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Abstract

Background: Altered glutamatergic neurotransmission may contribute to impaired default mode 

network (DMN) function in Alzheimer’s disease (AD). Among the DMN hub regions, frontal 

cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while 

the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD 

progression is not known.

Objective: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing 

synaptic terminals in PreC and FC across clinical stages of AD.
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Methods: Unbiased sampling and quantitative confocal immunofluorescence of cortical 

VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were 

performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-

moderate AD (mAD), or moderate-severe AD (sAD).

Results: In both regions, loss of VGluT1-positive profile density was seen in sAD compared 

to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, 

while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were 

stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but 

not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, 

while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but 

not FC, correlated with greater neuropathology.

Conclusion: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN 

regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals 

may contribute to this region’s plasticity response in AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with a complex 

clinical-pathological spectrum [1, 2]. It is characterized neuropathologically by extracellular 

deposits of fibrillar amyloid-β (Aβ) peptides in the brain parenchyma (plaques) and 

intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. These 

AD hallmark lesions are accompanied by a variety of coexisting pathologies [3–5] as well 

as impairments in synaptic structure and loss of synaptic proteins [6–11]. Loss of synapses 

is a well-established biopathological correlate of impaired cognition and dementia in AD 

[12–17], while the relative contributions of amyloid and tau lesions to cognitive impairment 

is less clear. Although there is loss of total synapse number [10, 18–20] and general markers 

of pre- and post-synaptic elements [11, 21–24] in AD, co-occurring synaptic changes in 

specific neurotransmitter systems and their association with neuropathology burden and 

cognitive status during the progression of AD are not well understood.

Impaired synaptic transmission in glutamatergic neuronal circuits is believed to play a 

key role in the etiology of AD and contribute to the onset of dementia [25–31]. Synaptic 

availability and release of glutamate, the principal excitatory neurotransmitter in the central 

nervous system [32] is, in part, regulated by its uptake into presynaptic vesicles by vesicular 

glutamate transporter (VGluT) proteins [33]. Two major subtypes of VGluT proteins are 

type 1 (VGluT1) and type 2 (VGluT2) that define glutamatergic presynaptic terminals in 

cortico-cortical and thalamo-cortical circuitry, respectively [34–42]. Although a reduction 

of VGluT proteins is postulated as a mechanistic link between glutamate dysfunction and 

neuropathology in AD [43–45], findings are inconsistent possibly due to differences in 

brain areas examined, the stages of disease represented in the population, and the method 

of detection (e.g., protein measurements or bouton counts). For example, biochemical 
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studies have reported a loss of VGluT1 in lateral parietal (BA39) and occipital (BA17) 

[44] and dorsolateral prefrontal (BA9) cortex [46] in AD, while changes in VGluT2 were 

more variable. Reduced VGluT2 protein levels have been reported in AD frontal cortex 

[46] but others have shown stable measures in frontal, temporal, parietal, and occipital 

cortex [44, 47] in AD. While biochemical analyses of brain tissue homogenates can detect 

changes in synaptic protein levels, immunohistochemical methods provide the cellular 

specificity, resolution, and topographic localization needed to analyze disease related 

changes in synaptology in specific cortical regions and cell layers. In this regard, a light 

microscopic study found a reduction of VGluT1-immunoreactive profiles in lamina III-IV of 

parietal and occipital cortex in AD compared to controls [44]. Using quantitative VGluT1 

immunohistochemistry, another study reported that VGluT1-immunoreactive presynaptic 

bouton density in lamina III of the dorsolateral prefrontal cortex (BA 46/9) was lower 

in clinically mild and severe AD cases and paradoxically higher in prodromal AD (mild 

cognitive impairment, MCI) [43] compared to cognitively intact subjects, suggesting a 

transient early upregulation of glutamatergic synapses. The latter finding adds to the wealth 

of information supporting plasticity within the frontal hub of the default mode network 

(DMN) connectome that undergoes neuropathologic, metabolic, and connectivity changes 

early in AD [48–62]. Whether VGluT2 containing presynaptic bouton alterations mimic 

those related to VGluT1 in the frontal cortex, and the status of VGluT1 and VGluT2 in 

other hubs of the DMN including the precuneus cortex, remains under-investigated despite 

showing a high pathology burden early in AD [63–65] and that 60–70% of presynaptic 

terminals in the precuneus are glutamatergic, with a smaller proportion containing both 

VGluT1 and VGluT2 [66].

The present study used confocal microscopy combined with an unbiased stereological 

design to quantify VGluT1- and VGluT2-immunofluorescent profiles, markers of cortico-

cortical/intra-cortical and thalamo-cortical presynaptic glutamatergic synapses, respectively, 

in lamina III of the precuneus cortex. Postmortem tissue was obtained from clinically 

and neuropathologically well-characterized NCI, MCI, and early AD participants in the 

Rush Religious Order Study (RROS) [67–70], and severe AD cases from the University 

of Pittsburgh Alzheimer’s Disease Research Center (ADRC) [71]. We hypothesized that 

VGluT1-positive terminals in the precuneus cortex are diminished, while VGluT2-positive 

terminals remain stable across the clinical-pathological stages of AD. In the same diagnostic 

groups, we also quantified densities of spinophilin-positive postsynaptic dendritic spines in 

the precuneus and determined the status of VGluT1- and VGluT2-positive terminals and 

spinophilin-positive postsynaptic dendritic spines in the frontal cortex, the region reported to 

display an upregulation of VGluT1 in MCI [43].

