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Abstract

Denoising diffusion models embody a type of generative artificial intelligence that can be 

applied in computer vision, natural language processing and bioinformatics. In this Review, we 

introduce the key concepts and theoretical foundations of three diffusion modelling frameworks 

(denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic 

differential equations). We then explore their applications in bioinformatics and computational 

biology, including protein design and generation, drug and small-molecule design, protein–ligand 

interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. 

Finally, we highlight open-source diffusion model tools and consider the future applications of 

diffusion models in bioinformatics.

Introduction

Deep learning1 was introduced to the field of bioinformatics and computational biology 

in 2012 (ref. 2) (Box 1) and has been applied to many bioinformatics problems, such 

as protein structure prediction3, protein function prediction4–9, protein–ligand interaction 

prediction10–14, gene-expression prediction15–20 and gene regulatory network modelling21–

25. Various deep learning architectures, including convolutional neural networks26, long 

short-term memory networks27, residual networks28, generative adversarial networks 

(GAN)29, graph neural networks (GNN)30 (Box 2) and transformers31 have been developed 

for bioinformatics data analysis.

Diffusion models leverage deep learning technology32–35; however, they outperform other 

deep learning methods in many domains, including in image generation36–42, image 

inpainting43,44 and speech synthesis45. Diffusion models are deep learning-based generative 
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models32–35 (Box 2) that aim to generate artificial yet realistic data (for example, a 

computer-generated Picasso painting or an answer to a user’s question) from input 

parameters. Compared to other generative models, such as autoregressive models46, 

normalizing flows47, energy-based models48, variational auto-encoders (VAEs)49 or 

GANs29, diffusion-based generative models have the ability to learn complex distributions, 

handle high-dimensional data and generate diverse data50–55. In particular, diffusion models 

can surpass GANs29, which consist of a generator that generates data and a discriminator 

that can differentiate the generated data, in the challenging task of image synthesis33,50. In 

addition, diffusion models can be applied for computer vision43,51,56–71, natural language 

processing55,72–75, temporal data modelling76–81, multi-modal modelling36,37,82,83, and in 

medical image reconstruction84–93.

Diffusion models were originally introduced32 to address a central problem in machine 

learning, that of modelling complex datasets using highly flexible families of probability 

distributions while ensuring that learning, sampling, inference and evaluation remain 

analytically or computationally tractable (Fig. 1). Inspired by non-equilibrium statistical 

physics, this approach systematically and slowly destroys the structure of data through 

an iterative forward diffusion process. Then, a reverse diffusion process is applied to 

restore the structure in the data, yielding a highly flexible and tractable generative model 

of the data, thereby enabling rapid learning, data sampling and evaluating probabilities 

through deep generative models with up to thousands of layers or time steps as well as 

the computing of conditional and posterior probabilities under the learned model. Based on 

this concept, denoising diffusion probabilistic models (DDPMs)33 can achieve performance 

comparable to or better than other generative models (for example, decoder, energy-based 

models and GANs)46,94–96 in image generation tasks. The diffusion network structure 

and training strategy can further be improved to boost performance50, surpassing GANs 

in image synthesis. For example, a multi-head attention mechanism and the BigGAN’s 

residual module95 can be applied for up-sampling and down-sampling of data to improve the 

resolution and quality of generated images. In addition, a denoising diffusion implicit model 

(DDIM)97 can be used to increase sampling rate.

Importantly, diffusion models can be applied in bioinformatics, for example, for denoising 

cryo-electron microscopy (cryo-EM) data98, single-cell gene-expression analysis99,100, 

protein design and generation84,91,101–107, drug and small-molecule design54,108–113 and 

protein–ligand interaction modelling114–118. Diffusion models have the advantage of being 

able to handle high-dimensional data with high diversity and scalability.

In this Review, we provide a detailed survey of diffusion models, including denoising 

diffusion models, noise-conditioned score networks (NCSNs) and stochastic differential 

equations (SDEs), and discuss their applications in bioinformatics. We further highlight 

possible future developments of diffusion models, aiming to propose some challenging 

bioinformatics problems that may be tackled by creative diffusion models.
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The concept of diffusion models

Diffusion models learn to reverse the process of data destruction or corruption (for example, 

introduced by noise), allowing the generation of realistic, clean data samples (for example, 

restoration of uncorrupted data). Thus, diffusion models can learn from data that has been 

progressively destroyed or degraded to generate new samples from a given distribution or to 

estimate the distribution from which a given sample is drawn (Box 2).

Diffusion models are based mainly on three frameworks, each with a different formulation 

of the forward and reverse processes (Fig. 2), that is, DDPMs32,33, NCSNs34,119 and score 

SDEs35,120.

Denoising diffusion probabilistic models

DDPMs, which were the first diffusion models able to generate high-resolution data, 

typically contain two Markov chains (Box 2): the forward chain gradually adds noise to 

scramble the original data, followed by a reverse chain that removes the noise from the data 

to recover the original data. If q(x0) denotes the distribution of the original data, in which 

x0 denotes uncorrupted data, the transition kernel q(xt |xt−1) of the forward Markov process 

adding Gaussian perturbation at time t is denotedN xt; 1 − βtxt − 1, βtI , in which tϵ{1,…,T}. 

