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Abstract

Denoising diffusion models embody a type of generative artificial intelligence that can be

applied in computer vision, natural language processing and bioinformatics. In this Review, we
introduce the key concepts and theoretical foundations of three diffusion modelling frameworks
(denoaising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic
differential equations). We then explore their applications in bioinformatics and computational
biology, including protein design and generation, drug and small-molecule design, protein-ligand
interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis.
Finally, we highlight open-source diffusion model tools and consider the future applications of
diffusion models in bioinformatics.

Introduction

Deep learning! was introduced to the field of bioinformatics and computational biology

in 2012 (ref. 2) (Box 1) and has been applied to many bioinformatics problems, such

as protein structure prediction3, protein function prediction®=®, protein-ligand interaction
prediction19-14 gene-expression predictionl>-20 and gene regulatory network modelling?1-
25 \arious deep learning architectures, including convolutional neural networks26, long
short-term memory networks?’, residual networks28, generative adversarial networks
(GAN)Z, graph neural networks (GNN)3 (Box 2) and transformers3! have been developed
for bioinformatics data analysis.

Diffusion models leverage deep learning technology32-35; however, they outperform other
deep learning methods in many domains, including in image generation36-42, image
inpainting*344 and speech synthesis*®. Diffusion models are deep learning-based generative
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models32-35 (Box 2) that aim to generate artificial yet realistic data (for example, a
computer-generated Picasso painting or an answer to a user’s question) from input
parameters. Compared to other generative models, such as autoregressive models*®,
normalizing flows*’, energy-based models*8, variational auto-encoders (VAES)*? or
GANSs29, diffusion-based generative models have the ability to learn complex distributions,
handle high-dimensional data and generate diverse data®->%, In particular, diffusion models
can surpass GANs2%, which consist of a generator that generates data and a discriminator
that can differentiate the generated data, in the challenging task of image synthesis33:50, In
addition, diffusion models can be applied for computer vision#3:51.56-71 ‘natural language
processing®>72-75, temporal data modelling”6-81, multi-modal modelling36:37:82.83 and in
medical image reconstruction84-93,

Diffusion models were originally introduced3? to address a central problem in machine
learning, that of modelling complex datasets using highly flexible families of probability
distributions while ensuring that learning, sampling, inference and evaluation remain
analytically or computationally tractable (Fig. 1). Inspired by non-equilibrium statistical
physics, this approach systematically and slowly destroys the structure of data through

an iterative forward diffusion process. Then, a reverse diffusion process is applied to

restore the structure in the data, yielding a highly flexible and tractable generative model

of the data, thereby enabling rapid learning, data sampling and evaluating probabilities
through deep generative models with up to thousands of layers or time steps as well as

the computing of conditional and posterior probabilities under the learned model. Based on
this concept, denoising diffusion probabilistic models (DDPMs)33 can achieve performance
comparable to or better than other generative models (for example, decoder, energy-based
models and GANSs)#6:94-96 in image generation tasks. The diffusion network structure

and training strategy can further be improved to boost performance®Y, surpassing GANs

in image synthesis. For example, a multi-head attention mechanism and the BigGAN’s
residual module®® can be applied for up-sampling and down-sampling of data to improve the
resolution and quality of generated images. In addition, a denoising diffusion implicit model
(DDIM)¥7 can be used to increase sampling rate.

Importantly, diffusion models can be applied in bioinformatics, for example, for denoising
cryo-electron microscopy (cryo-EM) data®, single-cell gene-expression analysis®9-100,
protein design and generation84:91.101-107 'qryg and small-molecule design®4108-113 anq
protein-ligand interaction modelling!14-118, Diffusion models have the advantage of being
able to handle high-dimensional data with high diversity and scalability.

In this Review, we provide a detailed survey of diffusion models, including denoising
diffusion models, noise-conditioned score networks (NCSNs) and stochastic differential
equations (SDEs), and discuss their applications in bioinformatics. We further highlight
possible future developments of diffusion models, aiming to propose some challenging
bioinformatics problems that may be tackled by creative diffusion models.
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The concept of diffusion models

Diffusion models learn to reverse the process of data destruction or corruption (for example,
introduced by noise), allowing the generation of realistic, clean data samples (for example,
restoration of uncorrupted data). Thus, diffusion models can learn from data that has been
progressively destroyed or degraded to generate new samples from a given distribution or to
estimate the distribution from which a given sample is drawn (Box 2).

Diffusion models are based mainly on three frameworks, each with a different formulation
of the forward and reverse processes (Fig. 2), that is, DDPMs32:33 NCSNs34119 and score
SDEs35120,

Denoising diffusion probabilistic models

DDPMs, which were the first diffusion models able to generate high-resolution data,
typically contain two Markov chains (Box 2): the forward chain gradually adds noise to
scramble the original data, followed by a reverse chain that removes the noise from the data
to recover the original data. If g(xp) denotes the distribution of the original data, in which

Xy denotes uncorrupted data, the transition kernel g(x;|xx1) of the forward Markov process
adding Gaussian perturbation at time ¢is denoted.#(x; /T — fx,_ ., 8I), in which #{1,...,7}.
Here T represents the number of diffusion steps; €£[0,1) is the hyperparameter denoting the
variance schedule across diffusion steps; | is the identity matrix; and Mx,, o) is the normal

distribution of xwith mean and covariance o. If a;=1 - B;and @, = [T} = oa., a Noisy
sample x;can be obtained directly from the distribution conditioned on the original input xg:

q(x:|x0) = /V(xt; axo, (1 - 6,)1)

@

X, = \/(ixo + /1 = e, e~H(0,1)
2

The forward process gradually introduces noise into the original data until it is completely
replaced by noise. The reverse process is the opposite operation, resulting in the generation
of new samples. This process typically starts with unstructured noise obeying the prior
distribution, and then, by applying a model — typically a trainable neural network — that
has learning ability, noise is removed step by step to restore the original data. The neural
network A can be formulated as:

po(Xe—1]x;) = V(X - 13 pp(X1 1), Op(x11 1))

©)

Given the starting point data of the reverse process as p(X7) =4/ (X7;0, 1), the distribution
of X conditioned on X7 is given by:
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T

pi(Xo.r) = p(X7) 1‘[1 (X1 | X))
t=

©

Eventually, a marginal distribution of Xy close to the original data xg can be obtained by
Pa(xo) = /pH(xO:T)dxlzT-