METHODS

Standard protocol approvals and patient consents

Rush University Medical Center and the University of Pittsburgh’s Committee for Oversight 

of Research and Clinical Training Involving Decedents approved this study. Written 

informed consent for research and brain autopsy was obtained for all subjects.
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Subjects

A total of 80 cases were examined that included 60 participants from the RROS, a 

longitudinal clinicopathologic study of aging and AD in retired Catholic clergy [67–70] 

and 20 cases from the University of Pittsburgh ADRC [71]. The demographic, clinical, 

and neuropathological characteristics of the cases contributing precuneus and frontal cortex 

samples are summarized in Tables 1 and 2, respectively. Of the 60 RROS cases, 20 

contributed precuneus only, 24 contributed frontal cortex only, and 16 contributed samples 

from both cortical regions. Of the 20 University of Pittsburgh ADRC cases, 10 cases 

contributed precuneus and 10 cases contributed frontal cortex tissue. The diagnosis of 

AD was made using standard diagnostic criteria [72]. The diagnosis of MCI was defined 

as impairment on neuropsychological testing, but without diagnosis of dementia by the 

examining neurologist, the criteria also used at other centers [73, 74]. Based on these 

criteria, and the last clinical evaluation within 12 months before death, the RROS cases 

were assigned to three clinical diagnostic groups: NCI (Mini-Mental State Exam, MMSE 

range 25–30), MCI (MMSE range 19–29), and mild to moderate AD (mAD, MMSE 

range 17–27). The AD cases from the University of Pittsburgh ADRC were clinically 

classified as moderate to severe AD (sAD, MMSE range 1–18). The neuropathology 

evaluation included immunohistochemical analyses of Aβ, phosphorylated tau, α-synuclein, 

and transactive response DNA-binding protein (TDP-43), as well as routine hematoxylin 

and eosin and Bielschowsky silver staining [75, 76]. Cases with stroke, Parkinson’s disease 

or hippocampal sclerosis were excluded from the study. Neuropathologic diagnosis was 

based on the National Institute on Aging (NIA)–Reagan Institute (RI) criteria (NIA-RI) 

[77], recommendations of the Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) [78], and Braak staging of neurofibrillary tangles [79]. Application of the new 

NIA-Alzheimer’s Association guidelines [80, 81] to the examined cohorts is currently 

ongoing. All cases were de-identified and randomly assigned a unique 8-digit identifier 

that was used throughout the study. Investigators were blinded to case demographics and 

diagnosis throughout the experiment.

Tissue preparation

The precuneus (medial BA7) and dorsolateral frontal cortex (BA9) were dissected at autopsy 

and immersion fixed in 4% paraformaldehyde made in 0.1 M (pH 7.2) phosphate buffer (PB) 

for 48–72 h at 4°C. Following fixation, samples were cryoprotected in 10% glycerol with 

2% dimethyl sulfoxide (DMSO) in 0.1 M phosphate buffer at 4°C for two days, followed 

by immersion in a solution of 20% glycerol and 2% DMSO. Tissue samples were cut on a 

freezing sliding microtome at 40 μm thickness and sections were stored in cryoprotectant at 

−20°C until processed further.

Immunohistochemistry for vesicular glutamate transporters 1 and 2 and spinophilin

To minimize potential variations across multiple sets of tissue sections processed using 

the immunofluorescence procedure, each of three batches of processed tissue sections 

included an equal number of cases from each clinical diagnostic group. Sections from 

select cases were included in all batches to monitor chemical batch-to-batch variation. 

Immunofluorescence using antibodies generated against VGluT1 or VGluT2 was performed 
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on two sections per case, as described previously [82]. Free-floating tissue sections were 

washed in PB for 5 min three times to remove the cryoprotection solution. Antigen retrieval 

was performed by heating the sections in 10 mM sodium citrate buffer (pH 8.6) at 80°C 

for 75 min. The sections in the antigen retrieval solution were then cooled first at room 

temperature followed by immersion in an ice bath (approximately 7°C), each for 5 min. 

After cooling, the sections were removed from the antigen retrieval solution and incubated 

in the blocking solution “A” (5% goat serum, 5% human serum, 0.5% Triton X-100, 0.1% 

lysine, and 0.1% glycine made in PB) for 3 h at room temperature. Sections were then 

rinsed in the blocking solution “B” (1% donkey serum, 1% human serum, 0.3% Triton 

X-100, 0.1% lysine, and 0.1% glycine made in PB) for 5 min three times. Sections were 

then incubated in a cocktail of a guinea pig anti-VGluT1 IgG (AB5905, Millipore, Billerica, 

MA), and a rabbit anti-VGluT2 IgG (V2514, HY-19; Sigma-Aldrich, St. Louis, MO) made 

in blocking solution B for 96 h. The specificity and labeling patterns of these antibodies 

have been reported previously [82]. Following primary antibody incubation, sections were 

rinsed in blocking solution B for 5 min three times and then incubated for 24 h at 4°C in 

a cocktail of donkey anti-guinea pig Alexa Fluor 594-conjugated (1:500; ThermoFisher, 

Waltham, MA, #A-11076) and donkey anti-rabbit Alexa Fluor 647-conjugated (1:500; 

ThermoFisher, #A-31573) secondary antibodies diluted in blocking solution B.

Spinophilin immunofluorescence was performed on two sections of frontal cortex per case, 

using tissue sections adjacent to those analyzed for VGluT profiles as previously detailed 

for the precuneus [83]. Briefly, free-floating tissue sections were incubated in a polyclonal 

rabbit anti-spinophilin antibody (Millipore, Temecula, CA, #AB5669) [83] for 96 h at 4°C. 

The specificity and selectivity of the spinophilin antibody was described in a previous 

publication [83]. Following primary antibody incubation, sections were incubated for 24 h 

at 4°C in biotinylated donkey anti-rabbit secondary antibody (1:200; Jackson, West Grove, 

PA, #711–066-152), followed by a 24-h incubation at 4°C with a Cy5-streptavidin conjugate 

(1:500; Jackson, #016–170-084).

A fluorescent counterstain for Nissl substance (Neurotrace, ThermoFisher, #N21480) was 

used to delineate cortical lamina III [84]. Sections were mounted onto charged slides 

(Superfrost Plus, ThermoFisher), coverslipped with ProLong™ Diamond Antifade Mountant 

(ThermoFisher, # P36970) and sealed with Sally Hansen nail hardener.

