (MA), and tricuspid regurgitation flow (TR) were acquired using different commercial 

echocardiography systems including Philips iE33, GE Vivid95, and GE Vivid9. Each 

Doppler image has a flow type label (TR, MV, or MA) and a segmentation mask provided by 

an expert technician, which separates the spectral envelope from the background. Besides, 

the expert technician assessed the quality of a subset of images (814 out of 2444) as 

low- or good-quality. All GT annotations (global labels and binary masks) provided by the 

expert technician were further verified by an expert cardiologist. Fig. 3 shows labeled image 

examples from the Doppler echo dataset.

All the images were resized to 256 × 256 using bicubic interpolation (OpenCV built-in 

function). We then performed mean normalization.

3.2. Proposed approach

The traditional approach for medical image analysis (e.g. Refs. [1,5], is shown in Fig. 4. 

This approach involves training N individual (encoder-decoder) models for N individual 

target tasks in isolation. Our proposed approach of simultaneously training UMS-Rep with 

pre-processing tasks and sharing the trained UMS-Rep among target tasks is presented in 

Fig. 5.

3.2.1. Notations and definitions—As shown in Fig. 5, UMS-Rep learns the visual 

features (XS) of a source input space or specific imaging modality (S). The learned feature 

representation is then shared to simultaneously learn N target tasks T1:N = T1, T2, .., TN . The 

source modality is defined as S = XS, PS(XS) , where XS represents the feature space and 

PS(XS) represents the probability distribution of the input modality.

UMS-Rep improves the learning and generalization of the predictive functions of up to N
target tasks (F1:N( . ) = f1( . ), f2( . ), .., fN( . ) ) by transferring the shared knowledge from S to 

N to generate task-specific predictions Y 1:N = Y 1, .., Y N . Since medical image analysis tasks 

that use a common input or modality share common low-level features, a shared modality-

specific representation (source) can be trained once and used to simultaneously fine-tune 

target tasks with diverse or similar GT labels. For example, the features extracted from a 

specific imaging modality (S) by an autoencoder using unsupervised learning (Y GTs = ) 

can be simultaneously shared by two target tasks T1 and T2 with different label spaces, 

where PS(XS) P1(X1) and PS(XS) P2(X2). A new task-specific head (or decoder) can be added 

on-the-fly if this constraint is satisfied.

In Fig. 5, we also define D derivable tasks V 1:D = V 1, V 2, ..., V D . These tasks are the ones 

that use the information learned by a single or a combination of task-specific heads. An 

example of a derivable task is the interpretation or visual explanation generated from 

classification task prediction. Such a task is crucial for augmenting medical decision making 
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[25]. Another derivable task is automated decision recommendation, which can be generated 

by combining the outputs of different task-specific heads. A new derivable task can also be 

added on-the-fly with minimal effort as long as it uses information of previously learned 

task-specific heads to produce the output.

Our proposed sequence of learning each part, first the shared UMS-Rep with pre-processing 

tasks, second the task-specific heads, and finally the derivable tasks, allows more efficient 

analysis of medical images.

3.2.2. UMS-rep construction—Given that the proposed approach holds the promise 

for simultaneously reducing computation/resources and enhancing the generalization of N
target tasks, a question that arises is: what learning technique should be used to construct 

the shared UMS-Rep? The answer depends on the input space and the tasks at hand. 

For example, given a dataset with different label spaces for different tasks, UMS-Rep 

can be constructed using the task with the largest number of labeled data (supervised 

learning). Instead of using the labels of a specific task to construct the shared UMS-Rep, 

an autoencoder can be optimized for a given source modality (S) and used as a shared 

representation for simultaneously learning multiple target tasks (unsupervised learning).

In this paper, we experimented with both unsupervised and supervised learning techniques 

to construct the shared UMS-Rep. Note that other techniques (e.g., semi-supervised, residual 

learning) can be easily adopted to construct UMS-Rep. In both cases, we used shallow 

customized architectures for UMS-Rep; however, the state-of-the-arts architectures (e.g., 

VGG and UNet) can be used instead. While constructing UMS-Rep, a pre-processing task 

(i.e., noise reduction) is also learned. Using the proposed approach for simultaneously 

learning pre-processing tasks and solving visual tasks can prevent unnecessary repetitions, 

reduce computations, and enhance generalizability.

3.2.3. Target tasks layers & fine-tuning strategies—Prior to fine-tuning the target 

tasks, we appended task-specific layers (or decoders) to the constructed UMS-Rep. To create 

the task-specific layers for the segmentation task, we append a symmetrical decoder to the 

shared UMS-Rep. In case of classification, we append a global average pooling (GAP), fully 

connected (FC), dropout (D), and Softmax (SM) layers to the shared UMS-Rep. Then, we 

fine-tune the task-specific layers using three strategies, namely alternating, independent, and 

joint, to investigate the impact of the fine-tuning strategy on the performance of the target 

tasks.

As discussed in Section 2.3, joint fine-tuning involves learning a single loss that combines 

the sum of unweighted or weighted losses for all target tasks. There are different approaches 

(e.g. Refs. [10,12–14], for weighting losses. In this paper, we learned, through empirical 

experiments, the optimal weights for tasks’ losses. Learning a single loss function that 

weighs losses of the target tasks allows learning the commonality and differences between 

target tasks. On the other hand, alternating strategy (see Fig. 1) learns target tasks by 

alternating the learning among tasks and updating the weights. This strategy allows to 

simultaneously 1) transfer common features from the shared source to task-specific layers 

and 2) learn similar latent representations across the target tasks. We determine the ratio 
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of task-specific batches as described in Ref. [20]. After determining the ratio, we train a 

specific task i for ni batches and switch to the next task j, which is trained for nj batches. 