To train the model parameterized with 6o that it can learn the pattern of the original data
and make p(xp) close to the true data distribution g(xp), the loss function to be minimized is
set as the negative log-likelihood (equation (5)). We note that the process of minimizing the
negative log-likelihood of the observed data under the model is equivalent to minimizing the
Kullback-Leibler (KL) divergence between the empirical distribution defined by the original
data g(xg, x4, ..., X7) and the model distribution pg(xg, X1, ..., X7):

E[—logps(xo)] < KL(q(x0, X1, -+, xr) || po(Xo, X1, -+, x7))
Do\ Xo0: T
‘I(X1:T|XT)

=[E,[-log

Po(Xi—1|x)
=E,|-lo — log——F———
o logplon) = 3 oG

- LVLB

®)

The objective of DDPM training is to minimize Ly g, also known as the variational lower
bound of the log-likelihood. Ly, g can also be parameterized to increase the quality of
sample generation33,

Noise-conditioned score networks

In NCSNs, the score function of a probability density function o(x) is represented by the
gradient of the log density with respect to the input as V ,Jogp(x). To learn and estimate
the score function, a score-matching neural network sg is trained. The goal of this neural
network is to make sg(x) ~ V,Jogp(X) . Therefore, the objective function of the scoring
network can be defined as:

Evepio Il 86(x) = V. logp(x) || 5
(6)

Even though the problem is well defined, optimizing equation (6) is numerically impossible
because the value of V,logp(x) cannot be known. However, score functions can be learned
from data by applying score matching!21, denoising score matching22-124 or sliced score
matching23.

Moreover, training remains difficult because the trained score functions are unreliable
in low-dimensional manifold, because low-dimensional data is typically embedded in a
high-dimensional space (the manifold hypothesis)34. This challenge can be addressed
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by introducing Gaussian noise to the data at various scales, which improves the data
distribution’s suitability for score-based generative modelling. Thus, a single NCSN can

be applied to estimate the score corresponding to each noise level. If 0< oy<o)<...<
o:<...< oris a sequence of Gaussian noise levels, p,(x,|x) = #(x; x, 6]1), p,,(x) & p(x)),

and p,(x) = #(0,I). The NCSN s¢(x, o7 with the denoising score matching can then
approximate the gradient log density function, makings,(x, s,) ~ V.log(p,(x)), vVt € {1,...,T}.
And for x,, V,log(p,(x)) is derived as:

ﬂ

Vx,l()gps,(xt | X) = - o,

™

Consequently, the optimization objective function in equation (6) can be transformed into:

T
1
T 2 ACEsEspiso Il 5o 0) +

t=1

X=X 2
II2

@)

in which A(o) is a weighting function.

During the sampling phase, NCSNs use the annealed Langevin dynamics algorithm, which
employs a Markov Chain Monte Carlo procedure (Box 2) to sample from a distribution
according to its score function V Jogp(x). The Langevin method recursively computes x;as
follows:

X=X+ %Vxlogp(x) +ro,

©)

where y determines the amplitude of the update in the score’s direction; xg is sampled from
the prior distribution; and the noise is drawn according to w;~M®0,1).

NCSNs and DDPMs both operate on the principle of converting a basic noise distribution
into a more intricate data distribution by collecting information during the introduction

of noise, which is then reapplied when removing the noise. Both models are trained to
tackle a noise regression problem, based on the principle of maximum likelihood estimation.
Notably, the objective formulation of score matching with Langevin dynamics in NCSN
aligns with that of the re-weighted variant of the evidence lower bound of DDPM35:126,127,
In terms of sample generation, both models employ ancestral sampling, which progressively
transforms a noise sample into a data sample, guided by data distribution gradients.

Score stochastic differential equations

With unlimited time steps or noise levels, DDPMs and NCSNs can be further generalized to
a situation in which the perturbation and denoising processes can be described as SDEs. This
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generalized approach3® of gradually transforming data into noise is called score SDE. The
forward process of score SDE uses SDEs and requires an estimated score function of the
noisy data distribution. It is equivalent to the It6 SDE128 solution, which consists of a drift
component for mean transformation and a diffusion coefficient for describing noise:

dx = f(x,0)dt + g()dw, t € [0,T]
(10)

where wrepresents the standard Wiener process known as Brownian motion, and 7(x, )
and g (J are the drift and diffusion coefficients of SDE, respectively. The forward process in
DDPMs and score-based generative models is a special case of the discretizational SDE.

The formulation of the reverse diffusion process of SDE is given by equation (11)129, also
called reverse-time SDE:

dx = | £(x,1) — g%(t) V.logp(x)|d + g(r)dim

(1)

where i is the standard Brownian motion running backward time, and dZrepresents the
infinitesimal negative time step. The reverse SDE and forward SDE share the same marginal
densities but in the opposite time direction3®. As in DDPMs and NCSNSs, to numerically
solve reverse-time SDE, a trainable neural network sg(x; ) is employed to estimate the
actual score function V Jogp{x). The objective function can be defined as:

At
Eox-px(0) | x0)), xO~pataa [% I 56(x(®), 1) = Vylogp(x(1)1x(0)) ||§]

(12)

where ¢t~ ([0, 7]) denotes the uniform distribution over [0, 7] and A is a weighting
function. In addition, several sampling techniques, such as the predictor—corrector sampler,
can be employed to generate good samples. This procedure uses a score-based method (that
is, annealed Langevin dynamics) as a corrector after using a numerical approach to sample
data from the reverse-time SDE.

Improving diffusion models

The aforementioned diffusion models can be further improved through extension in training
speed126:130-133 increasing data sampling (data generation) speed®-134-139 integration with
other neural networks38:120.140-142 ‘and applications to different data types®3.73.143-151,
Many of these improvement strategies are available as open-source tools!52 (Table 1), which
has opened up their application to a diverse range of bioinformatics problems (Box 3).
Importantly, diffusion models can handle different data types, such as one-dimensional (1D)
DNA and protein sequences, two-dimensional (2D) biomedical images, three-dimensional
(3D) protein structures and vectorized gene-expression data.
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Protein design and generation

The computational generation of new, physically foldable protein structures allows the
design of proteins with specific functions or structural properties for protein engineering and
drug discovery. However, deep generative models (Box 2), such as VAEs and GANs193-159,
are limited to generating only small proteins or domains of large proteins (for example,

of immunoglobulins). Alternatively, diffusion models can be applied to protein design and
generation, because large and diverse proteins can be generated by guiding the model at each
step of the iterative generation process.