Cyano-PiB and X-34 histofluorescence procedure and percent area analysis of fibrillar Aβ 
and tau burden

Tissue sections adjacent to those processed using VGluT1, VGluT2, and spinophilin 

immunofluorescence were stained separately with cyano-PiB, a marker of fibrillar Aβ in 

amyloid plaques [85, 86], and the fluorescent Congo red derivative X-34, a pan-amyloid 

marker of fibrillar Aβ and tau aggregates [87, 88]. For cyano-PiB staining, sections were 

incubated in 10 mM cyano-PiB for 45 min, dipped three times in potassium phosphate 

buffer (PBK, 0.1 M, pH 7.4), followed by a 1-min differentiation in PBK, and coverslipped 

with Fluoromount G (Electron Microscopy Services, Hatfield, PA) [86]. For X-34 staining, 

sections were washed in PBK three times followed by a 10-min incubation in X-34 (100 

μM) solution, then dipped five times in tap water before incubating sections in 0.2% NaOH 
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made in 80% unbuffered ethanol for 2 min. Sections were then rinsed in tap water for 

10 min and coverslipped with Fluoromount G [88]. Percent area coverage for cyano-PiB- 

and X-34-labeled Aβ plaques was determined in three randomly spaced microscopic fields 

(using a 10 objective) in each of two sections from the same cases used for VGluT1, 

VGluT2, and spinophilin quantification. Percent area values were obtained by dividing 

cyano-PiB and X-34 labeled area by total area sampled. To assess the relationship of 

VGluT1 and VGluT2 immunoreactive profiles with amyloid dye-labeled plaques, a separate 

set of sections double-immunostained for VGluT1 and VGluT2 were subsequently stained 

with cyano-PiB.

Confocal sampling and image collection

Image collection was performed as previously described [84]. Briefly, image stacks were 

acquired using an Olympus BX51WI upright microscope (Olympus, Center Valley, PA) 

equipped with an Olympus DSU spinning disk confocal, an ORCA-R2 CCD camera 

(Hamamatsu, Bridgewater, NJ), an MBF CX9000 front-mounted digital camera (MBF 

Bioscience, Williston, VT) and a BioPrecision2 XYZ motorized stage with linear XYZ 

encoders (Ludl Electronic Products, Ltd., Hawthorne, NY). The microscope was controlled 

using Stereo Investigator (MBF Bioscience) and SlideBook software (Intelligent Imaging 

Innovations, Denver, CO). Using Stereo Investigator software, the borders of cortical lamina 

III were defined and 14 sites per case were identified within the laminar borders for analysis 

using systematic uniform random sampling. At each sampling site, tissue thickness was 

measured. Image stacks were collected using a 60×, N.A. 1.4, super-corrected objective, 

with a step size of 0.25 μm between Z-axis planes, starting from 4 μm below the tissue 

surface closest to the cover glass and stepping up until the tissue surface was reached, 

yielding a 4 μm thick (Z-axis depth) stack comprised of 16 individual two-dimensional 

planes. Image planes were 512 × 512-pixels (approximately 55 × 55 μm). Exposure time 

during image stack acquisition was optimized for each site, and differences in exposure 

were normalized during analysis. Guard zones of 10 pixels were applied around all edges 

in the X and Y dimensions of each stack, and ten Z-axis planes starting four planes below 

the cover glass were included in analysis, as antibody penetration was uniform (profile 

counts and intensities were uniform, not shown) across these Z-axis depths (four planes 

x 0.25 μm step size = 1 μm disector height). In our quantitative analysis, sampling sites 

were automatically selected through systematic uniform random sampling using Stereo 

Investigator and therefore blind to cyano-PiB plaque burden status, preventing the potential 

bias of selecting only cyano-PiB-positive or only cyano-PiB-negative microscopic fields.

Post-processing and quantification of vesicular glutamate transporters VGluT1 and VGluT2 
and spinophilin immunoreactive profiles

Image stacks were post-processed using Slide-Book and Automation Anywhere software 

(Automation Anywhere, Inc., San Jose, CA) as previously described [82]. Images were then 

processed using a blind deconvolution algorithm (AutoQuant; Media Cybernetics, Rockville, 

MD). To improve edge detection during image segmentation, for each image stack two new 

channels were made by convolving the VGluT1 and VGluT2 channels with a Gaussian 

function of standard deviations σ =2 and σ = 0.7. The channel transformation with the 

larger standard deviation (σ = 2) was then subtracted from the one with the smaller standard 
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deviation (σ = 0.7) to make new channels. Intensity segmentation was then coupled with 

morphological selection using an iterative masking approach [89] where the Otsu algorithm 

was used to determine the intensity threshold for the first iteration. After each segmentation 

step, mask objects were size gated to select immunoreactive profiles (0.1 to 2 μm3 for 

VGluT1, 0.05 to 2 μm3 for VGluT2, and 0.03 to 0.5 μm3 for spinophilin) and merged with 

the mask generated in the prior segmentation step. Profile mean intensity was extracted from 

these image stacks through the generated mask to identify objects of interest and normalized 

to the exposure time for that stack. The density of VGluT1- and VGluT2-immunoreactive 

boutons as well as spinophilin-immunoreactive dendritic spines was determined by dividing 

the total number of masked objects counted per each case (Q) by the total volumes, which is 

the product of the number of sampling sites per case (CF), the area of the counting frame at 

each site in μm2 (2,823), and the disector height (1 μm) multiplied by the microtome block 

advance (40 μm) divided by the measured tissue section thickness at each site (tq) to correct 

for tissue shrinkage [90] as follows:

Density  = Q
CF ∗ 2823 ∗ (1 ∗ 40/tq)

Cortical thickness estimation

The thickness of precuneus and dorsolateral frontal cortex cortical lamina III in each case 

was measured on low magnification images (1.25× objective) from sections stained with 

Neurotrace using the calibrated measuring tool in ImageJ (ImageJ, U. S. National Institutes 

of Health, Bethesda, Maryland, USA). Two sections per case were used for quantification.

Statistical analysis

The Kruskall-Wallis test was used to test group differences for cyano-PiB, X-34, protein 

immunoreactivity measures, and cognitive measures. Chi-square analysis was used to 

determine if sex, APOE ε4 allele, and pathology group frequencies differed between 

clinical groups. Spearman correlation was used to assess associations between protein 

immunoreactivity measures as well as cyano-PiB- and X-34-labeled pathological burden, 

and cognitive measures. Statistically significant correlations were analyzed using robust 

regression models that adjusted for age at death, sex, education, and APOE ε4 carrier 

status. A secondary analysis of VGluT immunoreactivity was performed after dividing 

the NCI group into Low Pathology (LP-NCI) and High Pathology (HP-NCI) subgroups. 