Finally, we use the independent fine-tuning strategy, where we freeze the weights of the 

shared UMS-Rep and fine-tune each target task independently using its own loss and 

optimizer.

The target tasks can be optimized using different loss functions. In this paper, we optimize 

the target classification tasks to minimize the categorical cross-entropy (CCE) loss. For the 

segmentation tasks, we minimize a combination of binary cross-entropy (BCE) and Dice 

losses as follows:

Ln = w1LBCEn + w2LDSCn

(1)

where LossBCEn is the binary cross-entropy, LossDSCn is the Dice loss, n denotes the batch 

number, and w1 = w2 = 0.5. The losses are computed for each mini-batch, and the final loss 

for the entire batch is determined by the mean of loss across all the mini-batches. LossBCEn

and LossDSCn are expressed as follows:

LBCEn = [tnlog(yn) + (1 − tn)log(1 − yn)]

(2)

and,

LDSCn = 1 − 2∑tn ⋅ yn
∑tn + ∑yn

(3)

where t is the target and y is the output from the final layer. We empirically found that the 

combination of LBCEn and LDSCn losses (equation (1)) improved the optimization due to the 

interplay between the global and local feature extraction capabilities of these loss functions.

4. Experiments and results

We evaluated our approach on two medical imaging modalities: CXR and echo Doppler. To 

construct UMS-Rep, we experimented with two learning paradigms: unsupervised (CXR) 

and supervised (echo Doppler). Then, the constructed UMS-Reps, for each modality, are 

appended with task-specific layers corresponding to different target tasks. These layers are 

fine-tuned using independent, alternating, or joint strategies. In our work, the input domains 

of all target tasks have similar distributions to the input domain of UMS-Reps.

To demonstrate the power of the proposed approach, we compare the performance with the 

traditional baseline approach presented in Fig. 4, in terms of accuracy and computations. 

The baseline approach for medical image analysis requires a separate model (encoder-

decoder) to learn each pre-processing task in addition to N encoders and N decoders to learn 
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N target tasks. On the other hand, the proposed approach requires only a single encoder and 

N lightweight task-specific decoders for N target tasks, resulting in significant savings in 

time and the number of training parameters.

Our experiments provide empirical answers to the following questions:

• What advantages does the proposed sequence of training offer in comparison to 

the baseline approach in terms of performance and computational efficiency?

• What fine-tuning strategy should be used for the target medical image tasks?

To report the performance of target tasks, we used F-score, Matthews Correlation 

Coefficient (MCC), and the accuracy. We also used the intersection over union (IoU) metric 

to report the performance of the segmentation task. To demonstrate the computational 

efficiency, we reported the computational times and the training parameters for all models.

We trained all models using a Windows system with the following configuration: (1) Intel 

Xeon CPU E3–1275 v6 3.80 GHz and (2) NVIDIA GeForce GTX 1050 Ti. Keras DL 

framework with Tensorflow was used for model training and evaluation. For hyperparameter 

optimization, Talosa library with Keras was used. The code of this work is made publicly 

available at UMS-Rep Github Page.

4.1. CXR imaging modality

Although the high-level (i.e., task-specific) features of CXR target tasks are relatively 

different, CXR images have similar low-level features (e.g., edges and blobs). Hence, UMS–

Rep can be constructed to learn CXR low-level features and then shared among different 

CXR tasks.

4.1.1. UMS-rep construction and pre-processing—UMS-Rep can be trained to 

learn CXR low-level features and pre-processing tasks using different learning paradigms. 

In this paper, we used unsupervised learning to train the UMS-Rep backbone for image 

denoising. Noise reduction is an essential pre-processing task that improves the quality of 

medical images while maintaining spatial resolution. The negative impact of image noise in 

subsequent tasks such as classification and segmentation has been reported in several works 

(e.g., Refs. [26–28]. Further, the impact of different types of noise, such as Gaussian noise 

and speckle noise, on medical image segmentation has been reported in Ref. [28]. Therefore, 

we propose to train a UMS-Rep that learns this important pre-processing task to enhance the 

performance of the subsequent target tasks.

A convolutional denoising autoencoder (CDAE or UMS‐RepCXR − Denoising) was trained on 

the RSNA CXR dataset (see Table 1). The dataset was split at the patient-level into 

70%, 20%, 10% for training, validation, and testing, respectively. As depicted in Fig. 

6, UMS‐RepCXR − Denoising has four convolutional layers (3× 3) in the encoder to compress 

the input to its latent space representation. We used strided convolutions instead of max-

pooling layers to increase the expressive capacity of the network, which would improve 

ahttps://github.com/autonomio/talos.
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the overall performance without increasing the number of parameters as discussed in 

Ref. [29]. We used batch normalization layers to improve generalization and ReLU 

to speed up model training, resulting in faster convergence. The symmetrical decoder 

has upsampling layers to reconstruct the input from the latent space representation. We 

optimized CDAE (UMS‐RepCXR − Denoising) to minimize the mean squared error (MSE) and 

reconstruct the input with minimal reconstruction error. The kernel size, stride, and 

optimizer for CDAE(UMS‐RepCXR − Denoising) are 3, 2, and RMSprop, respectively. We trained 

the model with 16 batch size, an initial learning rate of 1 × 10−3 that is reduced when the 

loss plateau, and early stopping.CDAE parameters were selected using Talos.