Protein structures in protein generation53.154 are typically described by a 2D matrix (map)
that contains the pairwise distances and angles between all the residues in the protein.

For example, ProteinSGM, based on a score-based generative model®?, applies a diffusion
model of 2D image generation using such a representation to create protein structures:

a score-based generation diffusion model with SDEs is used to generate a series of 2D
matrices that include inter-residue pairwise distances g, and the w, &and ¢ angles between
two residues. These constraints are then fed into Rosettal60 to build native-like protein
structures. For unconditional protein structure generation, ProteinSGM can generate proteins
from random noise. For conditional protein structure generation, such as scaffold inpainting
and functional site inpainting, the tool can generate protein structures that satisfy user-
defined constraints, similar to solving an image inpainting problem. However, ProteinSGM
requires post-processing by Rosetta using Markov Chain Monte Carlo (Box 2), which makes
the prediction computationally expensive.

Unlike ProteinSGM, Foldingdiffl9! represents the protein backbone structures (only N—
Ca-C atoms for each residue) with a series of consecutive angles to capture the relative
orientation of the constituent atom acid residues. A simple language transformer model3!
with DDPM can then be applied to generate protein structures unconditionally, as the
angles are invariant to translation and rotation. However, using a transformer to predict
sequence-like consecutive angles has the drawback that errors from the early prediction
accumulate and considerably affect the final structure, including collisions between atoms.
In addition, the approach cannot be generalized to generate complex structures with more
than one chain.

Inspired by Foldingdiff, DiffSDS192 introduces a 1D directional representation derived

from invariant atom features, similar to torsion angle representation, which enables an
encoder—decoder language model to perform the diffusion process. In the language model,
the encoder (with a hidden atom-direction-space layer) transforms the invariant features

into equivalent direction vectors, whereas the decoder reverses the transformation. By
performing the diffusion process in this direction and by conditioning angle spaces on
geometric restraints, DiffSDS can restore protein backbone structures of higher quality than
the deep-learning-based protein design method RFDesign!%6: DiffSDS is two times better at
generating proteins that resemble natural proteins (protein likeness), as measured by Rosetta
energies, about 18 times better in terms of connectivity errors and 60% better at generating
non-overlapping scores with existing backbones than RFDesign.

Nat Rev Bioeng. Author manuscript; available in PMC 2024 April 04.
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The integration of diffusion models with GNNs30 (Box 2) enables the direct

generation of 3D protein coordinates, resulting in an end-to-end generative model. SE(3)-
equivariant161.162 (Box 2) DDPMs, which are usually used in small-molecule generation,
can also be applied to generate protein structures in a representation-frame-independent
manner63, For example, independent DDPM models equipped with invariant point
attention63 structural modules can be trained with the distribution of atom features

(for example, coordinates in a canonical frame with respect to backbone atoms, residue

type and side-chain angles) to generate a protein’s backbone, sequence and side-chain
rotamers84. By jointly diffusing the structure and sequence, while incorporating coarse
structural constraints, the model can gradually generate the fully atomistic protein structure
and sequence, allowing controllable protein backbone generation and protein structure
inpainting. The sequence recovery rate of this method is comparable to that of other
machine-learning-based and physics-based methods, such as 3DConv164, RosettaFixBB and
RosettaRelBB165. Similarly, Geniel®3 makes use of the SE(3)-equivariant feature from the
invariant point attention module in conjunction with DDPM to generate protein backbones
unconditionally, also introducing geometric asymmetry with an invariant encoder to directly
inject noise into residue coordinates, as well as an SE(3) equivariant decoder with an
invariant point attention module to predict noise.

SMCDIff104 applies a similar deep learning architecture (that is, an SE(3)-equivariant
GNN) (Box 2) to the motif-scaffolding generation problem, dividing the problem into two
parts: unconditional protein backbone generation (ProtDiff) and conditional sampling in
diffusion models based on a protein motif (SMCDiff), similar to inpainting. Unconditional
protein generation is achieved by training a SE(3)-equivariant GNN (Box 2), built from
residue coordinates and embedded features from the protein sequence, to generate protein
backbones. By contrast, conditional sampling is formulated on an unconditional diffusion
model as a sequential Monte Carlo simulation problem, which may be solved by particle
filtering. However, the network does not include torsion angles as features and may
therefore generate unnatural proteins (for example, left-handed helices). SMCDiff was the
first deep generative model that lever-aged the power of diffusion models to address the
motif-scaffolding generation problem.

RFdiffusionl9®, which integrates a conditional DDPM diffusion model with the pre-trained
protein 3D structure prediction model Rose TTAFold66, can directly generate final 3D
coordinates. Inspired by the recycling process in AlphaFold2, a self-conditioning prediction
strategy is applied, in which the current prediction is conditioned on the prediction from the
previous timesteps, thereby considerably improving the performance of the model. Starting
from random noise, RFdiffusion can generate large protein structures unconditionally, which
can then be used in the design of protein monomers. Using protein motif coordinates

as input, RFdiffusion can also construct scaffolds conditionally for functional motif and
enzyme active site scaffoldingl%°. Given a point group symmetry, RFdiffusion can maintain
the symmetry during the prediction owing to the equivariance design of RoseTTAFold.
Therefore, this approach can be applied to symmetric protein oligomer and motif scaffolding
(for example, for the design of therapeutic16” and metal-binding proteins'68.169). We note
that compared to the other methods discussed in this section, some proteins designed by
RFdiffusion have not only been validated in silico, but also by biochemical and biophysical
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experiments170%.171 making it one of the first generative artificial intelligence methods
of protein design that have been experimentally validated. Furthermore, RFdiffusion
outperforms other methods, such as RFDesign, in the design of large protein structures
and high-order protein oligomers, demonstrating the advantage of diffusion models.