LP-NCI cases were defined as having a NIA-RI diagnosis of No AD or Low Likelihood 

of AD, CERAD rating of No or Possible AD, and Braak stages 0–III for neurofibrillary 

tangles. HP-NCI cases were defined as having a NIA-RI diagnosis of Moderate or High 

Likelihood of AD, CERAD rating of Probable or Definite AD, or Braak stage IV–VI for 

neurofibrillary tangles. False Discovery Rate was used to correct for multiple comparisons 

among correlations and robust regression models, VGluT1 density, VGluT1 intensity, 

VGluT2 density, VGluT2 intensity were considered as dependent variables in the analyses. 

Statistically significance was set at p < 0.05.
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RESULTS

Case demographic, clinical, and neuropathological characteristics

Cases contributing precuneus samples—Demographic, clinical, and 

neuropathological classification data for NCI, MCI, mAD, and sAD groups are shown in 

Table 1. Among the four groups, years of education, postmortem interval, sex, and APOE 
ε4 carrier frequency were not significantly different; however, sAD cases were significantly 

younger than the mAD group (Kruskall-Wallis statistic = 8.776, p = 0.0324; Dunn’s multiple 

comparisons, p = 0.0346) (Table 1).

There were significant group differences in the MMSE scores (Kruskall-Wallis statistic = 

32.87, p < 0.001): the mAD group performed worse than the NCI group (Dunn’s multiple 

comparisons, p = 0.0148) and the sAD group performed worse than the NCI group and the 

MCI group (Dunn’s multiple comparisons, p < 0.001 and p = 0.0051, respectively).

The four clinical groups differed significantly by CERAD diagnosis (Kruskall-Wallis 

statistic = 24.19, p < 0.001; NCI, MCI < sAD, Dunn’s multiple comparisons, p < 0.001 

and p = 0.0123, respectively), Braak stage (Kruskall-Wallis statistic = 23.54, p < 0.001; 

NCI, MCI, mAD < sAD, Dunn’s multiple comparisons, p < 0.001, p = 0.0091, and 

p = 0.0496, respectively), and likelihood of AD by the NIA-Reagan Institute (NIA-RI) 

criteria (Kruskall-Wallis statistic = 26.32, p < 0.001; NCI, MCI < sAD, Dunn’s multiple 

comparisons, p < 0.001 and p = 0.0085, respectively) (Table 1).

Spearman rank order correlation analysis revealed statistically significant associations 

between lower MMSE scores with higher Aβ pathology burden determined by cyano-PiB 

staining (rs = −0.6087, p < 0.0001) and with higher total amyloid burden using X-34 

staining (rs = −0.6000, p < 0.0001) (both determined in precuneus sections adjacent to those 

used for VGluT analyses) as well as greater severity of AD neuropathology according to the 

NIA-RI criteria (rs = −0.6954, p < 0.0001), CERAD diagnosis (rs = −0.6053, p < 0.0001) 

and Braak stage (rs = −0.7030, p < 0.0001). Robust regression analysis controlling for 

demographic and biological variables revealed statistically significant correlations between 

MMSE and Aβ pathology burden quantified by cyano-PiB (β = –1.73, 95% CI (–2.23, 

–1.23), p < 0.001) and total amyloid burden quantified by X-34 (β = –1.48, 95% CI (–2.10, 

–0.87), p < 0.001), but not with NIA-RI criteria (β = –2.62, 95% CI (–6.18, 0.93), p = 0.16), 

CERAD diagnosis (β = –1.48, 95% CI (–3.54, 0.59), p = 0.17), or Braak stage (β = –1.36, 

95% CI (–2.81, 0.10), p = 0.08).

Cases contributing frontal cortex tissue—Demographic, clinical, and 

neuropathological classification data for NCI, MCI, mAD, and sAD groups are shown in 

Table 2. As observed for the precuneus cases, years of education, postmortem interval, sex, 

and APOE ε4 carrier frequency were not significantly different among the four clinical 

diagnostic groups, but the sAD cases were significantly younger than the mAD and MCI 

cases (Kruskall-Wallis statistic = 17.22, p < 0.001, Dunn’s multiple comparisons, p = 008 

and p = <0.001, respectively) (Table 2).

Mi et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Like the precuneus analysis, clinical and neuropathological variables were significantly 

different among the four case groups that formed the frontal cortex samples (Table 2). There 

were significant group differences in the MMSE scores (Kruskall-Wallis statistic = 36.61, p 
< 0.001): the mAD and sAD groups performed worse than the NCI group (Dunn’s multiple 

comparisons, p = 0.002 and p < 0.001, respectively) and the sAD group also performed 

worse than the MCI group (Dunn’s multiple comparisons, p = 0.001). The four clinical 

groups also differed significantly by CERAD diagnosis (Kruskall-Wallis statistic = 25.36, 

p < 0.001; NCI, MCI < sAD and NCI < mAD, Dunn’s multiple comparisons, p < 0.001, 

p = 0.0042 and 0.0059, respectively), Braak stage (Kruskall-Wallis statistic = 33.29, p < 

0.001; NCI, MCI, mAD < sAD, Dunn’s multiple comparisons, p < 0.001, p = 0.0061 

and p = 0.0317, respectively), and likelihood of AD by the NIA-Reagan Institute criteria 

(Kruskall-Wallis statistic = 28.36, p < 0.001; NCI, MCI < sAD and NCI < mAD, Dunn’s 

multiple comparisons, p < 0.001, p = 0.0040 and p = 0.0191 respectively) (Table 2).

Spearman rank order correlation revealed statistically significant associations between 

MMSE with cyano-PiB-labeled amyloid plaque burden (rs = −0.5467, p < 0.0001) and 

with X-34-labeled total amyloid burden (rs = −0.5627, p < 0.0001) (both determined in 

frontal cortex sections adjacent to those used for VGluT and spinophilin analyses) as well 

as severity of AD neuropathology by NIA-RI criteria (rs = −0.7126, p < 0.0001), CERAD 

diagnosis (rs = −0.6163, p < 0.0001) and Braak stage (rs = −0.7322, p < 0.0001). Robust 

regression analysis controlling for demographic and biological factors showed that the 

associations with MMSE remained significant for the three neuropathological diagnostic 

measures (NIA-RI criteria, p < 0.001; Braak stage, p < 0.001; CERAD criteria, p = 0.005) 

and X-34 total amyloid burden (p = 0.03), but not for the cyano-PiB plaque load (p = 0.07) 

in the frontal cortex.