To generate noisy images for training, we added Gaussian noise with different ranges 

of standard deviations and Poisson noise to the images and used CDAE to reconstruct 

clean images. The reason behind adding the noise to the images is to demonstrate that 

UMS‐RepCXR − Denoising can learn to denoise Gaussian noise or any types of noise before sharing 

it among target tasks. Further, adding noise to the training process of UMS‐RepCXR − Denoising

reduces overfitting and introduces regularization. Hence, we degraded the original images 

by Gaussian noise with different standard deviations (σ = [10; 20; 30; 40; 50]) as well as 

Poisson noise (μ = σ2) and reported the performance in Table 2.

As shown in Table 2, we quantitatively measured the performance of reconstruction using 

the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), and the multi-

Scale structural similarity index (MS-SSIM). The typical range of PSNR is between 30 and 

50 dB while the range of SSIM and MS-SSIM extends between −1 and +1, where higher 

is better [30]. The PSNR, SSIM, and MS-SSIM values in Table 2 are computed for the test 

images. These results indicate that the trained UMS‐RepCXR − Denoising faithfully reconstructed the 

images and learned to extract useful CXR features while ignoring noise information.

Once UMS‐RepCXR − Denoising is constructed, it is used as a shared representation among target 

CXR tasks with diverse or similar annotations as depicted in Fig. 6.

4.1.2. Target tasks fine-tuning—We used UMS‐RepCXR − Denoising as a shared encoder 

to simultaneously fine-tune target tasks with diverse and similar annotations. Examples 

of CXR target tasks with diverse annotations include lung segmentation (pixel-level) and 

abnormality classification (image-level). We used three tasks with image-level annotations 

as the homogeneous target tasks with similar annotations. These tasks are: (1) bacterial 

pneumonia vs normal classification, (2) viral pneumonia vs normal classification, and (3) 

bacterial vs viral pneumonia classification.

Before fine-tuning the target tasks, task-specific layers (heads) are appended to 

UMS‐RepCXR − Denoising as presented in Fig. 6. Note that in the case of the lung segmentation, 

we used the entire UMS‐RepCXR − Denoising and replaced the final convolutional layer with the 

one that has a single neuron to generate the binary lung masks. As for the classification 

tasks, only the encoder part of the optimized CDAE(UMS‐RepCXR − Denoising) was instantiated 

and appended with the following layers: GAP, FC, D, and SM layers.
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After attaching task-specific heads to the shared UMS‐RepCXR − Denoising, we experimented with 

three fine-tuning strategies to investigate their impact on the performance of the target tasks. 

In all experiments, the task-specific layers for the classification target tasks were fine-tuned 

to minimize the CCE loss while the task-specific layers for the segmentation tasks were 

fine-tuned to minimize the loss in equation (1). In the case of joint fine-tuning strategy, 

we summed the loss functions of the target tasks. The weights for task-specific losses are 

learned through empirical experiments (all weights are included in the code). In the case 

of alternating fine-tuning strategy, the loss for each target task is updated alternately as 

described in Section 2.3. For the independent fine-tuning strategy, we freeze the weights of 

UMS‐RepCXR − Denoising and independently minimize the loss function of the target tasks.

Target CXR Tasks with Diverse Annotations:  These tasks were fine-tuned using the 

Shenzhen CXR dataset (see Table 1). We divided this dataset into different folds to 

perform 10-fold cross-validation. For testing, we used the Montgomery CXR dataset (see 

Table 1). The performance of fine-tuning lung segmentation and abnormality classification 

tasks based on the shared UMS‐RepCXR − Denoising is summarized in Table 3. As shown in 

the table, the independent fine-tuning strategy achieved slightly higher performance than 

the alternating strategy. However, the independent strategy increases the performance by 

a large margin as compared to the joint strategy. Statistically, the difference between 

the independent and alternating strategies is not significant using McNemar’s test (p < 

0.05). However, the difference between the independent and joint strategies is statistically 

significant (McNemar’s test, p < 0.05). These results confirm the impact of the fine-tuning 

strategy on the performance and suggest that the joint strategy leads to lower performance 

when used with heterogeneous target tasks. This might be attributed to the negative transfer 

between irrelevant or conflicting tasks. Specifically, the classification task might transfer 

irrelevant information to the segmentation task or vice versa. Based on these results, we can 

conclude the superiority of independent strategy when fine-tuning heterogeneous tasks in 

CXR images.

We also compared the performance of the proposed approach with the baseline approach. 

To provide a fair comparison, CXR images are first denoised using a separate image 

denoising model (model 1), then we used the generated denoised images as input to the 

lung segmentation model (model 2) and abnormality classification model (model 3). These 

three models have the same architecture as in the proposed approach, but trained separately 

with random initialization. As shown in the last row of Table 3, the proposed approach 

outperformed the baseline approach in both target tasks. Statistically, the difference between 

the independent fine-tuning strategy and baseline approach is statistically significant 

(McNemar’s test, p < 0.05). Note that the performance of the baseline segmentation model is 

higher than the joint fine-tuning strategy due to the negative transfer that might occur while 

minimizing the weighted sum of segmentation and classification tasks.

Table 4 shows the computational time and training parameters for the proposed and baseline 

approach. As shown in the table, the proposed approach significantly decreases the total 

training time and parameters as compared to the baseline approach, where separate models 

are used for separate tasks. Note that although the number of training parameters for 
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the segmentation task does not change, the training time significantly decreased from 

148.02 to 8.11 min. This demonstrates that the proposed approach, which uses the shared 

representation UMS‐RepCXR − Denoising) and its weight, leads to faster training convergence. 

Precisely, the weights of the shared UMS‐RepCXR − Denoising resulted in improved initialization 

and faster learning/convergence for the target tasks.