FrameDiff196 applies diffusion models to explore whether a pre-trained protein structure
predictor is necessary for protein backbone generation. Here, using denoising score
matching, a principled SE(3) diffusion model can better formulate the protein backbone
generation problem, achieving comparable performance with four-fold fewer network
weights and without the need to train another protein structure prediction network, compared
to RFdiffusion.

Chromal07 is a GNN30-based conditional diffusion model designed to generate large single-
chain proteins and protein complexes with desired properties and functions. This model can
generate protein structures that are over 3,000 residues in size, which surpasses the size limit
for proteins generated by several other networks (that is, ProteinSGM, Foldingdiff, DiffSDS
and SMCDiff) (<2,000 residues). To reduce computational complexity, Chroma uses a
random graph generation procedure that preserves both short- and long-range interactions.
As a result, Chroma can produce high-quality, diverse new protein structures, and enables
the programmable generation of proteins that are conditioned on several different properties,
such as residue-residue distances, symmetry and shape.

Small-molecule generation and drug design

Drug discovery involves the identification and optimization of small molecules that can
interact with specific biological targets, such as enzymes or receptors, to modulate their
activity and ultimately achieve a therapeutic effect. Deep learning, particularly deep
generative models, enables the rapid generation and evaluation of a large number of such
potential drug candidates?2-175,

The conditional diffusion model, which is a deep learning method based on discrete graph
structures (CDGS), allows the generation of molecular graphs of small molecules with
similar data distributions to real-number molecular graphs198, This method employs a
hybrid message-passing block architecture, which comprises a standard message-passing
layer for collecting local features, such as node-edge dependencies, and an attention-based
message-passing layer for extracting and transmitting global information in the architecture.
The molecular graphs are embedded with distinct components for node features and edge
matrices, with channels for edge existence and edge types. The CDGS model has enabled
the application of diffusion models in the molecular graph domain, which is crucial

for drug discovery and material science. This approach accurately models the complex
dependency between graph structures and features during the generative process, using
SDEs to describe the graph diffusion process. The continuous forward process is applied
directly to edge existence variables, and the reverse process first decodes discrete graph
structures, which serve as the condition for each sampling step. A specialized hybrid graph
noise prediction model is used to extract global and local node-edge dependencies from
intermediate graph states. This diffusion-based model can obtain high-fidelity samples in
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200 steps of network evaluations using the Euler-Maruyama method76. In addition, a fast
ordinary differential equation solver, which applies the semi-linear structure of probability
flow ordinary differential equations for graphs, promotes rapid, high-quality graph sampling.
CDGS outperforms other methods in molecular graph generation, including flow-based
methods (for example, GraphAF177, GraphDF178, MoFlow7® and GraphCNF!80) and

other diffusion models (EDP-GNN151, GraphEBM181 and GDSS148). CDGS also performs
better in generic graph generation than ER182, VGAE183 GpraphRNN184 and GRAN85,
demonstrating its potential to facilitate drug discovery and material design by representing
molecular structures and restricting the molecule search space.

The E(3)-equivariant diffusion model (EDM)* (Box 2) performs the diffusion process

on atom coordinates and atom types in the Euclidean space to generate small molecule
structures with up to 29 atoms, compared to nine heavy atoms that can be achieved with
equivariant normalizing flows86. An EDM represents each small molecule as a point
cloud that can be described by a graph with nodes v; € Vrepresenting atoms in the
molecule based on an equivalent transformation, thereby combining the equivariant GNN
and the diffusion process. The former contains L layers of equivariant graph convolutional
layers that take each atom’s 3D coordinates and features as input to model molecule
structures with geometric symmetries, whereas the latter gradually adds Gaussian noise to
both the coordinates and features of the atom, thereby improving training, performance
and scalability, compared to other E(3)-equivariant models, such as G-Schnet87 and
equivariant normalizing flows!88 as well as graph-based molecule-generative models, such
as GraphVAE188 GraphTransformer!®? and Set2GraphVAEL9,

Based on the equivariant GNN architecture and inspired by the physics governing the
formation of small molecules, the Lyapunov function applies physical and statistics prior
information (diffusion informative prior bridge)1%° to guide the diffusion process in

model training and generate high-quality and realistic molecules. In this approach, problem-
dependent prior information, in particular, physical and statistics information, is injected
into the diffusion process instead of imposing or improving deep learning architectures.
Several energy functions, integrated with the physical and statistical prior information, are
then used as a prior bridge to guide the model training without any extra modification of
the equivariant GNN architecture. Thereby, the Lyapunov function shows better molecule-
generation performance in terms of physical energy and molecule stability1% and better
uniformity-promoted 3D point cloud generation compared to EDM3* and point cloud
diffusion143, which apply the traditional Gaussian noise in model training, as well as
equivariant normalizing flows1€6,

Dynamic graph score matching (DGSM)!10 is a deep learning model developed for
predicting stable 3D conformations from 2D molecular graphs, primarily used in
computational chemistry. The model can also be extended to protein sidechain conformation
prediction and complex multi-molecular prediction (for example, predicting the interaction
of more than three small molecules without explicit bonds)11°. Deep learning methods

often consider only the local interactions between bonded atoms, while neglecting the
long-range interactions among unbound atoms, which are crucial for constructing accurate
3D molecular structures. To overcome this limitation, DGSM treats each molecule as a
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graph g = <v, e>, where a node in vrepresents an atom and its features (for example,
coordinates), and an edge in e represents a bond between two atoms. The distance Dj;
between each pair of atoms, that is, the edge length in the graph, can then be computed
from their coordinates. For each pair of unbound atoms, the distance Dj; can be perturbed
by a Gaussian noise level at each training step. A message passing neural network!®! is then
applied, using edge length and edge type in the graph as inputs to dynamically embed the
molecular 2D graph by adding Gaussian noise to the distance between pairs of unbound
atoms. Using the score-matching method, the model can then directly estimate the gradient
fields of the logarithm density of atomic coordinates. Importantly, the model can be trained
in an end-to-end fashion, thereby addressing the limitation of physics-based simulation
methods that do not account for long-range interactions between non-bounded atoms. Thus,
DGSM outperforms other methods, including RDKit192, CGCF193 and ConfGF144 in terms
of matching score and coverage score, confirming the benefit of modelling long-range
interactions.