Here T represents the number of diffusion steps; ϵt∈[0,1) is the hyperparameter denoting the 

variance schedule across diffusion steps; I is the identity matrix; and N(x;μ,σ) is the normal 

distribution of x with mean μ and covariance σ. If αt =1 − βt and αt = ∏s = 0
t αs, a noisy 

sample xt can be obtained directly from the distribution conditioned on the original input x0:

q xt x0 = N xt; αtx0, 1 − αt I

(1)

xt = αtx0 + 1 − αtϵ, ϵ N(0, I)

(2)

The forward process gradually introduces noise into the original data until it is completely 

replaced by noise. The reverse process is the opposite operation, resulting in the generation 

of new samples. This process typically starts with unstructured noise obeying the prior 

distribution, and then, by applying a model — typically a trainable neural network — that 

has learning ability, noise is removed step by step to restore the original data. The neural 

network N can be formulated as:

pθ xt − 1 xt = N xt − 1; μθ xt, t , σθ xt, t

(3)

Given the starting point data of the reverse process as p(XT) = (XT ;0, I), the distribution 

of X0 conditioned on XT is given by:
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pθ X0:T = p XT ∏
t = 1

T
pθ Xt − 1 Xt

(4)

Eventually, a marginal distribution of X0 close to the original data x0 can be obtained by 

pθ x0 = ∫ pθ x0:T dx1:T.

To train the model parameterized with θ so that it can learn the pattern of the original data 

and make p(x0) close to the true data distribution q(x0), the loss function to be minimized is 

set as the negative log-likelihood (equation (5)). We note that the process of minimizing the 

negative log-likelihood of the observed data under the model is equivalent to minimizing the 

Kullback–Leibler (KL) divergence between the empirical distribution defined by the original 

data q(x0, x1, …, xT) and the model distribution pθ(x0, x1, …, xT):

E −logpθ x0 ≤ KL q x0, x1, ⋯, xT ∥ pθ x0, x1, ⋯, xT

= Eq −log pθ x0:T
q x1:T xT

= Eq −logp xT − ∑
t ≥ 1

log pθ xt − 1 xt
q xt xt − 1

= − LVLB

(5)

The objective of DDPM training is to minimize LVLB, also known as the variational lower 

bound of the log-likelihood. LVLB can also be parameterized to increase the quality of 

sample generation33.

Noise-conditioned score networks

In NCSNs, the score function of a probability density function p(x) is represented by the 

gradient of the log density with respect to the input as ∇xlogp(x). To learn and estimate 

the score function, a score-matching neural network sθ is trained. The goal of this neural 

network is to make sθ(x) ≈ ∇xlogp(x) . Therefore, the objective function of the scoring 

network can be defined as:

Ex p(x) ∥ sθ(x) − ∇xlogp(x) ∥ 2
2

(6)

Even though the problem is well defined, optimizing equation (6) is numerically impossible 

because the value of ∇xlogp(x) cannot be known. However, score functions can be learned 

from data by applying score matching121, denoising score matching122–124 or sliced score 

matching125.

Moreover, training remains difficult because the trained score functions are unreliable 

in low-dimensional manifold, because low-dimensional data is typically embedded in a 

high-dimensional space (the manifold hypothesis)34. This challenge can be addressed 
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by introducing Gaussian noise to the data at various scales, which improves the data 

distribution’s suitability for score-based generative modelling. Thus, a single NCSN can 

be applied to estimate the score corresponding to each noise level. If 0< σ1<σ2<…< 

σt <…< σT is a sequence of Gaussian noise levels, pσt xt x = N xt; x, σt
2I , pσ1(x) ≈ p x0 , 

and pσT(x) ≈ N(0, I). The NCSN sθ(x, σt) with the denoising score matching can then 

approximate the gradient log density function, makingsθ x, σt ≈ ∇xlog pσt(x) , ∀t ∈ 1, …, T . 

And for xt, ∇xlog pσt(x)  is derived as:

∇xtlogpσt xt x = − xt − x
σt

(7)

Consequently, the optimization objective function in equation (6) can be transformed into:

1
T ∑

t = 1

T
λ σt Ep(x)Ext pt xt x ∥ sθ xt, σt + xt − x

σt
∥2

2

(8)

in which λ(σt) is a weighting function.

During the sampling phase, NCSNs use the annealed Langevin dynamics algorithm, which 

employs a Markov Chain Monte Carlo procedure (Box 2) to sample from a distribution 

according to its score function ∇xlogp(x). The Langevin method recursively computes xi as 

follows:

xi = xi − 1 + γ
2 ∇xlogp(x) + γωi

(9)

where γ determines the amplitude of the update in the score’s direction; x0 is sampled from 

the prior distribution; and the noise is drawn according to ωi ~N(0,I).

NCSNs and DDPMs both operate on the principle of converting a basic noise distribution 

into a more intricate data distribution by collecting information during the introduction 

of noise, which is then reapplied when removing the noise. Both models are trained to 

tackle a noise regression problem, based on the principle of maximum likelihood estimation. 

Notably, the objective formulation of score matching with Langevin dynamics in NCSN 

aligns with that of the re-weighted variant of the evidence lower bound of DDPM35,126,127. 

In terms of sample generation, both models employ ancestral sampling, which progressively 

transforms a noise sample into a data sample, guided by data distribution gradients.

Score stochastic differential equations

With unlimited time steps or noise levels, DDPMs and NCSNs can be further generalized to 

a situation in which the perturbation and denoising processes can be described as SDEs. This 
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generalized approach35 of gradually transforming data into noise is called score SDE. The 

forward process of score SDE uses SDEs and requires an estimated score function of the 

noisy data distribution. It is equivalent to the Itô SDE128 solution, which consists of a drift 

component for mean transformation and a diffusion coefficient for describing noise:

dx = f(x, t)dt + g(t)dw, t ∈ [0, T ]

(10)

where w represents the standard Wiener process known as Brownian motion, and f (x, t) 
and g (t) are the drift and diffusion coefficients of SDE, respectively. The forward process in 

DDPMs and score-based generative models is a special case of the discretizational SDE.