Target CXR Tasks with Similar Annotations:  These tasks were fine-tuned using the train 

set of the Pediatric pneumonia dataset (Table 1), which was further divided into multiple 

folds to perform 10-fold cross-validation analysis. We then used the hold-out test set for 

reporting the performance. Recall that this dataset contains three classes: normal, bacterial 

pneumonia, and viral pneumonia. Examples of these classes are given in Fig. 2.

Table 5 shows the performance of fine-tuning the classification tasks based on the shared 

UMS‐RepCXR − Denoising. As shown in the table, the joint fine-tuning strategy achieved higher 

performance than both the alternating and independent strategies in most cases. Statistically, 

the difference in performance between the joint and independent strategies is significant 

(McNemar’s test, p < 0.05), except for bacterial vs normal. These results suggest the 

superiority of the joint strategy for fine-tuning medical image tasks with diverse annotations. 

This can be explained by the ability of the joint loss function to capture the task differences 

and implicitly model the task relationships; i.e., the inter-task relationships among target 

task 1 (bacterial vs normal), target task 2 (viral vs normal), and target task 3 (bacterial 

vs viral) (all use image-label) are better captured using the joint strategy. Similarly, the 

alternating fine-tuning strategy achieved better performance than the independent strategy 

as it allows, by alternately optimizing Θsrc and ΘTi, to transfer some of the information from 

each task to the other. These results suggest the superiority of joint and alternating strategies 

for cooperative medical image tasks with similar annotations.

We also compared the performance of the proposed approach with the baseline, where 

separate end-to-end models with random initialization are used for separate target tasks. 

Specifically, we first used a separate image denoising model to provide a fair comparison 

with our approach. We then used the output denoised images as input to three separate 

models, one for each target task. These three models have the same architectures as in the 

proposed approach, but trained separately with random initialization. As shown in the last 

row of Table 5, the proposed approach outperformed the baseline approach in all target 

tasks. Statistically, the difference in performance between the joint fine-tuning strategy and 

baseline approach is significant for all tasks (p < 0.05). These results indicate that the 

proposed approach, by transferring the knowledge from a shared modality-specific source to 

target tasks, can improve the generalizability and lead to better performance as compared to 

the baseline approach. Further, the results suggest that the joint fine-tuning of similar tasks 

can enhance the overall performance while reducing the learning time as shown in Table 6.

Table 6 shows the computational time and training parameters for the proposed and baseline 

approach. As shown in the table, the proposed approach significantly decreases the total 

training time and parameters as compared to the baseline approach, where separate models 

(encoder-decoder) are used for separate tasks. Specifically, the proposed approach reduces 

the number of training parameters by ∼ 81% as compared to the baseline approach. 
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Similarly, the proposed approach leads to a reduction by 86% in the computational time, 

and faster convergence. Finally, it is important to note that no matter the number of target 

tasks, our approach would lead to lower computational times and parameters as compared to 

the baseline approach. This is attributed to the fact that it 1) uses a single shared encoder and 

N lightweight task-specific decoders instead of N encoder-decoder for N tasks and 2) the 

weights of the shared UMS-Rep improved initialization and leads to faster convergence for 

all target tasks.

4.1.3. Derivable task—After fine-tuning the target classification task, we can visualize 

the output of the target task by simply computing the gradient of the winning class with 

respect to the last convolutional layer of the target task as described in Ref. [31]. Then, we 

compute the average, weigh it against the output of this layer, and normalize it between 0 

and 1 to generate the heatmap. This map visualizes discriminative areas the head looks at 

when classifying into normal and abnormal. As this visualization task relies on the output 

of the classification head, we can define it as a task derivable from the target task. Fig. 7 

presents the visualization of the abnormality classification task.

4.2. Doppler echo imaging modality

Although the high-level (i.e., task-specific) features of Doppler echo target tasks might 

differ, they have relatively similar low-level features. Hence, a single UMS-Rep can be 

trained to learn these low-level features and then shared among different target tasks that 

learn task-specific features.

4.2.1. UMS-rep construction—In this evaluation, we used supervised learning to 

construct the UMS-Rep on Doppler echo dataset using the annotations of the flow 

classification task (see Table 1). We used 70% of the dataset to construct the UMS-Rep. 

As shown in Fig. 8, this UMS-Rep has six convolutional layers (3× 3) with the same 

padding. Dilated kernels (size 2) were used in the fourth, fifth, and sixth convolutional 

layers to capture wider context at a reduced computational cost. We used ReLU after each 

convolutional layer to speed-up model training and convergence. The output of the deepest 

convolutional layer from the optimized CNN was fed to the GAP and FC layers. To reduce 

overfitting, the output of the FC layer was fed to a dropout layer (0.5). The last FC layer has 

three neurons corresponding to three flow classes: TR, MV, and MA. We used Talos to select 

the optimal parameters from the following ranges: kernel size [3, 5, 7], dilation rate [2, 3], 

dropout ratio [0.1, 0.3, 0.5], optimizer [SGD, Adam, RMSprop], and batch size [16, 32, 64]. 

Talos outputs 3, 2, 0.5, Adam, and 16 for kernel size, dilation rate, dropout ratio, optimizer, 

and batch size, respectively. We used 64 epochs and optimized the model to minimize the 

CCE loss.

Once the optimized UMS‐Repecℎo is constructed, it is used as a shared encoder among target 

echo tasks with diverse and similar annotations as depicted in Fig. 8.

4.2.2. Target tasks fine-tuning—We used UMS‐Repecℎo as a shared backbone to 

simultaneously fine-tune target tasks with diverse and similar annotations. Examples of 

echo Doppler tasks with diverse annotations include envelope segmentation (pixel-level), 

Zamzmi et al. Page 13

Inform Med Unlocked. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



flow classification (image-level), and image quality assessment (image-level). We used 

three classification tasks with image-level annotations as the homogeneous target tasks with 

similar annotations. These classification tasks are: (1) TR vs MV, (2) TR vs MA, and (3) 

MV vs MA.