SDEGen!!1 is a multi-stage diffusion model that can generate molecules by adopting
multiple architectures in different stages with different purposes; here, molecular
conformations, including distances between two atoms within three-hop edges, edge type
and atom type, and their corresponding graphs, are used as inputs for three different
multilayer perceptrons to generate their embeddings. The distance embeddings are corrupted
by Gaussian noise and the atom-type embeddings are then updated by a GNN (Box

2). The noisy distance embeddings, edge-type embeddings and the updated atom-type
embeddings are then combined into final bond embeddings. Finally, the SDE network is
parameterized. This multi-stage model is not as streamlined as end-to-end models, but it
outperforms several other models, including DGSM194, CGCF193, ConfGF144, CVGAE1%
and DMCG19, by multiple metrics, such as coverage score and matching score, in
particular, when considering long-range interactions in molecules.

DiffMD!12 js a score-based denoise diffusion model that can be applied to improve
molecular dynamics simulations. Deep-learning-based molecular dynamics models typically
depend on intermediate force fields and can thus only be applied to static molecules,

not considering thermodynamics. DiffMD addresses this problem by applying score-based
conditional diffusion models, employing the equivariant geometric transformer to take
atomic coordinates, velocity and features embedded in molecular dynamics trajectories
directly as input. In each layer, the model introduces velocities, directions and other
geometric information using the spherical Fourier—Bessel transformation to update the

input information. During the diffusion process, the conditional noise, based on the
accelerations of atoms in previous frames, is added to the inputs for the equivariant
geometric transformer to estimate the score function, that is, the gradient of the log

density of the biomolecule conformations. DiffMD outperforms several deep-learning-based
molecular dynamics methods, including tensor field networks'62, radial fields1%7, SE(3)-
transformers198, graph mechanics networks9 and SCFNN2% in terms of average root-
mean-squared error.

Fragment-based drug design can also be used for the discovery of new small molecules in a
3D space. Here, the aim is to design linkers consisting of atoms that can connect molecular
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fragments into a complete molecule. DiffLinker!13 uses an E(3)-equivariant 3D conditional
diffusion model to generate these molecular linkers and to connect multiple molecular
fragments to form a single connected molecule. The prediction is made by applying a GNN
to predict the linker size (the atom number of the linker) and atom types. The coordinates

of the atoms are sampled from the normal distribution, followed by a reverse diffusion
process of the atom features conditioned on the input fragments. Compared to DeL inker201
and 3DLinker202, DiffLinker can perform better in terms of average quantitative estimation
of drug-likeness, synthetic accessibility, the average number of rings in the linker, and the
validity, uniqueness and novelty of the samples, thereby generating more realistic molecules.

Protein—ligand interaction modelling

Predicting the conformation of a ligand bound to a protein is important in the investigation
of protein-ligand interactions and protein function as well as for the discovery of new
drugs. Various protein-ligand docking, machine learning and auto-regressive models have
been developed to address this problem0:203-206: however, these approaches are limited

by their low geometrical accuracy. Alternatively, DiffBP114 can generate ligands that bind
to a specific protein pocket without requiring the ligand structure as input; here, a pre-
generation network is used to generate the centre of mass and atom number of the ligand,
followed by diffusion models in conjunction with equivariant GNNs!61:207 tg generate high-
quality ligand candidates3335, Compared to auto-regressive methods, such as 3DSBDD?205,
Pocket2Mol2%6 and GraphBP293, which generate one atom at a time without considering
interactions among all atoms, DiffBP can generate all atoms of a ligand that bind to a target
protein, exhibiting high binding affinities (for example, 41.07%114 for DiffBP, compared to
12.22%114 for 3DSBDD, 23.98%114 for Pocket2Mol and 29.54%%14 for GraphBP) on the
CrossDocked?08 dataset curated from protein—ligand complex structures in the Protein Data
Bank (PDB).

DiffSBDD!15 adopts a DDPM equipped with an E(3)-equivariant neural network to generate
new ligands, including atomic features binding to specific protein pockets; here, ligand
generation can either be protein-conditioned, based on the binding site to the protein, or the
ligand can be impainted after learning the joint distribution of the protein—ligand complexes.
Compared to 3DSBDD and Pocket2Mol, DiffSBDD can generate more diverse ligands with
higher affinity on the CrossDocked dataset!1°.

Unlike diffusion models applied for protein pocket docking, DiffDock!16 uses the structure
of the protein and ligand as input and does not require knowledge of the location of

the binding site (that is, blind docking); here, the diffusion process is applied to ligand
positions, represented by ligand translation and rotation, sampling multiple positions,
which are then ranked based on a confidence score using a trained scoring model and

a trained confidence model, which are built on top of SE(3)-equivariant GNNs (Box

2). The scoring model samples different positions of the ligand, and the confidence

model selects the ligand positions with the highest confidence score, similar to the
structural and scoring modules of AlphaFold2162 for protein structure prediction. DiffDock
has been tested on the PDBBind dataset, outperforming search-based methods, such as
SMINAZ299, QuickVina-W210, GLIDE?! and GNINA212, and the deep learning methods
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EquiBind?13 and TANKBind?14, Specifically, DiffDock achieved a top-1 success rate of
38.2% (the percentage of top-1 predictions with root-mean-square deviation <2 A), which is
significantly better than the energetics-based method GLIDE (21.8%; A= 2.7 x 107) and
the geometric deep-learning-based method TANKBind (20.4%; P= 1.0 x 10712)116,

Similar to DiffDock, NeuralPLexer! is a deep generative network that leverages SDEs

to predict complex protein—ligand structures based on the protein structure and molecular
graphs of the ligand as input in blind docking. The key component in the model is

an equivariant structure diffusion module, which predicts the atomic coordinates on a
heterogeneous graph formed by protein atoms, ligand atoms, protein backbone frames and
ligand local frames. Using SDEs, the model can handle unbound or predicted protein
structure inputs and can automatically accommodate changes in the protein structure in
response to ligand binding. Compared with the deep learning method EquiBind?13 and the
physics-based method CB-Dock?15 on the PDBBind?16 dataset, NeuralPLexer can generate
a more accurate ligand structure with higher geometrical accuracy, with an approximately
70% success rate for a ligand with root-mean-square deviation <2 A, which is higher than
that of EquiBind (about 40%) and CB-Dock (about 38%) and has a lower steric clash rate of
0.105.