The formulation of the reverse diffusion process of SDE is given by equation (11)129, also 

called reverse-time SDE:

dx = f(x, t) − g2(t)∇xlogpt(x) dt + g(t)dw

(11)

where w is the standard Brownian motion running backward time, and dt represents the 

infinitesimal negative time step. The reverse SDE and forward SDE share the same marginal 

densities but in the opposite time direction35. As in DDPMs and NCSNs, to numerically 

solve reverse-time SDE, a trainable neural network sθ(x, t) is employed to estimate the 

actual score function ∇xlogpt(x). The objective function can be defined as:

Ex(t) p(x(t) x(0)), x(0) pdata 
λ(t)

2 ∥ sθ(x(t), t) − ∇x(t)logpt(x(t) |x(0)) ∥2
2

(12)

where t ~ u([0, T]) denotes the uniform distribution over [0, T] and λ is a weighting 

function. In addition, several sampling techniques, such as the predictor–corrector sampler, 

can be employed to generate good samples. This procedure uses a score-based method (that 

is, annealed Langevin dynamics) as a corrector after using a numerical approach to sample 

data from the reverse-time SDE.

Improving diffusion models

The aforementioned diffusion models can be further improved through extension in training 

speed126,130–133, increasing data sampling (data generation) speed97,134–139, integration with 

other neural networks38,120,140–142, and applications to different data types53,73,143–151. 

Many of these improvement strategies are available as open-source tools152 (Table 1), which 

has opened up their application to a diverse range of bioinformatics problems (Box 3). 

Importantly, diffusion models can handle different data types, such as one-dimensional (1D) 

DNA and protein sequences, two-dimensional (2D) biomedical images, three-dimensional 

(3D) protein structures and vectorized gene-expression data.
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Protein design and generation

The computational generation of new, physically foldable protein structures allows the 

design of proteins with specific functions or structural properties for protein engineering and 

drug discovery. However, deep generative models (Box 2), such as VAEs and GANs153–159, 

are limited to generating only small proteins or domains of large proteins (for example, 

of immunoglobulins). Alternatively, diffusion models can be applied to protein design and 

generation, because large and diverse proteins can be generated by guiding the model at each 

step of the iterative generation process.

Protein structures in protein generation153,154 are typically described by a 2D matrix (map) 

that contains the pairwise distances and angles between all the residues in the protein. 

For example, ProteinSGM, based on a score-based generative model91, applies a diffusion 

model of 2D image generation using such a representation to create protein structures: 

a score-based generation diffusion model with SDEs is used to generate a series of 2D 

matrices that include inter-residue pairwise distances d, and the ω, θ and φ angles between 

two residues. These constraints are then fed into Rosetta160 to build native-like protein 

structures. For unconditional protein structure generation, ProteinSGM can generate proteins 

from random noise. For conditional protein structure generation, such as scaffold inpainting 

and functional site inpainting, the tool can generate protein structures that satisfy user-

defined constraints, similar to solving an image inpainting problem. However, ProteinSGM 

requires post-processing by Rosetta using Markov Chain Monte Carlo (Box 2), which makes 

the prediction computationally expensive.

Unlike ProteinSGM, Foldingdiff101 represents the protein backbone structures (only N–

Ca–C atoms for each residue) with a series of consecutive angles to capture the relative 

orientation of the constituent atom acid residues. A simple language transformer model31 

with DDPM can then be applied to generate protein structures unconditionally, as the 

angles are invariant to translation and rotation. However, using a transformer to predict 

sequence-like consecutive angles has the drawback that errors from the early prediction 

accumulate and considerably affect the final structure, including collisions between atoms. 

In addition, the approach cannot be generalized to generate complex structures with more 

than one chain.

Inspired by Foldingdiff, DiffSDS102 introduces a 1D directional representation derived 

from invariant atom features, similar to torsion angle representation, which enables an 

encoder–decoder language model to perform the diffusion process. In the language model, 

the encoder (with a hidden atom-direction-space layer) transforms the invariant features 

into equivalent direction vectors, whereas the decoder reverses the transformation. By 

performing the diffusion process in this direction and by conditioning angle spaces on 

geometric restraints, DiffSDS can restore protein backbone structures of higher quality than 

the deep-learning-based protein design method RFDesign156: DiffSDS is two times better at 

generating proteins that resemble natural proteins (protein likeness), as measured by Rosetta 

energies, about 18 times better in terms of connectivity errors and 60% better at generating 

non-overlapping scores with existing backbones than RFDesign.
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The integration of diffusion models with GNNs30 (Box 2) enables the direct 

generation of 3D protein coordinates, resulting in an end-to-end generative model. SE(3)-

equivariant161,162 (Box 2) DDPMs, which are usually used in small-molecule generation, 

can also be applied to generate protein structures in a representation-frame-independent 

manner163. For example, independent DDPM models equipped with invariant point 

attention163 structural modules can be trained with the distribution of atom features 

(for example, coordinates in a canonical frame with respect to backbone atoms, residue 

type and side-chain angles) to generate a protein’s backbone, sequence and side-chain 

rotamers84. By jointly diffusing the structure and sequence, while incorporating coarse 

structural constraints, the model can gradually generate the fully atomistic protein structure 

and sequence, allowing controllable protein backbone generation and protein structure 

inpainting. The sequence recovery rate of this method is comparable to that of other 

machine-learning-based and physics-based methods, such as 3DConv164, RosettaFixBB and 

RosettaReIBB165. Similarly, Genie103 makes use of the SE(3)-equivariant feature from the 

invariant point attention module in conjunction with DDPM to generate protein backbones 

unconditionally, also introducing geometric asymmetry with an invariant encoder to directly 

inject noise into residue coordinates, as well as an SE(3) equivariant decoder with an 

invariant point attention module to predict noise.