We fine-tuned the target tasks using the remaining 30% of echo Doppler dataset, where 

20% was used for training and validation (10-folds cross-validation) and 10% was used 

for testing. Before fine-tuning the target tasks, task-specific layers (heads) are appended 

to UMS‐Repecℎo as presented in Fig. 8. For the envelope segmentation task, the UMS‐Repecℎo

was truncated at the deepest convolutional layer, and a symmetrical decoder was appended 

as shown in Fig. 8. This head was fine-tuned using Adam optimizer to optimize the loss 

in equation (1). To create the task specific-layers (heads) for the classification tasks, we 

appended GAP, FC, D, and SM layers to UMS‐Repecℎo as shown in Fig. 8. The heads for 

the classification tasks were fine-tuned using SGD optimizer to minimize the CCE loss. 

After attaching task-specific heads to the shared UMS‐Repecℎo, we experimented with three 

fine-tuning strategies to investigate their impact on the performance of the target tasks.

Target Echo Tasks with Diverse Annotations:  Table 7 shows the performance of fine-

tuning envelope segmentation, flow classification, and quality assessment tasks. Observe 

that the independent strategy increases the performance by a large margin as compared to 

the joint strategy. Statistically, the difference between the independent and joint strategies is 

significant (McNemar’s test, p < 0.05). These results suggest the superiority of independent 

strategy when fine-tuning echo tasks with diverse annotations. We also compared the 

performance of the proposed approach with the baseline approach. In the baseline approach, 

the segmentation model as well as the quality assessment and flow classification models 

have the same architecture as in the proposed approach, but trained separately with random 

initialization. As shown in the last row of Table 7, the proposed approach outperformed the 

baseline approach. The difference between the independent fine-tuning strategy and baseline 

approach is statistically significant (McNemar’s test, p < 0.05). Again, the joint fine-tuning 

strategy does not improve the performance of the segmentation task. We believe this could 

be interpreted as being a result of the negative transfer among irrelevant tasks while learning 

a single joint function.

Table 8 shows the computational time and training parameters for the proposed and baseline 

approach. As shown in the table, the proposed approach significantly decreases the total 

computational time (↓ ∼ 80%) and training parameters (↓ ∼ 53%) as compared to the 

baseline approach, where separate models are used for separate tasks. Interestingly, although 

the number of training parameters for the segmentation task does not change, the training 

time decreased from 130.02 to 5.80 min (∼ 96%) as a result of using UMS‐Repecℎo backbone. 

Precisely, the weights of the shared UMS‐Repecℎo resulted in improved initialization and 

faster convergence. These results demonstrate the benefits of using UMS‐Repecℎo as a shared 

backbone.

Target Echo Tasks with Similar Annotations:  Table 9 shows the performance of fine-

tuning the classification tasks based on the shared UMS‐Repecℎo. We can conclude from 
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the table that the joint fine-tuning strategy achieved higher performance in most cases. 

Although the difference in the performance between the joint and alternating strategies is 

not significant in most cases, it is statistically significant between the joint and independent 

(McNemar’s test, p < 0.05). These results suggest that optimizing a single joint loss function 

for homogeneous target tasks leads to better overall performance. In other words, the results 

suggest the superiority of the joint strategy for fine-tuning medical image tasks with similar 

annotations as it has the ability to capture the similarities and differences among similar 

tasks. We also compared the performance of the proposed approach with the baseline 

approach. As shown in the last row of Table 9, the proposed approach outperformed the 

baseline approach. The statistical difference between the joint fine-tuning strategy and 

baseline approach is significant (p < 0.05). Also, the proposed approach decreases the total 

training parameters and computational time, as compared to the baseline approach (Table 

10). Although our approach decreases the computational time in Table 10 only slightly 

(∼ 8%), it is important to note that the reduction in the computational time will continue 

as we add more target tasks; e.g., adding another classification task would make the total 

computational time for our approach and baseline 34.94 (33.69 + 1.25) minutes and 46.02 

(36.77 + 9.25) minutes respectively, and lead to ∼ 24% reduction. This indicates that our 

approach will always have lower computations as it involves sharing a single decoder among 

target tasks, which enhances initialization and leads to faster convergence.

4.2.3. Derivable task—After learning the target tasks, we derived a recommendation 

task. This derivable task is generated based on combining the outputs of the flow 

classification and quality assessment tasks. This recommendation is used to decide if the 

image is suitable for further analysis. Currently, the echocardiographer manually excludes 

low-quality TR flow images with unclear envelopes from further analysis because they 

decrease the accuracy of measurements. Fig. 9 shows examples of the recommendation task.

4.3. Discussion

To resolve the challenges posed by applying the traditional training approach on medical 

images, we proposed a novel sequence of training that involves constructing UMS-Rep 

followed by using it as a shared backbone to simultaneously fine-tune target tasks with 

similar or diverse annotations.

Our experimental results show that the proposed approach improved the generalization, 

and performance (up to 9%) of target tasks by transferring the knowledge from a modality-

specific shared source to these tasks. Further, using a single representation to fine-tune 

multiple target tasks reduced the computations by a large margin and prevented unnecessary 

repetitions of training individual models for individual pre-processing and visual analysis 

tasks; i.e., single encoder and N lightweight task-specific heads instead of N encoder-

decoder models for N tasks. Our results suggest the superiority of the independent fine-

tuning strategy for heterogeneous medical image tasks, and the joint strategy (followed by 

alternating) for homogeneous medical image tasks. This can be explained by the ability 

of the joint loss function to capture the task differences and implicitly model inter-task 

relationships between similar tasks. Similarly, the alternating strategy allows discovering 

some of commonality between target tasks. As these results are consistent in two imaging 
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modalities (CXR and echo Doppler), we may conclude that independent strategy should be 

used to fine-tune heterogeneous target tasks and joint (or alternating) strategy should be 

used to fine-tune homogeneous target tasks. Finally, it is important to note the benefit of the 

proposed sequence of training in reducing overfitting as reported in [32].