Precuneus synaptic profile analyses

VGluT protein immunoreactivity in precuneus lamina III—VGluT1 and VGluT2 

immunofluorescence appeared as well-defined bright puncta that were co-distributed across 

the imaged areas within lamina III of the precuneus in the NCI cases (Fig. 1A–C). Similar 

qualitative patterns of VGluT1 and VGluT2 immunofluorescence were observed in the 

precuneus from MCI (not shown) and mAD cases (Fig. 1D–F). The sAD group had 

markedly fewer VGluT1-labeled profiles (Fig. 1G, I), but not VGluT2-labeled profiles 

(Fig. 1H, I), compared to the other three groups. Both transporter proteins were scarce 

within cyano-PiB labeled amyloid plaques (Fig. 1J–L). Unbiased quantitative analysis 

of precuneus VGluT1-immunoreactive profile densities confirmed the lack of significant 

differences among the NCI, MCI, and mAD groups, while a significantly lower density of 

VGluT1-positive profiles was detected in sAD compared to the other three groups (Fig. 

2A, Table 3). The four groups did not differ statistically when compared for intensity of 

VGluT1-immunoreactive profiles, a surrogate measure of relative protein level (Fig. 2B, 

Table 3), or density and intensity of VGluT2-immunoreactive profiles (Fig. 2C, D, Table 3) 

in the precuneus. The thickness of lamina III of the precuneus was not different among the 

four clinical groups (not shown).
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Spinophilin protein immunoreactivity in precuneus lamina III—Unbiased 

quantitative analysis showed statistically lower densities of spinophilin-immunoreactive 

profiles in the mAD and sAD groups compared to the NCI, and in the sAD group compared 

to MCI, as well as statistically significantly lower intensity of spinophilin-immunoreactive 

profiles in the mAD and sAD groups compared to NCI and MCI (Table 3) previously [84].

Frontal cortex synaptic profile analyses

VGluT protein immunoreactivity in frontal cortex lamina III—VGluT1 and VGluT2 

immunofluorescent profile appearance and distribution in the dorsolateral frontal cortex 

lamina III (hereafter referred to as the frontal cortex) was similar in NCI (Fig. 1A’–

C’), MCI (not shown), and mAD cases (Fig. 1D’–F’). Cases with sAD had markedly 

fewer immunoreactive VGluT1 (Fig. 1G’, I’), but not VGluT2 profiles (Fig. 1H’, I’) 

compared to the other three groups. Both transporter proteins were scarce within cyano-PiB 

labeled amyloid plaques (Fig. 1J’–L’). Unbiased quantitative analysis of frontal cortex 

VGluT1-immunoreactive profile densities confirmed the lack of significant differences 

among the NCI, MCI, and mAD groups, while a statistically significantly lower density 

of VGluT1-immunoreactive profiles was detected in sAD compared to the other three 

groups (Fig. 2E, Table 4). In contrast to the data from precuneus, the mean VGluT1-

immunoreactive profile intensity (relative VGluT1 protein level) in the frontal cortex was 

significantly higher in MCI, mAD, and sAD compared to the NCI group (Fig. 2F, Table 

4). VGluT2-immunoreactive profile density in the frontal cortex was significantly lower in 

sAD than MCI (Fig. 2G, Table 4), while no group differences were detected for VGluT2-

immunoreactive profile intensity (Fig. 2H, Table 4). The thickness of lamina III of the 

frontal cortex was not different among the four clinical groups (not shown).

Spinophilin protein immunoreactivity in frontal cortex lamina III—The 

appearance of frontal cortex spinophilin-immunoreactive profiles was like that observed in 

the precuneus [84]. Unbiased quantitative analysis showed that spinophilin-immunoreactive 

density or intensity measures did not differ across the four clinical diagnostic groups (Table 

4).

Precuneus and the frontal cortex synaptic profiles in NCI cases with low and high 
neuropathology burden

We divided NCI cases into two subgroups of Low Pathology NCI (LP-NCI) and High 

Pathology NCI (HP-NCI or “preclinical AD”) cases based on their neuropathology status 

according to NIA-RI diagnosis (not AD and low likelihood = LP-NCI; moderate and high 

likelihood of AD = HP-NCI), CERAD diagnosis (CERAD 0, 1 = LP-NCI; CERAD 2, 3 = 

HP-NCI), or Braak stage for neurofibrillary tangles (Braak 0–III = LP-NCI, Braak IV–VI 

= HP-NCI). None of these classifications resulted in statistically significant differences in 

VGluT1, VGLuT2, or spinophilin measures between the LP-NCI and HP-NCI subgroups in 

either cortical region (not shown).
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Correlations between VGluT and spinophilin measures with quantitative amyloid plaque 
pathology, neuropathology severity, and MMSE

Precuneus cortex—Cyano-PiB-labeled Aβ amyloid burden and X-34-labeled pan-

amyloid (Aβ and tau) burden of the precuneus showed statistically significant group 

differences (Kruskall-Wallis statistic = 19.77 and 18.84, p = 0.0002 and 0.0003, 

respectively), with sAD displaying a significantly higher amyloid pathology burden than 

the NCI (Dunn’s multiple comparisons, cyano-PiB: p = 0.0002; X-34: p = 0.0001) and MCI 

(Dunn’s multiple comparisons, cyano-PiB: p = 0.0024; X-34: p = 0.0178) groups but not 

the mAD group (Fig. 3A, B). Spearman rank order correlation analysis across all cases 

showed a statistically significant correlation between greater burden of cyano-PiB positive 

amyloid plaques and lower density of VGluT1-immunoreactive profiles in the precuneus 

(rs = −0.4306, p = 0.0028) (Fig. 3C). Lower density of VGluT1 immunoreactive profiles 

also correlated significantly with greater X-34-labeled total amyloid pathology burden in 

the precuneus (rs = −0.4216, p = 0.0035) (Supplementary Table 1) and with more severe 

neuropathology based upon CERAD (rs = −0.5681, p < 0.0001) (Fig. 3D), likelihood of 