SMCDiff104 applies a similar deep learning architecture (that is, an SE(3)-equivariant 

GNN) (Box 2) to the motif-scaffolding generation problem, dividing the problem into two 

parts: unconditional protein backbone generation (ProtDiff) and conditional sampling in 

diffusion models based on a protein motif (SMCDiff), similar to inpainting. Unconditional 

protein generation is achieved by training a SE(3)-equivariant GNN (Box 2), built from 

residue coordinates and embedded features from the protein sequence, to generate protein 

backbones. By contrast, conditional sampling is formulated on an unconditional diffusion 

model as a sequential Monte Carlo simulation problem, which may be solved by particle 

filtering. However, the network does not include torsion angles as features and may 

therefore generate unnatural proteins (for example, left-handed helices). SMCDiff was the 

first deep generative model that lever-aged the power of diffusion models to address the 

motif-scaffolding generation problem.

RFdiffusion105, which integrates a conditional DDPM diffusion model with the pre-trained 

protein 3D structure prediction model RoseTTAFold166, can directly generate final 3D 

coordinates. Inspired by the recycling process in AlphaFold2, a self-conditioning prediction 

strategy is applied, in which the current prediction is conditioned on the prediction from the 

previous timesteps, thereby considerably improving the performance of the model. Starting 

from random noise, RFdiffusion can generate large protein structures unconditionally, which 

can then be used in the design of protein monomers. Using protein motif coordinates 

as input, RFdiffusion can also construct scaffolds conditionally for functional motif and 

enzyme active site scaffolding105. Given a point group symmetry, RFdiffusion can maintain 

the symmetry during the prediction owing to the equivariance design of RoseTTAFold. 

Therefore, this approach can be applied to symmetric protein oligomer and motif scaffolding 

(for example, for the design of therapeutic167 and metal-binding proteins168,169). We note 

that compared to the other methods discussed in this section, some proteins designed by 

RFdiffusion have not only been validated in silico, but also by biochemical and biophysical 
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experiments170,171, making it one of the first generative artificial intelligence methods 

of protein design that have been experimentally validated. Furthermore, RFdiffusion 

outperforms other methods, such as RFDesign, in the design of large protein structures 

and high-order protein oligomers, demonstrating the advantage of diffusion models.

FrameDiff106 applies diffusion models to explore whether a pre-trained protein structure 

predictor is necessary for protein backbone generation. Here, using denoising score 

matching, a principled SE(3) diffusion model can better formulate the protein backbone 

generation problem, achieving comparable performance with four-fold fewer network 

weights and without the need to train another protein structure prediction network, compared 

to RFdiffusion.

Chroma107 is a GNN30-based conditional diffusion model designed to generate large single-

chain proteins and protein complexes with desired properties and functions. This model can 

generate protein structures that are over 3,000 residues in size, which surpasses the size limit 

for proteins generated by several other networks (that is, ProteinSGM, Foldingdiff, DiffSDS 

and SMCDiff) (<2,000 residues). To reduce computational complexity, Chroma uses a 

random graph generation procedure that preserves both short- and long-range interactions. 

As a result, Chroma can produce high-quality, diverse new protein structures, and enables 

the programmable generation of proteins that are conditioned on several different properties, 

such as residue–residue distances, symmetry and shape.

Small-molecule generation and drug design

Drug discovery involves the identification and optimization of small molecules that can 

interact with specific biological targets, such as enzymes or receptors, to modulate their 

activity and ultimately achieve a therapeutic effect. Deep learning, particularly deep 

generative models, enables the rapid generation and evaluation of a large number of such 

potential drug candidates172–175.

The conditional diffusion model, which is a deep learning method based on discrete graph 

structures (CDGS), allows the generation of molecular graphs of small molecules with 

similar data distributions to real-number molecular graphs108. This method employs a 

hybrid message-passing block architecture, which comprises a standard message-passing 

layer for collecting local features, such as node-edge dependencies, and an attention-based 

message-passing layer for extracting and transmitting global information in the architecture. 

The molecular graphs are embedded with distinct components for node features and edge 

matrices, with channels for edge existence and edge types. The CDGS model has enabled 

the application of diffusion models in the molecular graph domain, which is crucial 

for drug discovery and material science. This approach accurately models the complex 

dependency between graph structures and features during the generative process, using 

SDEs to describe the graph diffusion process. The continuous forward process is applied 

directly to edge existence variables, and the reverse process first decodes discrete graph 

structures, which serve as the condition for each sampling step. A specialized hybrid graph 

noise prediction model is used to extract global and local node-edge dependencies from 

intermediate graph states. This diffusion-based model can obtain high-fidelity samples in 
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200 steps of network evaluations using the Euler–Maruyama method176. In addition, a fast 

ordinary differential equation solver, which applies the semi-linear structure of probability 

flow ordinary differential equations for graphs, promotes rapid, high-quality graph sampling. 

CDGS outperforms other methods in molecular graph generation, including flow-based 

methods (for example, GraphAF177, GraphDF178, MoFlow179 and GraphCNF180) and 

other diffusion models (EDP-GNN151, GraphEBM181 and GDSS148). CDGS also performs 

better in generic graph generation than ER182, VGAE183, GpraphRNN184 and GRAN185, 

demonstrating its potential to facilitate drug discovery and material design by representing 

molecular structures and restricting the molecule search space.