The proposed approach can improve the efficiency and performance of medical image tasks 

as follows. First, transferring the knowledge from shared modality representation (which 

can be trained without labels) to the segmentation task improves generalization and leads to 

faster convergence for the target tasks. Second, our results demonstrated that the fine-tuning 

strategy greatly impacts the performance of the target task, and suggested to avoid using 

joint strategy for fine-tuning conflicting tasks. In other words, independent fine-tuning 

using a shared modality-specific representation leads to better performance when used with 

heterogeneous tasks while joint or alternating fine-tuning leads to better performance when 

used with homogeneous or similar tasks.

Although we only demonstrated the feasibility of our approach to learn a single pre-

processing task (i.e., noise reduction) and some relevant tasks in medical image analysis, the 

proposed approach is flexible and can be easily extended to integrate other pre-processing 

tasks (e.g., super resolution [33]) and learn any number of target tasks. For example, a 

bounding box regression task can be added to the UMS-Rep by appending a task-specific 

head that has region pooling layers for extracting region-wise features and FC layers for box 

classification and regression. The proposed approach can also be extended to analyze 3D 

images using a 3D CNN as the shared representation and task-specific layers.

5. Conclusions

In this paper, we proposed a unified modality-specific approach under the MTL framework 

where the encoder is shared across different target tasks with diverse and similar 

annotations. We applied the proposed approach to two medical imaging modalities, namely 

CXR and echo Doppler. We also explored different strategies for fine-tuning the target 

tasks to investigate the impact of the utilized strategy on their performance. To the best 

of our knowledge, the problem of learning to simultaneously transfer knowledge from 

shared representation to multiple target tasks has seldom been studied in medical images. 

Our experiments show that the proposed approach can improve the generalization and 

performance of target tasks, while providing computational efficiency.

Acknowledgments

This research is supported by the Intramural Research Program of the National Library of Medicine (NLM) and the 
National Institutes of Health (NIH).

References

[1]. Zhou SK, et al. Deep learning for medical image analysis. Academic Press; 2017.

[2]. Litjens G, et al. A survey on deep learning in medical image analysis. Med Image Anal 
2017;42:60–88. [PubMed: 28778026] 

[3]. Mahapatra D, Bozorgtabar B. Progressive generative adversarial networks for medical image super 
resolution. 2019. arXiv preprint arXiv:1902.02144.

Zamzmi et al. Page 16

Inform Med Unlocked. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[4]. Gulati T, et al. Application of an enhanced deep super-resolution network in retinal image 
analysis. In: Ophthalmic technologies XXX. International Society for Optics and Photonics; 
2020. 112181K.

[5]. Christodoulidis A, et al. A multi-scale tensor voting approach for small retinal vessel segmentation 
in high resolution fundus images. Comput Med Imag Graph 2016;52:28–43.

[6]. Balakrishnan G, et al. An unsupervised learning model for deformable medical image registration. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 
9252–60.

[7]. Thung KH, Wee CY. A brief review on multi-task learning. Multimed Tool Appl 2018;77:29705–
25.

[8]. Dong D, et al. Multi-task learning for multiple language translation. In: Proceedings of the 53rd 
annual meeting of the association for computational linguistics and the 7th international joint 
conference on natural language processing. vol. 1; 2015. p. 1723–32. Long Papers).

[9]. Zhou Z, et al. Models genesis: generic autodidactic models for 3d medical image analysis. 
In: International conference on medical image computing and computer-assisted intervention. 
Springer; 2019. p. 384–93.

[10]. Moeskops P, et al. Deep learning for multi-task medical image segmentation in multiple 
modalities. In: International conference on medical image computing and computer-assisted 
intervention. Springer; 2016. p. 478–86.

[11]. Kisilev P, Sason E, Barkan E, Hashoul S. Medical image description using multi-task-loss cnn. 
In: Deep Learning and Data Labeling for Medical Applications. Springer; 2016. p. 121–9.

[12]. Zhang Z, et al. Facial landmark detection by deep multi-task learning. In: European conference 
on computer vision. Springer; 2014. p. 94–108.

[13]. Elhoseiny M, et al. Convolutional models for joint object categorization and pose estimation. 
2015. arXiv preprint arXiv:1511.05175.

[14]. Kendall A, et al. Multi-task learning using uncertainty to weigh losses for scene geometry and 
semantics. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 
2018. p. 7482–91.

[15]. Chen C, et al. Multi-task learning for left atrial segmentation on ge-mri. In: International 
workshop on statistical atlases and computational models of the heart. Springer; 2018. p. 292–
301.

[16]. Bai W, et al. Self-supervised learning for cardiac mr image segmentation by anatomical position 
prediction. In: International conference on medical image computing and computer-assisted 
intervention. Springer; 2019. p. 541–9.

[17]. Teichmann M, et al. Multinet: real-time joint semantic reasoning for autonomous driving. In: 
2018 IEEE intelligent vehicles symposium (IV). IEEE; 2018. p. 1013–20.

[18]. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object 
detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 
2016. p. 779–88.

[19]. Zou Y, et al. Df-net: unsupervised joint learning of depth and flow using cross-task consistency. 
In: Proceedings of the European conference on computer vision. ECCV; 2018. p. 36–53.