AD by NIA-RI criteria (rs = −0.5018, p = 0.0004) (Supplementary Table 1) or Braak stage 

(rs = −0.4227, p = 0.0034) (Supplementary Table 1). Robust regression analyses controlling 

for demographic factors and APOE ε4 allele frequency confirmed that VGluT1 density was 

associated with quantitative measures of cyano-PiB amyloid plaques (β = −0.001, 95% CI 

(−0.002, −0.0007), p < 0.001) and X-34 labeled total amyloid pathology (β = −0.0006, 

95% CI (−0.0001, −0.0002), p = 0.009), Braak stage (β = −0.002, 95% CI (−0.0003, 

−0.0009), p < 0.001), NIA-RI criteria (β = −0.0005, 95% CI (−0.0006, −0.003), p < 0.001), 

but not CERAD diagnosis (β = −0.004, 95% CI (−0.009, 0.001), p = 0.16). Precuneus 

VGluT1 intensity as well as VGluT2 density and intensity measures did not correlate with 

neuropathology data.

Spearman rank order correlation revealed a significant association between lower precuneus 

VGluT1 density and lower MMSE scores (rs = 0.5205, p = 0.0002). However, after 

controlling for demographic variables the association between VGluT1 density and MMSE 

was no longer significant (β = 239.02 (95% CI (−48.08, 526.13), p = 0.11). No associations 

were observed when MMSE scores were plotted against VGluT2 density or with intensity of 

VGluT1 or VGluT2 in the precuneus (not shown).

Spearman rank order correlation analysis across all cases showed a statistically significant 

association between greater burden of cyano-PiB positive amyloid plaques and X-34-labeled 

total amyloid pathology and lower spinophilin density and intensity measures (cyano-PiB 

and spinophilin density: rs = 0.4980, p < 0.0001; cyano-PiB and spinophilin intensity: rs 

= −0.5733, p = 0.0072; X-34 and spinophilin density: rs = −0.5710, p = 0.0008; X-34 and 

spinophilin intensity: rs = −0.4136, p = 0.0207) in the precuneus (Fig. 3E; Supplementary 

Table 1). Lower precuneus spinophilin-immunoreactive profile densities and intensities were 

associated with higher Braak stage (Supplementary Table 1) (spinophilin density and Braak: 

rs = −03768, p = 0.0361; spinophilin intensity and Braak: rs = −0.5353, p = 0.0015) and 

greater likelihood of AD by NIA-RI criteria (spinophilin density and NIA-RI: rs = −0.4762, 

p = 0.0015; spinophilin intensity and NIA-RI: rs = −0.5943, p = 0.0015) (Supplementary 

Table 1). Lower spinophilin-immunoreactive profile density, but not intensity was associated 
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with worse CERAD diagnosis (Fig. 3F) (spinophilin density and CERAD: rs = −0.5561, p = 

0.0005).

Spearman rank order correlation analysis showed a statistically significant correlation 

between higher precuneus spinophilin density or intensity measures and higher MMSE 

scores (rs = 0.8027, p < 0.0001; rs = 0.6884, p < 0.0001, respectively) as well as with higher 

precuneus VGluT1-immunoreactive profile density (rs = 0.6466, p < 0.0001; rs = 0.5635, 

p = 0.0010) and VGluT2-immunoreactive profile intensity (rs = 0.6565, p < 0.0001; rs = 

0.4309, p = 0.0174 measures (Supplementary Table 1).

Frontal cortex—Cyano-PiB-labeled Aβ amyloid burden and X-34-labeled pan-amyloid 

(Aβ and tau) burden within the frontal cortex showed statistically significant group 

differences (Kruskall-Wallis statistic = 19.75 and 21.47, p = 0.0002 and p < 0.001, 

respectively), with sAD having statistically significantly higher amyloid burden than NCI 

(Dunn’s multiple comparisons, cyano-PiB: p = 0.0002; X-34: p < 0.001) and MCI (Dunn’s 

multiple comparisons, cyano-PiB p = 0.0055; X-34 p = 0.0034) but not mAD (Fig. 3G, Of 

the VGluT measures in the frontal cortex, lower VGluT1 density was associated with higher 

Braak stage (rs = −0.2888, p = 0.0419), while no significant associations were detected with 

other neuropathology measures including cyano-PiB (Fig. 3I) and CERAD diagnosis (Fig. 

3J). In contrast, higher VGluT1 intensity was associated with higher cyano-PiB amyloid 

plaque burden (rs = 0.2815, p = 0.0477), higher likelihood of AD by the NIA-RI criteria (rs 

= 0.3056, p = 0.0309), and higher Braak stage (rs = 0.3265, p = 0.0206) (Supplementary 

Table 2). When robust regression analysis controlling for demographic factors and APOE 

allele frequency was performed, these associations were no longer significant between 

VGluT1 density and Braak stage (p = 0.43) or between VGluT1 intensity and cyano-PiB 

plaque burden (p = 0.16), likelihood of AD (p = 0.16), and Braak stage (p = 0.59). VGluT2 

density and intensity measures in the frontal cortex did not correlate with neuropathology 

data. Higher VGluT1 intensity was associated with lower MMSE scores in the frontal cortex 

(r = −0.43, p = 0.002). This association remained significant after controlling for age, sex, 

education, and APOE ε4 carrier status (B = −0.002, 95% CI: (−0.004, −0.001), p < 0.001).

Spearman rank order correlation analysis showed that higher spinophilin-immunoreactive 

density in the frontal cortex was associated with higher VGluT1- and VGluT2-

immunoreactive density measures (rs = 0.3130, p = 0.0269; rs = 0.2895, p = 0.0414) 

(Supplementary Table 2). Spinophilin-immunoreactivity measures were not associated 

with cyano-PiB- or X-34-labeled amyloid pathology or NIA-RI, CERAD, or Braak 

stage (Supplementary Table 2). No associations were observed between spinophilin-

immunoreactive density or intensity measures and MMSE scores.