The E(3)-equivariant diffusion model (EDM)54 (Box 2) performs the diffusion process 

on atom coordinates and atom types in the Euclidean space to generate small molecule 

structures with up to 29 atoms, compared to nine heavy atoms that can be achieved with 

equivariant normalizing flows186. An EDM represents each small molecule as a point 

cloud that can be described by a graph with nodes vi ∈ V representing atoms in the 

molecule based on an equivalent transformation, thereby combining the equivariant GNN 

and the diffusion process. The former contains L layers of equivariant graph convolutional 

layers that take each atom’s 3D coordinates and features as input to model molecule 

structures with geometric symmetries, whereas the latter gradually adds Gaussian noise to 

both the coordinates and features of the atom, thereby improving training, performance 

and scalability, compared to other E(3)-equivariant models, such as G-Schnet187 and 

equivariant normalizing flows186 as well as graph-based molecule-generative models, such 

as GraphVAE188, GraphTransformer189 and Set2GraphVAE190.

Based on the equivariant GNN architecture and inspired by the physics governing the 

formation of small molecules, the Lyapunov function applies physical and statistics prior 

information (diffusion informative prior bridge)109 to guide the diffusion process in 

model training and generate high-quality and realistic molecules. In this approach, problem-

dependent prior information, in particular, physical and statistics information, is injected 

into the diffusion process instead of imposing or improving deep learning architectures. 

Several energy functions, integrated with the physical and statistical prior information, are 

then used as a prior bridge to guide the model training without any extra modification of 

the equivariant GNN architecture. Thereby, the Lyapunov function shows better molecule-

generation performance in terms of physical energy and molecule stability109 and better 

uniformity-promoted 3D point cloud generation compared to EDM54 and point cloud 

diffusion143, which apply the traditional Gaussian noise in model training, as well as 

equivariant normalizing flows186.

Dynamic graph score matching (DGSM)110 is a deep learning model developed for 

predicting stable 3D conformations from 2D molecular graphs, primarily used in 

computational chemistry. The model can also be extended to protein sidechain conformation 

prediction and complex multi-molecular prediction (for example, predicting the interaction 

of more than three small molecules without explicit bonds)110. Deep learning methods 

often consider only the local interactions between bonded atoms, while neglecting the 

long-range interactions among unbound atoms, which are crucial for constructing accurate 

3D molecular structures. To overcome this limitation, DGSM treats each molecule as a 
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graph g = <v, e>, where a node in v represents an atom and its features (for example, 

coordinates), and an edge in e represents a bond between two atoms. The distance Dij 

between each pair of atoms, that is, the edge length in the graph, can then be computed 

from their coordinates. For each pair of unbound atoms, the distance Dij can be perturbed 

by a Gaussian noise level at each training step. A message passing neural network191 is then 

applied, using edge length and edge type in the graph as inputs to dynamically embed the 

molecular 2D graph by adding Gaussian noise to the distance between pairs of unbound 

atoms. Using the score-matching method, the model can then directly estimate the gradient 

fields of the logarithm density of atomic coordinates. Importantly, the model can be trained 

in an end-to-end fashion, thereby addressing the limitation of physics-based simulation 

methods that do not account for long-range interactions between non-bounded atoms. Thus, 

DGSM outperforms other methods, including RDKit192, CGCF193 and ConfGF144 in terms 

of matching score and coverage score, confirming the benefit of modelling long-range 

interactions.

SDEGen111 is a multi-stage diffusion model that can generate molecules by adopting 

multiple architectures in different stages with different purposes; here, molecular 

conformations, including distances between two atoms within three-hop edges, edge type 

and atom type, and their corresponding graphs, are used as inputs for three different 

multilayer perceptrons to generate their embeddings. The distance embeddings are corrupted 

by Gaussian noise and the atom-type embeddings are then updated by a GNN (Box 

2). The noisy distance embeddings, edge-type embeddings and the updated atom-type 

embeddings are then combined into final bond embeddings. Finally, the SDE network is 

parameterized. This multi-stage model is not as streamlined as end-to-end models, but it 

outperforms several other models, including DGSM194, CGCF193, ConfGF144, CVGAE195 

and DMCG196, by multiple metrics, such as coverage score and matching score, in 

particular, when considering long-range interactions in molecules.

DiffMD112 is a score-based denoise diffusion model that can be applied to improve 

molecular dynamics simulations. Deep-learning-based molecular dynamics models typically 

depend on intermediate force fields and can thus only be applied to static molecules, 

not considering thermodynamics. DiffMD addresses this problem by applying score-based 

conditional diffusion models, employing the equivariant geometric transformer to take 

atomic coordinates, velocity and features embedded in molecular dynamics trajectories 

directly as input. In each layer, the model introduces velocities, directions and other 

geometric information using the spherical Fourier–Bessel transformation to update the 

input information. During the diffusion process, the conditional noise, based on the 

accelerations of atoms in previous frames, is added to the inputs for the equivariant 

geometric transformer to estimate the score function, that is, the gradient of the log 

density of the biomolecule conformations. DiffMD outperforms several deep-learning-based 

molecular dynamics methods, including tensor field networks162, radial fields197, SE(3)-

transformers198, graph mechanics networks199 and SCFNN200 in terms of average root-

mean-squared error.

Fragment-based drug design can also be used for the discovery of new small molecules in a 

3D space. Here, the aim is to design linkers consisting of atoms that can connect molecular 
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fragments into a complete molecule. DiffLinker113 uses an E(3)-equivariant 3D conditional 

diffusion model to generate these molecular linkers and to connect multiple molecular 

fragments to form a single connected molecule. The prediction is made by applying a GNN 

to predict the linker size (the atom number of the linker) and atom types. The coordinates 

of the atoms are sampled from the normal distribution, followed by a reverse diffusion 

process of the atom features conditioned on the input fragments. Compared to DeLinker201 

and 3DLinker202, DiffLinker can perform better in terms of average quantitative estimation 

of drug-likeness, synthetic accessibility, the average number of rings in the linker, and the 

validity, uniqueness and novelty of the samples, thereby generating more realistic molecules.