[20]. Luong MT, Le QV, Sutskever I, Vinyals O, Kaiser L. Multi-task sequence to sequence learning. 
2015. arXiv preprint arXiv:1511.06114.

[21]. Standley T, Zamir A, Chen D, Guibas L, Malik J, Savarese S, 2020. Which tasks should be 
learned together in multi-task learning?, in: International Conference on Machine Learning, 
PMLR. pp. 9120–9132.

[22]. Shih G, Wu CC, Halabi SS, Kohli MD, Prevedello LM, Cook TS, Sharma A, Amorosa JK, 
Arteaga V, Galperin-Aizenberg M, et al. Augmenting the national institutes of health chest 
radiograph dataset with expert annotations of possible pneumonia. Radiology: Artif Intell 
2019;1:e180041.

[23]. Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G. Two public chest x-ray datasets 
for computer-aided screening of pulmonary diseases. Quant Imag Med Surg 2014;4:475.

Zamzmi et al. Page 17

Inform Med Unlocked. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[24]. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, McKeown A, Yang G, 
Wu X, Yan F, et al. Identifying medical diagnoses and treatable diseases by image-based deep 
learning. Cell 2018;172:1122–31. [PubMed: 29474911] 

[25]. Rajaraman S, et al. Visualization and interpretation of convolutional neural network predictions 
in detecting pneumonia in pediatric chest radiographs. Appl Sci 2018;8:1715. [PubMed: 
32457819] 

[26]. Cheng HD, et al. Automated breast cancer detection and classification using ultrasound images: a 
survey. Pattern Recogn 2010;43:299–317.

[27]. Mahmood NH, et al. Comparison between median, unsharp and wiener filter and its effect 
on ultrasound stomach tissue image segmentation for pyloric stenosis. Int J Appl Sci Technol 
2011;1.

[28]. Nyma A, et al. A hybrid technique for medical image segmentation. J Biomed Biotechnol 
2012;2012:830252. 10.1155/2012/830252. Epub 2012 Jul 30. [PubMed: 22919276] 

[29]. Zeiler MD, et al. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on 
computer vision and pattern recognition. IEEE; 2010. p. 2528–35.

[30]. Welstead ST. Fractal and wavelet image compression techniques. Washington: SPIE Optical 
Engineering Press Bellingham; 1999.

[31]. Chen Z, et al. Gradnorm: gradient normalization for adaptive loss balancing in deep multitask 
networks. In: International conference on machine learning; 2018. p. 793–802.

[32]. Baxter J. A bayesian/information theoretic model of learning to learn via multiple task sampling. 
Mach. Learn. 1997;28:7–39.

[33]. Zamzmi Ghada, Rajaraman Sivaramakrishnan, Antani Sameer. Accelerating super-resolution and 
visual task analysis in medical images. In: Appl. Sci. 10. Multidisciplinary Digital Publishing 
Institute; 2020. p. 4282.

Zamzmi et al. Page 18

Inform Med Unlocked. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The fine-tuning approach in alternating strategy.
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Fig. 2. 
Samples from CXR datasets and their annotations; 1st row: RSNA, 2nd row: Shenzhen TB 

CXR, 3rd row: Montgomery TB CXR, and 4th row: Pediatric pneumonia CXR.
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Fig. 3. 
Samples from echo Doppler datasets and their annotations; 1st row: Doppler tasks and 2nd 

row: Doppler flows.
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Fig. 4. 
The traditional sequence of training in medical image analysis involves using individual 

models for individual tasks. For example, denoising medical images prior to the analysis 

requires using a separate image denoising model to generate clean images followed by using 

these images as input to individual models.
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Fig. 5. 
Our proposed sequence of simultaneously training UMS-Rep with pre-processing tasks 

(pink box). UMS-Rep is then shared among target tasks with heterogeneous or 

homogeneous annotations. T1:N = T1, T2, .., TN  and V 1:D = V 1, V 2, ..., V D  represent target 

tasks (green box) and derivable tasks (purple task), respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of this 

article.)
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Fig. 6. 
UMS‐RepCXR − Denoising shared backbone and task-specific heads for heterogeneous and 

homogeneous tasks. GAP, D, FC, SM indicate global average pooling, dropout, fully 

connected, and softmax layers, respectively. Dashed orange boxes indicate convolutional 

layers with dilation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the Web version of this article.)
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Fig. 7. 
Visual explanation task. Left: original image with GT annotation (bounding box in blue). 

Right: visualization on a testing image. High activation (red pixels) is observed in the 

affected ROIs. (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article.)
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Fig. 8. 
UMS‐Repecℎo (pink box) is shared among target tasks. GAP, D, FC, SM indicate global 

average pooling, droput, fully connected, and softmax layers, respectively. Dashed orange 

boxes indicate convolutional layers with dilation. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 9. 
Derivable recommendation task. Examples of merging the outputs of tasks to select only 

good quality TR images.
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Table 1

Summary of CXR and Doppler echo Datasets.

Modality Dataset Total Images GT Labels Resolution

RSNA 26,684 Normal 
Abnormal

1024 × 1024

Shenzhen 662 Normal (336) 
Abnormal (326)
Lung mask (566)

3000 × 3000

CXR Montgomery 138 Normal (80) 
Abnormal (58) 
Lung mask (138)

4020 × 4892

Pediatric Train: 5232 Bacterial (2,538) –

Pneumonia Viral (1345) 
Normal (1,349)

Test: 624 Bacterial (242)
Viral (148) 
Normal (234)

Doppler 2444 Doppler Flow (2444) –

Tasks Image Quality (814) 
Envelope mask (2444)

Doppler Echo

Doppler Flows MV Flow (855)
MA Flow (490)
TR Flow (1099)
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Table 2

Performance of customized UMS‐RepCXR − Denoising for image denoising.