DISCUSSION

Glutamatergic neurotransmitter dysfunction occurs in the AD brain [25–29], and recent 

reports support a role for altered cortical vesicular glutamate transporter (VGluT) proteins in 

this process [43–47, 66]. However, only a few studies have examined alterations in cortical 

lamina-specific and cell-compartment localization (i.e., synapses) of VGluT proteins [43, 

44] in AD. The present study used an unbiased stereological design combined with high-
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resolution confocal microscopy to quantify neocortical VGluT1- and VGluT2-containing 

synaptic profile density and immunosignal intensity (the latter a measure of relative protein 

level within synaptic profiles) in cases that had a premortem clinical diagnosis of NCI, 

MCI, mAD, or sAD and received a detailed postmortem neuropathological evaluation. Here, 

we focused on two hubs of the DMN, the precuneus and the frontal cortex, which display 

neuropathology early in AD [48–52, 91, 92]. The frontal cortex has been reported to display 

neuroplastic changes in glutamatergic [43] and cholinergic [93] neuronal circuits.

The main finding of this study is that VGluT1-immunoreactive profile density measures in 

precuneus and frontal cortex were stable from NCI to MCI to mAD but were significantly 

lower in sAD cases compared to the other three groups. Our observation of VGluT1-

immunoreactive synaptic terminal loss in precuneus is similar to that seen in other areas 

of cortex examined in AD cases [43, 44]. On the other hand, another study reported an 

upregulation of VGluT1-containing synaptic terminals in frontal cortex lamina III from 

MCI compared to NCI, mAD, and sAD cases [43]. This discrepancy could be due to 

differences in staining methods as we used confocal immunofluorescence microscopy 

compared to chromogen-based immunohistochemistry [43]. In addition, our NCI cases 

were selected based upon their last premortem clinical evaluations performed within a 

year of death, regardless of postmortem neuropathology assessment. Sixty percent of our 

NCI cases had CERAD diagnosis of probable AD, and one had a CERAD diagnosis of 

definite AD (see Tables 1 and 2). Similarly, most of our NCI cases were Braak stage 

III-VI and were classified as having an intermediate likelihood of AD by the NIA-RI 

criteria. NCI cases were not statistically significantly different from MCI cases either 

by these neuropathological diagnostic measures (Tables 1 and 2) or by their regional 

amyloid burden determined by cyano-PiB and X-34 stains (see Fig. 3). In contrast, the 

other study [43] commented that their NCI cases rarely displayed Aβ plaques and were 

excluded from analyses of VGluT1 profiles in relation to plaques, but neuropathology data 

were not provided. NCI cases displaying substantial AD lesions are commonly present 

in clinical pathological cohorts including the RROS autopsy collection [67, 75, 94–97]. 

Whether synaptic markers differ in AD pathology-burdened compared to pathology-free 

NCI cases is an ongoing area of investigation. For example, Perez-Nievas and colleagues 

[24] reported that general presynaptic (synaptophysin) and postsynaptic (PSD95) measures 

in the temporal lobe were not significantly different between two subgroups of nondemented 

cases with low probability or high probability of AD by the NIA-RI criteria (the latter 

termed “resilient”) [24]. Similarly, our LP-NCI and HP-NCI NCI cases, regardless of the 

neuropathological criteria used for their designation (i.e., by NIA-RI, CERAD, or Braak 

stage), did not differ in VGluT terminal measurements in the precuneus or frontal cortex.

Several findings in the current study provide support for the idea that unlike precuneus, the 

frontal cortex displays glutamatergic synaptic terminal changes suggestive of a plasticity 

response to the progression of AD neuropathology. In both regions, significantly lower 

VGluT1 profile density was detected in sAD compared to NCI, but only in the frontal cortex 

was this loss paralleled by a significantly higher VGluT1 intensity (a measure of relative 

synaptic protein abundance) in sAD compared to NCI (Fig. 2). Thus, a decrement in cortical 

glutamatergic input may be associated with higher levels of VGluT1 protein content in 

remaining synaptic terminals in the frontal cortex but not the precuneus. That the VGluT1 
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intensity measures in the MCI and mAD cases were higher than in the NCI also suggests 

possible synaptic changes occurring early in the disease course. We also observed that 

lower VGluT2 profile densities were associated with higher VGluT2 profile intensities in 

both regions, suggesting a significant, albeit weaker, compensatory response for VGluT2. 

Complementary analyses of spinophilin-immunoreactive dendritic spines in lamina III 

showed that precuneus spinophilin-immunoreactive profile density and intensity were lower 

in mAD and sAD than NCI and MCI, while in the frontal cortex both measures were stable 

across clinical groups. Additionally, while lower precuneus spinophilin-immunoreactive 

profile densities associated with more severe regional and diagnostic neuropathology, similar 

associations were not observed in the frontal cortex. The strong correlations of VGluT1, but 

not VGluT2, and spinophilin with neuropathology measures in precuneus, but not frontal 

cortex, further support the concept of selective regional vulnerability in AD. Perhaps a loss 

of postsynaptic dendritic spines in the precuneus cortex marks an early stage of AD, when 

presynaptic VGluT1 terminals are stable, while loss of both postsynaptic dendritic spines 

and presynaptic cortico-cortical and intra-cortical excitatory VGluT1 terminals in precuneus 

and frontal cortex designate more advanced AD. However, with clinical AD progression 

relative protein levels of VGluT1 in synaptic terminals appear to upregulate in the frontal 

cortex, but not precuneus (see Fig. 2F). Collectively, our data support the concept that 

compared to the frontal cortex, synaptic profiles in the precuneus cortex are more vulnerable 

to AD neuropathology, and that this region lacks a sustainable plasticity response.

The degree to which hallmark AD lesions, or the consequences of these lesions, directly 

affect synapses in the AD brain is not well understood. In the present study, both 

VGluT1- and VGluT2-immunoreactive profiles were scarce within amyloid plaques in 

the precuneus and frontal cortex, while amyloid plaque-free neuropil displayed a loss 

of VGluT1-immunoreactive profiles only in advanced AD. Whether in amyloid plaque-

burdened areas VGluT-immunoreactive profiles are affected by fibrillar Aβ, Aβ oligomers, 

tau-containing dystrophic neurites, or neuroinflammation (e.g., gliosis) associated with 

amyloid [98–100] remains to be determined.

The present study used a rigorous unbiased quantitative design and statistical analyses. 