Protein–ligand interaction modelling

Predicting the conformation of a ligand bound to a protein is important in the investigation 

of protein–ligand interactions and protein function as well as for the discovery of new 

drugs. Various protein–ligand docking, machine learning and auto-regressive models have 

been developed to address this problem10,203–206; however, these approaches are limited 

by their low geometrical accuracy. Alternatively, DiffBP114 can generate ligands that bind 

to a specific protein pocket without requiring the ligand structure as input; here, a pre-

generation network is used to generate the centre of mass and atom number of the ligand, 

followed by diffusion models in conjunction with equivariant GNNs161,207 to generate high-

quality ligand candidates33,35. Compared to auto-regressive methods, such as 3DSBDD205, 

Pocket2Mol206 and GraphBP203, which generate one atom at a time without considering 

interactions among all atoms, DiffBP can generate all atoms of a ligand that bind to a target 

protein, exhibiting high binding affinities (for example, 41.07%114 for DiffBP, compared to 

12.22%114 for 3DSBDD, 23.98%114 for Pocket2Mol and 29.54%114 for GraphBP) on the 

CrossDocked208 dataset curated from protein–ligand complex structures in the Protein Data 

Bank (PDB).

DiffSBDD115 adopts a DDPM equipped with an E(3)-equivariant neural network to generate 

new ligands, including atomic features binding to specific protein pockets; here, ligand 

generation can either be protein-conditioned, based on the binding site to the protein, or the 

ligand can be impainted after learning the joint distribution of the protein–ligand complexes. 

Compared to 3DSBDD and Pocket2Mol, DiffSBDD can generate more diverse ligands with 

higher affinity on the CrossDocked dataset115.

Unlike diffusion models applied for protein pocket docking, DiffDock116 uses the structure 

of the protein and ligand as input and does not require knowledge of the location of 

the binding site (that is, blind docking); here, the diffusion process is applied to ligand 

positions, represented by ligand translation and rotation, sampling multiple positions, 

which are then ranked based on a confidence score using a trained scoring model and 

a trained confidence model, which are built on top of SE(3)-equivariant GNNs (Box 

2). The scoring model samples different positions of the ligand, and the confidence 

model selects the ligand positions with the highest confidence score, similar to the 

structural and scoring modules of AlphaFold2163 for protein structure prediction. DiffDock 

has been tested on the PDBBind dataset, outperforming search-based methods, such as 

SMINA209, QuickVina-W210, GLIDE211 and GNINA212, and the deep learning methods 

Guo et al. Page 12

Nat Rev Bioeng. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EquiBind213 and TANKBind214. Specifically, DiffDock achieved a top-1 success rate of 

38.2% (the percentage of top-1 predictions with root-mean-square deviation <2 Å), which is 

significantly better than the energetics-based method GLIDE (21.8%; P = 2.7 × 10−7) and 

the geometric deep-learning-based method TANKBind (20.4%; P = 1.0 × 10−12)116.

Similar to DiffDock, NeuralPLexer117 is a deep generative network that leverages SDEs 

to predict complex protein–ligand structures based on the protein structure and molecular 

graphs of the ligand as input in blind docking. The key component in the model is 

an equivariant structure diffusion module, which predicts the atomic coordinates on a 

heterogeneous graph formed by protein atoms, ligand atoms, protein backbone frames and 

ligand local frames. Using SDEs, the model can handle unbound or predicted protein 

structure inputs and can automatically accommodate changes in the protein structure in 

response to ligand binding. Compared with the deep learning method EquiBind213 and the 

physics-based method CB-Dock215 on the PDBBind216 dataset, NeuralPLexer can generate 

a more accurate ligand structure with higher geometrical accuracy, with an approximately 

70% success rate for a ligand with root-mean-square deviation <2 Å, which is higher than 

that of EquiBind (about 40%) and CB-Dock (about 38%) and has a lower steric clash rate of 

0.105.

Finally, a deep generative energy-based diffusion model can predict the binding affinity 

for a protein–ligand pair, if trained with a set of protein–ligand complexes, without 

requiring labels for binding affinities118. During training, the network first predicts the 

rotation score for the perturbed ligand with respect to the protein pocket using an 

equivariant rotation prediction network, called Neural Euler’s Rotation Equation (NERE). 

By training the model with the SE(3) denoising score matching, the log-likelihood is 

considered to be the binding affinity between the protein and ligand in a pair. Tested on 

the protein–ligand dataset PDBbind216 and the structural antibody database SAbDab217, 

the model achieves an accuracy of 0.656 in predicting protein–ligand binding affinity, 

which is better than that of other unsupervised methods: 0.647 for Molecular Mechanics 

Generalized Born Surface Area218 (MM/GBSA), 0.617 for Astex Statistical Potential219 

(ASP) and 0.602 for DrugScore2018 (ref. 220). This model further performs comparably 

to other supervised methods in predicting antibody–antigen binding118: Zlab RerANK221, 

ZRANK2222, RosettaDock223, PyDock224, Scoring by Intermolecular Pairwise Propensities 

of Exposed Residues (SIPPER)225, Atomic Potential Protein Interactions Scored Atomically 

(AP_PISA)226, Coarse Grained Protein Interaction Energy (CP_PIE)227 and FIREDOCK228.