Noise PSNR SSIM MS-SSIM

Gaussian (σ = 10) 39.05 dB 0.96 0.99

Gaussian (σ = 20) 35.38 dB 0.91 0.98

Gaussian (σ = 30) 32.75 dB 0.89 0.95

Gaussian (σ = 40) 30.54 dB 0.85 0.91

Gaussian (σ = 50) 28.35 dB 0.79 0.88

Poisson (μ = σ2) 33.37 dB 0.93 0.97
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Table 3

Performance of CXR target tasks with diverse annotations. Recall that we used three strategies to fine-tune the 

heads attached to UMS‐RepCXR − Denoising. Bold values indicate highest performance.

Method Tuning Strategy Target Task Accuracy F-score IoU MCC

Independent Lung
Segmentation

0.99 0.96 0.98 -

Alternating Lung
Segmentation

0.99 0.95 0.96 -

Joint Lung
Segmentation

0.92 0.92 0.94 -

UMS‐RepCXR − Denoising

Independent Abnormality
Classification

0.86 0.83 - 0.68

Alternating Abnormality
Classification

0.85 0.82 - 0.66

Joint Abnormality
Classification

0.83 0.80 - 0.63

Baseline Separate
Model

Lung
Segmentation

0.97 0.91 0.95 -

Separate
Model

Abnormality
Classification

0.80 0.80 - 0.60
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Table 4

Heterogeneous CXR target tasks: summary of computational time and training parameters for the proposed 

approach and the baseline approach.

Method Task Computational Time Training Parameters

Proposed Shared Source (UMS‐RepCXR − Denoising) 302.20 min 800,067

Lung Segmentation Head 8.11 min 786,497

Abnormality Classification Head 2.51 min 295,715

Shared Source & 2 lightweight Heads 312.82 min 1,882,279

Baseline Separate Denoising Model 302.20 min 800,067

Separate Lung Segmentation Model 148.02 min 786,497

Separate Abnormality Classification Model 9.25 min 1,573,506

3 Separate end-to-end Models for 3 Tasks 459.47 min 3,160,070
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Table 6

Homogeneous CXR target tasks: summary of computational time and training parameters for the proposed and 

baseline approaches.

Method Task Computational Time Training Parameters

Proposed Classification Head 1 (Bacterial vs Normal) 1.90 min 295,715

Classification Head 2 (Viral vs Normal) 1.75 min 295,715

Classification Head 3 (Bacterial vs Viral) 1.16 min 295,715

Shared Source & 3 lightweight Heads 4.81 min 887,145

Baseline Separate Model (Bacterial vs Normal) 12.75 min 1,573,506

Separate Model (Viral vs Normal) 9.21 min 1,573,506

Separate Model (Bacterial vs Viral) 12.19 min 1,573,506

Separate end-to-end Models for 4 Tasks 34.15 min 4,720,518
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Table 8

Heterogeneous echo target tasks: summary of time and training parameters for the proposed approach and 

baseline.

Method Task Computational Time Training Parameters

Proposed Shared UMS‐Repecℎo 28.19 min 460,115

Envelope Segmentation Head 5.80 min 786,497

Quality Assessment Head 3.00 min 295,715

Flow Classification Head 1.78 min 295,715

Shared UMS‐Repecℎo & 3 lightweight Heads 38.77 min 1,838,042

Baseline Separate Envelope
Segmentation Model

130.02 min 786,497

Separate Quality Assessment 29.34 min 1,573,506

Separate Flow Classification Model 36.27 min 1,573,506

3 Separate end-to-end Models for 3 Tasks 195.63 min 3,933,509
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Table 9

Performance of homogeneous echo target tasks using the proposed method and the baseline. Bold values 

indicate the best performance.

Method Tuning Strategy Target Task Accuracy F-score MCC

Independent Classification (MV vs MA) 0.92 0.91 0.83

Alternating Classification (MV vs MA) 0.94 0.94 0.87

Joint Classification (MV vs MA) 0.95 0.95 0.89

Independent Classification (MV vs TR) 0.95 0.94 0.88

UMS‐Repecℎo Alternating Classification (MV vs TR) 0.96 0.96 0.91

Joint Classification (MV vs TR) 0.97 0.96 0.93

Independent Classification (MA vs TR) 0.97 0.96 0.92

Alternating Classification (MA vs TR) 0.98 0.96 0.93

Joint Classification (MA vs TR) 0.98 0.98 0.95

Baseline Separate Model Classification (MV vs MA) 0.91 0.91 0.81

Separate Model Classification (MV vs TR) 0.94 0.93 0.86

Separate Model Classification (MA vs TR) 0.98 0.96 0.93
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Table 10

Homogeneous echo target tasks: computational time and training parameters for the proposed and baseline 

approaches.

Method Task Computational Time Training Parameters

Proposed Shared Source (UMS‐Repecℎo) 28.19 min 460,115

Classification Head 1 (MV vs MA) 2.42 min 295,715

Classification Head 2 (MV vs TR) 1.25 min 295,715

Classification Head 3 (MA vs TR) 1.83 min 295,715

1 Shared Source & 3 lightweight Heads 33.69 min 1,347,260

Baseline Separate Model (MV vs MA) 16.67 min 1,573,506

Separate Model (MV vs TR) 10.85 min 1,573,506

Separate Model (MA vs TR) 9.25 min 1,573,506

3 Separate end-to-end Models for 3 Tasks 36.77 min 4,720,518
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