Finally, a deep generative energy-based diffusion model can predict the binding affinity

for a protein—ligand pair, if trained with a set of protein-ligand complexes, without

requiring labels for binding affinities!18. During training, the network first predicts the
rotation score for the perturbed ligand with respect to the protein pocket using an
equivariant rotation prediction network, called Neural Euler’s Rotation Equation (NERE).
By training the model with the SE(3) denoising score matching, the log-likelihood is
considered to be the binding affinity between the protein and ligand in a pair. Tested on

the protein—ligand dataset PDBbind?16 and the structural antibody database SAbDab?17,

the model achieves an accuracy of 0.656 in predicting protein—ligand binding affinity,

which is better than that of other unsupervised methods: 0.647 for Molecular Mechanics
Generalized Born Surface Area218 (MM/GBSA), 0.617 for Astex Statistical Potential21®
(ASP) and 0.602 for DrugScore2018 (ref. 220). This model further performs comparably

to other supervised methods in predicting antibody-antigen binding18: Zlab RerANK?221,
ZRANK?2222 RosettaDock?23, PyDock?24, Scoring by Intermolecular Pairwise Propensities
of Exposed Residues (SIPPER)22%, Atomic Potential Protein Interactions Scored Atomically
(AP_PISA)226 Coarse Grained Protein Interaction Energy (CP_PIE)?27 and FIREDOCK?228,

Cryo-electron microscopy data analysis

Single-particle cryo-electron microscopy (cryo-EM)229-235 js 3 key imaging technique

for determining and visualizing the 3D conformation (structure) of large biomolecular
complexes (for example, protein complexes) at atomic resolution; here, the images of protein
complexes obtained by cryo-EM are used to reconstruct their 3D conformation represented
by 3D density maps.

The protein structure reconstruction method CryoDRGN23% introduces a latent variable
Zto define a conformational space V/for a protein complex on cryo-EM density maps.

Nat Rev Bioeng. Author manuscript; available in PMC 2024 April 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Guo et al.

Page 14

CryoDRGN is based on a VAE framework that learns a continuous distribution in the

latent space for protein structures from cryo-EM data. However, although CryoDRGN can
simulate complicated structural dynamics, the Gaussian prior distribution of VAE does

not match the posterior aggregate approximation, which limits the generative capability

of the model236. Alternatively, a continuous-time diffusion model (that is, score SDES)

can be implemented in CryoDRGN to learn a high-quality generative model for capturing
protein conformations directly from cryo-EM imaging data. This CryoDRGN% model is
first trained with the standard VAE model using cryo-EM images in Fourier space. The
latent space Z, which is predicted by the encoder of the trained VAE, is then fed into the
denoise diffusion model based on a ResNet architecture28 to approximate the distribution of
the latent variable Z Finally, the synthesized latent variable .z, which is sampled from the
diffusion model and is similar to the target protein’s distribution, is used as input for the
decoder of the VVAE to generate protein structures with better quality (higher similarity with
the target proteins’ distribution) than a VAE, which directly reconstructs protein structures
by learning continuous distribution in latent space.

Single-cell image and gene-expression analysis

Reconstructing the 3D shape of a cell from a single-cell 2D microscopy image using
computational methods is useful for studying the morphological features of cells. However,
each 2D image may permit multiple 3D reconstructions, and therefore, different 2D slices
may lead to different predictions of the 3D shape. To tackle this issue, DISPR% employs
the U-net architecture?3” and a diffusion process to generate a single-cell 3D shape from
2D images. During training and evaluation, this approach uses a 2D image of an individual
cell as an inductive bias. The 2D image is then concatenated with its 3D Gaussian noisy
segmentation mask as input for the diffusion-based model to predict realistic 3D cell shapes.
DISPR benefits from this training approach and its stochastic property. Unlike VAE-based
architectures used in SHAPR?238 and its variants23, which produce a single, deterministic
reconstruction, DISPR employs a stochastic model trained on Gaussian noise and is thus
capable of predicting an infinite number of cell shapes, providing a more comprehensive
representation of dynamic cell structures. DISPR represents the first use of a diffusion
model in the context of 3D cell shape reconstruction, outperforming VAE-based deep
generative models, such as SHAPRZ38 in terms of volume, surface area and roughness
reconstruction®.

Single-cell RNA sequencing can assess the expression of genes in individual cells. However,
cells typically contain low quantities of RNA, which may cause noisy measurements

(for example, varied measurements and experimental bias) of gene expression; moreover,
values may be missed (dropouts). Therefore, it is important to denoise single-cell RNA-
sequencing data and impute missing values. DEWAKSS190 applies a diffusion model
with a K-nearest-neighbour (KNN) graph to select denoising hyperparameters using the
noise2self self-supervision method, thereby not depending on an explicit noise model

but on an invariant function of data features. Unlike heuristic-based methods, such as
MAGIC240 and KNN-smoothing2?4!, which also use KNN graph architecture but may lead
to over-smoothing of data variance, DEWAKSS can preserve variances across multiple
gene-expression dimensions.
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Open-source diffusion model tools

Outlook

Some diffusion models that can be applied to bioinformatics have been implemented as
open-source tools (Table 2). However, these tools do not use NCSNs34 as the diffusion
framework, mainly because NSCNs face problems in terms of sampling and training

and can thus not achieve high accuracy in image generation. Therefore, NCSNs are less
adopted in bioinformatics and computational biology than DDPMs33 and score SDEsS®,
which are equipped with efficient sampling and training methods32 for high-definition

image generation. Nevertheless, as the first diffusion model, NSCN has made substantial
contributions to the development of the field. Furthermore, many bioinformatics applications
also include deep learning components to deal with data generation and denoising
challenges specific to their application.

Diffusion models can be applied in several bioinformatics applications and may be further
extended to other computational biology areas owing to their ability to denoise data and
generate realistic new data (Table 3).