Cryo-electron microscopy data analysis

Single-particle cryo-electron microscopy (cryo-EM)229–235 is a key imaging technique 

for determining and visualizing the 3D conformation (structure) of large biomolecular 

complexes (for example, protein complexes) at atomic resolution; here, the images of protein 

complexes obtained by cryo-EM are used to reconstruct their 3D conformation represented 

by 3D density maps.

The protein structure reconstruction method CryoDRGN236 introduces a latent variable 

Z to define a conformational space V for a protein complex on cryo-EM density maps. 
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CryoDRGN is based on a VAE framework that learns a continuous distribution in the 

latent space for protein structures from cryo-EM data. However, although CryoDRGN can 

simulate complicated structural dynamics, the Gaussian prior distribution of VAE does 

not match the posterior aggregate approximation, which limits the generative capability 

of the model236. Alternatively, a continuous-time diffusion model (that is, score SDEs) 

can be implemented in CryoDRGN to learn a high-quality generative model for capturing 

protein conformations directly from cryo-EM imaging data. This CryoDRGN98 model is 

first trained with the standard VAE model using cryo-EM images in Fourier space. The 

latent space Z, which is predicted by the encoder of the trained VAE, is then fed into the 

denoise diffusion model based on a ResNet architecture28 to approximate the distribution of 

the latent variable Z. Finally, the synthesized latent variable Z, which is sampled from the 

diffusion model and is similar to the target protein’s distribution, is used as input for the 

decoder of the VAE to generate protein structures with better quality (higher similarity with 

the target proteins’ distribution) than a VAE, which directly reconstructs protein structures 

by learning continuous distribution in latent space.

Single-cell image and gene-expression analysis

Reconstructing the 3D shape of a cell from a single-cell 2D microscopy image using 

computational methods is useful for studying the morphological features of cells. However, 

each 2D image may permit multiple 3D reconstructions, and therefore, different 2D slices 

may lead to different predictions of the 3D shape. To tackle this issue, DISPR99 employs 

the U-net architecture237 and a diffusion process to generate a single-cell 3D shape from 

2D images. During training and evaluation, this approach uses a 2D image of an individual 

cell as an inductive bias. The 2D image is then concatenated with its 3D Gaussian noisy 

segmentation mask as input for the diffusion-based model to predict realistic 3D cell shapes. 

DISPR benefits from this training approach and its stochastic property. Unlike VAE-based 

architectures used in SHAPR238 and its variants239, which produce a single, deterministic 

reconstruction, DISPR employs a stochastic model trained on Gaussian noise and is thus 

capable of predicting an infinite number of cell shapes, providing a more comprehensive 

representation of dynamic cell structures. DISPR represents the first use of a diffusion 

model in the context of 3D cell shape reconstruction, outperforming VAE-based deep 

generative models, such as SHAPR238, in terms of volume, surface area and roughness 

reconstruction99.

Single-cell RNA sequencing can assess the expression of genes in individual cells. However, 

cells typically contain low quantities of RNA, which may cause noisy measurements 

(for example, varied measurements and experimental bias) of gene expression; moreover, 

values may be missed (dropouts). Therefore, it is important to denoise single-cell RNA-

sequencing data and impute missing values. DEWAKSS100 applies a diffusion model 

with a K-nearest-neighbour (KNN) graph to select denoising hyperparameters using the 

noise2self self-supervision method, thereby not depending on an explicit noise model 

but on an invariant function of data features. Unlike heuristic-based methods, such as 

MAGIC240 and KNN-smoothing241, which also use KNN graph architecture but may lead 

to over-smoothing of data variance, DEWAKSS can preserve variances across multiple 

gene-expression dimensions.
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Open-source diffusion model tools

Some diffusion models that can be applied to bioinformatics have been implemented as 

open-source tools (Table 2). However, these tools do not use NCSNs34 as the diffusion 

framework, mainly because NSCNs face problems in terms of sampling and training 

and can thus not achieve high accuracy in image generation. Therefore, NCSNs are less 

adopted in bioinformatics and computational biology than DDPMs33 and score SDEs35, 

which are equipped with efficient sampling and training methods32 for high-definition 

image generation. Nevertheless, as the first diffusion model, NSCN has made substantial 

contributions to the development of the field. Furthermore, many bioinformatics applications 

also include deep learning components to deal with data generation and denoising 

challenges specific to their application.

Outlook

Diffusion models can be applied in several bioinformatics applications and may be further 

extended to other computational biology areas owing to their ability to denoise data and 

generate realistic new data (Table 3).

3D genomics data analysis

High-throughput chromosome conformation capture (Hi-C) is a key technology for studying 

3D conformations of chromosomes and genomes, applying next-generation sequencing 

techniques to sequence chromosomal regions that are spatially close to each other (that 

is, in contact)242. Thus, Hi-C data captures the interactions between chromosomal regions 

of a genome to build 3D conformations of the genome243,244 and study long-range gene-

enhancer interactions. This approach typically requires the data to be converted into 2D 

chromosomal contact matrices (maps), which store the frequency at which chromosome 

region i interacts with chromosome region j, where i and j are the indices of chromosome 

regions. Therefore, a Hi-C contact matrix can be considered an image. However, Hi-C data, 

in particular, single-cell Hi-C data, are usually noisy and incomplete, so that chromosomal 

interactions in chromosomal contact matrices may be false positives or interactions may 

be missing in the matrices. Deep learning methods (for example, GANs) can be applied 

to denoise Hi-C data245; in addition, diffusion models (for example, DDPM) may enable 

denoising of Hi-C chromosomal contact matrices to improve 3D genome conformation 

modelling and to study spatial interactions between genes and regulatory elements (for 

example, enhancers). However, the deep learning architecture of DDPM is typically the 

U-Net, which may not be as powerful as the deep residual network used in the Hi-C data 

denoising method ScHiCEDRN246. Thus, if applied to Hi-C data denoising, the architecture 

of DDPM would have to be updated to deep residual networks to improve its denoising 

ability.