Study limitations include: (i) NCI, MCI, and mAD cases were aging clergy participants 

in the RROS [67–70], while the sAD group consisted of patients enrolled in the UPitt 

ADRC. Previous studies have discussed the RROS cohort in comparison to the general 

population and clinic cohorts [75, 93, 101], and we have reported similar alterations in 

cortical cholinergic change and changes in neurotrophic factor receptors levels, among 

others, using tissue from the RROS compared to a general clinic population in AD and 

individuals with Down syndrome [93, 97, 102–108]. Although the early and advanced AD 

cases from the RROS and UPitt ADRC, respectively, did not differ by years of education, 

the RROS early AD subjects were older than the ADRC patients with advanced AD. (ii) The 

MCI group contributing frontal cortex was 91% (10/11) amnestic, while for the precuneus 

sample MCI were not as homogeneous, with only 30% (3/10) amnestic. Amnestic MCI 

(aMCI) is believed more likely to progress to AD than non-aMCI [109, 110], but whether 

the aMCI subjects in this study would develop AD had they lived longer is an untestable 

hypothesis. However, it should be noted that VGluT1 densities were clustered tightly in 

the entire MCI group, and the aMCI cases did not differ appreciably from the non-aMCI 
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cases (see Fig. 2A). (iii) The current analyses focused on cortical lamina III based upon 

several observations: (a) lamina III of the neocortex displays both VGluT1 and VGluT2 

profiles [38], (b) lamina III cortico-cortical neuronal projections are components of higher 

order cortical circuits that interconnect the precuneus and frontal cortex [111], (c) lamina III 

projection neurons are selectively vulnerable and develop tau pathology in AD [112–116], 

and (d) the focus on lamina III also allowed for more relevant comparisons to the study 

by Bell and colleagues who analyzed the same cortical layer of frontal cortex [43]. Lastly, 

(iv) due to brain tissue availability overlap of cases was limited which prevented within-case 

comparisons of VGluT measures between the two brain regions.

In summary, the current study demonstrates differences in VGluT1- and VGluT2-

immunoreactive glutamatergic terminal change within layer III of the precuneus and frontal 

cortex at different clinical-pathological stages of AD. Of particular interest are findings 

that VGluT1 loss is associated with neuropathology progression in the precuneus, but not 

frontal cortex, and that a decremental change in frontal cortical VGluT1 terminal density 

is paralleled by an upregulation of VGluT1 protein content in remaining terminals of 

frontal but not precuneus cortex. The latter change may signal a preclinical neuroplasticity 

response. Thus, drugs aimed at preservation of cortical glutamatergic excitatory synaptic 

function and enhancement of neuroplasticity mechanisms, when combined with other 

currently available symptomatic and lesion modifying therapies, likely will prove beneficial 

in treating people who are at the early stages of AD clinical-pathological change.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Vesicular glutamate transporter 1 (VGluT1) immunoreactive (red fluorescence, precuneus: 

A, D, G, J; red fluorescence, frontal cortex: A’, D’, G’, J’) and VGluT2 immunoreactive 

(green fluorescence, precuneus: B, E, H, K; green fluorescence, frontal cortex: B’, E’, 

H’, K’) profiles in precuneus lamina III from a case with no cognitive impairment (NCI, 

precuneus: A, B, C; frontal cortex: A’, B’, C’), a case with mild AD (mAD, precuneus: D, E, 

F; frontal cortex: D’, E’, F’) and a case with severe Alzheimer’s disease (sAD, precuneus: G, 
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H, I and J, K, L; frontal cortex G’, H’, I’ and J’, K’, L’). Scale bar = 15 μm (A–L); 18 μm 

(A’–L’).
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Fig. 2. 
Quantitative measures of vesicular glutamate transporter 1 (VGluT1) immunoreactive profile 

densities (precuneus, A; frontal cortex, E) and relative protein levels (intensity) (precuneus, 

B; frontal cortex, F) and vesicular glutamate transporter 2 (VGluT2) immunoreactive profile 

densities (precuneus, C; frontal cortex, G) and relative protein levels (intensity) (precuneus, 

D; frontal cortex, H) from cases with no cognitive impairment (NCI), mild cognitive 

impairment (MCI), mild to moderate Alzheimer’s disease AD (mAD) and moderate to 

severe AD (sAD). In each clinical diagnostic group, cases with a CERAD diagnosis of 

No AD/Possible AD (“low pathology”) are identified by shaded symbols and cases with 

CERAD diagnosis of Probable AD/Definite AD (“high pathology”) are identified by empty 

symbols. Within the MCI groups, symbols for data points of amnestic cases contain the 

symbol “×”. The single solid line in each plot indicates the median value. Brackets in 

panel A indicate statistically significant groupwise differences (p < 0.05) determined by the 

Kruskall-Wallis analysis of variance and Dunn’s multiple comparisons test.
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Fig. 3. 
Quantitative measures of cyano-Pittsburgh compound B (cyano-PiB)-labeled amyloid plaque 

load (precuneus, A; frontal cortex, E) and X-34-labeled total amyloid load (amyloid 

plaques and neurofibrillary pathology) (precuneus, B; frontal cortex, F) in clinical groups 

of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild to moderate 

Alzheimer’s disease (mAD), and moderate to severe AD (sAD). Correlations between 

VGluT1 immunoreactive profile densities and cyano-PiB (precuneus, C; frontal cortex, G) 

and VGluT1 immunoreactive profile densities and CERAD diagnosis (precuneus, D; frontal 

cortex, H). In each group, cases with a CERAD diagnosis of No AD/Possible AD (“low 

pathology”) are identified by shaded symbols and cases with CERAD diagnosis of Probable 

AD/Definite AD (“high pathology”) are identified by open symbols. In the clinical group 

comparison panels, symbols for data points of amnestic MCI cases contain the symbol “x”. 

The single solid line in each plot indicates the median value. Brackets indicate statistically 

significant groupwise differences (p < 0.05) determined by the Kruskall-Wallis analysis 

of variance and Dunn’s multiple comparisons test. Scatter plots illustrating associations 

of vesicular glutamate transporter 1 (VGluT1) immunoreactive profile densities with cyano-

PiB-labeled amyloid plaque pathology burden (precuneus, C; frontal cortex, G) and with 

CERAD diagnosis (precuneus, D; frontal cortex, H) in clinical diagnostic groups of NCI, 

MCI, mAD, and sAD.
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