3D genomics data analysis

High-throughput chromosome conformation capture (Hi-C) is a key technology for studying
3D conformations of chromosomes and genomes, applying next-generation sequencing
techniques to sequence chromosomal regions that are spatially close to each other (that

is, in contact)242. Thus, Hi-C data captures the interactions between chromosomal regions
of a genome to build 3D conformations of the genome243.244 and study long-range gene-
enhancer interactions. This approach typically requires the data to be converted into 2D
chromosomal contact matrices (maps), which store the frequency at which chromosome
region 7interacts with chromosome region j, where 7and jare the indices of chromosome
regions. Therefore, a Hi-C contact matrix can be considered an image. However, Hi-C data,
in particular, single-cell Hi-C data, are usually noisy and incomplete, so that chromosomal
interactions in chromosomal contact matrices may be false positives or interactions may

be missing in the matrices. Deep learning methods (for example, GANSs) can be applied

to denoise Hi-C data?4®; in addition, diffusion models (for example, DDPM) may enable
denoising of Hi-C chromosomal contact matrices to improve 3D genome conformation
modelling and to study spatial interactions between genes and regulatory elements (for
example, enhancers). However, the deep learning architecture of DDPM is typically the
U-Net, which may not be as powerful as the deep residual network used in the Hi-C data
denoising method ScCHICEDRN?246, Thus, if applied to Hi-C data denoising, the architecture
of DDPM would have to be updated to deep residual networks to improve its denoising
ability.

Single-cell reconstruction and inference

The activity of a single cell can be captured by various ‘omics data, such as transcriptomics
(RNA-seq), proteomics, chromosome accessibility (ATAC-Seq) and epigenetics (bisulfite
sequencing), which may benefit from diffusion models; for example, data could be inferred
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to one modality (for example, RNA-Seq) from another modality, such as ATAC-Seq data
and genome methylation data; missing spots in single-cell spatial transcriptomic data could
be calculated; spots (each consisting of multiple cells) in 10x spatial transcriptomic data
could be decomposed into single cell data (super-resolution); and single-cell data could be
used to build 3D models of the spatial arrangement of cells. Moreover, diffusion models
designed to denoise images could also be applied to denoise single-cell ‘omics data, such as
transcriptomics, proteomics, metabolomics and epigenetics data.

DNA regulatory element design

The expression of genes is modulated by short DNA sequences on genomes, called
regulatory elements, such as enhancers and promoters. Designing regulatory elements is
an important approach to designing synthetic cells using synthetic biology. Generative
models, such as GANs?47, can be applied to design enhancers that regulate the expression
of genes and the development of cell types. However, diffusion models have shown better
performance in image synthesis than GANs®? and may thus be more suitable for the design
of enhancers and other gene regulatory elements.

Cryo-electron microscopy image denoising

Diffusion models can reconstruct complex protein structures from 3D cryo-EM density
maps, which are typically made of noisy and low-contrast 2D cryo-EM protein particle
images, isolated from large 2D cryo-EM protein images (also called cryo-EM micrographs).
However, denoising original cryo-EM images to build better 3D cryo-EM density maps
remains challenging. Although image preprocessing techniques, such as EMAN2 (ref. 248),
can denoise cryo-EM images249, diffusion models trained on many noisy images at various
noise levels and their clean counterparts may allow the recovery of clean cryo-EM images
more effectively than conventional image processing techniques that have not been trained to
learn the noise distribution of cryo-EM images?>0.

Peptide design

Peptides, which are short, typically unfolded amino acid sequences, can bind to proteins to
modulate their function, which has been explored for drug design. Diffusion models can not
only be designed to generate new proteins but could also be adapted to create peptides that
can modulate protein function. For example, diffusion models pretrained for protein design
may be retrained on a peptide dataset to design peptides through transfer learning.

Protein structure refinement and mutation prediction

The tertiary and quaternary structures of many proteins and protein complexes can be fairly
accurately predicted by AlphaFold2 (ref. 163) and AlphaFold-multimer251, respectively.
However, such predicted structures may contain structural errors and may thus need to

be refined. Conditioned on a predicted structure input, diffusion models may be able to
remove noise from the predicted structure to bring it closer to the native structure. Similarly,
it remains challenging to predict how an amino acid mutation alters the structure of a
protein, which may affect protein function and phenotype. Diffusion models have generative
capability, demonstrated in protein design, and may therefore be able to transform the
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known structure of a protein without mutation (wild-type protein) to the structure of the
same protein with mutations (mutant) to predict structural changes induced by mutations.

Limitations of current diffusion models

Although diffusion models may be applied for various bioinformatics applications,
potentially outperforming GANs and VVAEs, some limitations remain to be addressed. First,
the training process of diffusion models involves the introduction of Gaussian noise to

the data, resulting in a long training time. Second, although considerable efforts have

been directed towards increasing the sampling speed in diffusion models, the sampling
time of most models still exceeds that of other deep generative models (for example,

GANs and VAES). The long sampling time hinders some real-time applications of diffusion
models. Developing a streamlined approach of single-step noise addition and removal may
reduce the training and sampling time. Third, the computational resource requirements of
diffusion models are higher than those of GANs and VVAEs. Therefore, the trade-off between
performance improvement and computational resource demand needs to be evaluated when
deciding which model to use. Furthermore, new applications of diffusion models are often
non-trivial and may require validation of suitable data representations (embeddings), types
of diffusion model and deep learning architectures.
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Box 1
Deep learning

Deep learning is a machine learning technology that applies artificial neural networks
with many layers of neurons (hence, ‘deep”) to model and extract complex patterns in
data. Deep learning can then learn patterns and features from complex data to perform
intelligent tasks, such as speech and image recognition, natural language processing

and protein structure prediction. The artificial neurons in each layer receive input from
the neurons in the previous layers until the final output layer produces a prediction

(for example, classifying an image into a category or generating a sentence of text).
During training of a deep learning model, the weights associated with the connections
between neurons are adjusted to fit the training data. A major advantage of deep learning
models over other machine learning methods is their ability to automatically learn
hierarchical representations from raw data through multiple layers of abstraction. This
enables deep learning models to achieve high prediction accuracy in many domains, such
as precision medicine and healthcare (for example, medical image segmentation237:258-
261 and disease diagnosis262-26%), finance (for example, algorithmic trading266.267 and
risk management268) and agriculture (for example, crop monitoring269:270 and pest
detection?’1). Some notable applications of deep learning are ChatGPT22 for natural
language processing, DALL-E-2 (ref. 83) and GLIDEZ73 for image generation, and
AlphaFold2 (ref. 163) for protein structure prediction.
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Box 2
Key concepts relevant to diffusion models

Diffusion: the movement of molecules, atoms, ions or energy from a region of higher
concentration to a region of lower concentration along a concentration gradient until the
concentration becomes equal in both regions. Diffusion, which is driven by a gradient
in Gibbs free energy or chemical potential, is a stochastic process owing to the inherent
randomness in the movement of the diffusing entities.

Generative model: a type of machine learning model that aims at learning the
underlying distribution of data to generate new, similar data. These models can
approximate the joint probability distribution of input features and labels, if available,
and generate new data points by sampling from the learned distribution.

Markov chain: a stochastic model that describes a sequence of possible states, in which
the probability of a state depends (or is conditioned) only on its previous state.

Markov chain Monte Carlo: a statistical or computational simulation method that
constructs a Markov chain to iteratively generate a sequence of samples according

to a conditional probability distribution between two consecutive states. After running
the Markov chain for enough iterations, the generated samples converge to the desired
posterior distribution.

Graph neural network (GNN)30: a type of deep learning model for processing graph-
structured data (for example, molecular graphs and biological networks). Each node in a
GNN receives messages from its neighbouring nodes, which are used to update its hidden
representation. By iteratively updating node representations, the GNN can aggregate
information from both the local neighbourhood and remotely connected nodes in the
graph.

Equivariant GNN6L: a special type of GNN that is equivariant to a transformation (for
example, translation and rotation) in the input data (for example, of a three-dimensional
object, such as a protein structure). For example, the translation of an object in the

input space leads to the translation of the same output of the object generated by the
equivariant GNN in the output space without changing the value of the output.

SE(3)-equivariant networks62: a special equivariant GNN model that preserves the
symmetry of the special Euclidean group SE(3). If a SE(3) transformation is applied to
the input, the output generated by the networks undergoes an equivalent transformation.
Achieving SE(3) equivariance allows the model to capture the inherent symmetries and
geometric properties of the input 3D data.

SE(3)-transformer1%: a specific implementation of SE(3)-equivariant networks using
the transformer’s self-attention mechanism to achieve SE(3) symmetry, including three-
dimensional rotations and translations. The SE(3)-transformer is particularly useful for
tasks involving three-dimensional structures, such as protein structure prediction and
protein design, where different (x; y; 2) coordinates of the same protein structure
appearing in different orientations and positions can be treated as the exact same object.
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Box 3
A practical guide for applying diffusion models in bioinformatics

Diffusion models are particularly useful in the generation, design or analysis of small
molecules, proteins and biological images. To decide which diffusion model to apply

to a specific problem, the representation of the specific data type (for example, small
molecules) needs to be considered to be suitable for processing by a deep learning

model in the diffusion process. The conformations of small molecules and drugs can

be represented in several ways to facilitate the diffusion process; for example, they

can be treated as a string, such as the SELF-referencing embedded string, which can

be converted into a two-dimensional (2D) matrix. This matrix can be used as input

for graph neural networks (GNNs) under a diffusion model framework to generate three-
dimensional (3D) molecular graphs, as exemplified by dynamic graph score matching19,
Alternatively, they can be presented as 3D graphs that contain spatial direction and
torsion angles between atoms, which can be used by a combination of SE(3)-equivariant
GNNs162 and diffusion models, such as the E(3)-equivariant diffusion model® to capture
their essential properties. In addition, small molecules can be represented as 3D atomic
point clouds to be processed by equivariant GNNs, as in DiffLinkerl13, Proteins can

be represented as either one-dimensional (1D) sequential features suitable for a 1D
transformer or 2D contact and distance maps suitable for processing by convolutional
neural networks. The 3D structure of proteins is usually represented as graphs that consist
of nodes denoting residues and edges that represent residue pairs in contact, which can
be handled by both standard GNNs and SE(3)-equivariant GNNs in combination with
diffusion models. For imaging data, such as cryo-electron microscopy images, various
diffusion models initially developed for image generation, such as CascadedDiff®0, can
be applied. Biomolecules or cell shapes may also be represented by 3D images, which
can be reconstructed from 2D images by a combination of autoencoder or U-Net?37 with
a diffusion model, as in CryoDRGN® and DISPR%. These can model the distribution

of ground-truth data to generate higher-quality 3D images than other generative artificial
intelligence methods. For example, DISPR outperforms a VAE-based deep generative
model SHAPRZ38 in the context of 3D cell shape reconstruction.
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Key points

. Diffusion models are a generative artificial intelligence technology that can be
applied in natural language processing, image synthesis and bioinformatics.

. Diffusion models have contributed greatly to computational protein design
and generation, drug and small-molecule design, protein—ligand interaction
modelling, cryo-electron microscopy data enhancement and single-cell data

analysis.
. Many diffusion models are also available as open-source tools.
. Although diffusion models may potentially outperform other generative

approaches, such as generative adversarial networks and variational auto-
encoders, their computational resource requirements remain high.
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Fig. 1 |. Timeline of advances in diffusion models and their applications in bioinformatics.
Data are taken from refs. 32-36,54,61,72,84,91,97,99, 101-118,130,133,136,138-

140,150,151,256,257,273. Cryo-EM, cryogenic electron microscopy; SDE, stochastic
differential equations; DPM, diffusion probabilistic model; ODE, ordinary differential

equations.
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Fig. 2 |. Forward and reverse processes of diffusion models.
Forward and reverse processes are shown for denoising diffusion probabilistic models

(DDPMs), noise-conditioned score networks (NCSNs) and score stochastic differential
equations (score SDEs). The forward process progressively (from time 0 to 7) adds noise

to data (for example, to an image of a cat or a three-dimensional protein structure). The
reverse process generates cleaner data from noisier data (that is, it denoises data) from time
7Tto 0. xp denotes uncorrupted data, #€{1,..., T} where 7 represents the number of diffusion
steps; B;€[0,1) is the hyperparameter denoting the variance schedule across the diffusion
steps; | is the identity matrix; N(x;4, o) is the normal distribution of x with mean yand

standard deviation o; a;= 1 - Brand @, = []} = oa.;wrepresents the standard Wiener process

known as Brownian motion; 7(x, #) and g ({) are the drift and diffusion coefficients of SDE,
respectively; and p(x) is the probability density function.
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