Single-cell reconstruction and inference

The activity of a single cell can be captured by various ‘omics data, such as transcriptomics 

(RNA-seq), proteomics, chromosome accessibility (ATAC-Seq) and epigenetics (bisulfite 

sequencing), which may benefit from diffusion models; for example, data could be inferred 
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to one modality (for example, RNA-Seq) from another modality, such as ATAC-Seq data 

and genome methylation data; missing spots in single-cell spatial transcriptomic data could 

be calculated; spots (each consisting of multiple cells) in 10× spatial transcriptomic data 

could be decomposed into single cell data (super-resolution); and single-cell data could be 

used to build 3D models of the spatial arrangement of cells. Moreover, diffusion models 

designed to denoise images could also be applied to denoise single-cell ‘omics data, such as 

transcriptomics, proteomics, metabolomics and epigenetics data.

DNA regulatory element design

The expression of genes is modulated by short DNA sequences on genomes, called 

regulatory elements, such as enhancers and promoters. Designing regulatory elements is 

an important approach to designing synthetic cells using synthetic biology. Generative 

models, such as GANs247, can be applied to design enhancers that regulate the expression 

of genes and the development of cell types. However, diffusion models have shown better 

performance in image synthesis than GANs50 and may thus be more suitable for the design 

of enhancers and other gene regulatory elements.

Cryo-electron microscopy image denoising

Diffusion models can reconstruct complex protein structures from 3D cryo-EM density 

maps, which are typically made of noisy and low-contrast 2D cryo-EM protein particle 

images, isolated from large 2D cryo-EM protein images (also called cryo-EM micrographs). 

However, denoising original cryo-EM images to build better 3D cryo-EM density maps 

remains challenging. Although image preprocessing techniques, such as EMAN2 (ref. 248), 

can denoise cryo-EM images249, diffusion models trained on many noisy images at various 

noise levels and their clean counterparts may allow the recovery of clean cryo-EM images 

more effectively than conventional image processing techniques that have not been trained to 

learn the noise distribution of cryo-EM images250.

Peptide design

Peptides, which are short, typically unfolded amino acid sequences, can bind to proteins to 

modulate their function, which has been explored for drug design. Diffusion models can not 

only be designed to generate new proteins but could also be adapted to create peptides that 

can modulate protein function. For example, diffusion models pretrained for protein design 

may be retrained on a peptide dataset to design peptides through transfer learning.

Protein structure refinement and mutation prediction

The tertiary and quaternary structures of many proteins and protein complexes can be fairly 

accurately predicted by AlphaFold2 (ref. 163) and AlphaFold-multimer251, respectively. 

However, such predicted structures may contain structural errors and may thus need to 

be refined. Conditioned on a predicted structure input, diffusion models may be able to 

remove noise from the predicted structure to bring it closer to the native structure. Similarly, 

it remains challenging to predict how an amino acid mutation alters the structure of a 

protein, which may affect protein function and phenotype. Diffusion models have generative 

capability, demonstrated in protein design, and may therefore be able to transform the 
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known structure of a protein without mutation (wild-type protein) to the structure of the 

same protein with mutations (mutant) to predict structural changes induced by mutations.

Limitations of current diffusion models

Although diffusion models may be applied for various bioinformatics applications, 

potentially outperforming GANs and VAEs, some limitations remain to be addressed. First, 

the training process of diffusion models involves the introduction of Gaussian noise to 

the data, resulting in a long training time. Second, although considerable efforts have 

been directed towards increasing the sampling speed in diffusion models, the sampling 

time of most models still exceeds that of other deep generative models (for example, 

GANs and VAEs). The long sampling time hinders some real-time applications of diffusion 

models. Developing a streamlined approach of single-step noise addition and removal may 

reduce the training and sampling time. Third, the computational resource requirements of 

diffusion models are higher than those of GANs and VAEs. Therefore, the trade-off between 

performance improvement and computational resource demand needs to be evaluated when 

deciding which model to use. Furthermore, new applications of diffusion models are often 

non-trivial and may require validation of suitable data representations (embeddings), types 

of diffusion model and deep learning architectures.
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Box 1

Deep learning

Deep learning is a machine learning technology that applies artificial neural networks 

with many layers of neurons (hence, ‘deep’) to model and extract complex patterns in 

data. Deep learning can then learn patterns and features from complex data to perform 

intelligent tasks, such as speech and image recognition, natural language processing 

and protein structure prediction. The artificial neurons in each layer receive input from 

the neurons in the previous layers until the final output layer produces a prediction 

(for example, classifying an image into a category or generating a sentence of text). 

During training of a deep learning model, the weights associated with the connections 

between neurons are adjusted to fit the training data. A major advantage of deep learning 

models over other machine learning methods is their ability to automatically learn 

hierarchical representations from raw data through multiple layers of abstraction. This 

enables deep learning models to achieve high prediction accuracy in many domains, such 

as precision medicine and healthcare (for example, medical image segmentation237,258–

261 and disease diagnosis262–265), finance (for example, algorithmic trading266,267 and 

risk management268) and agriculture (for example, crop monitoring269,270 and pest 

detection271). Some notable applications of deep learning are ChatGPT272 for natural 

language processing, DALL-E-2 (ref. 83) and GLIDE273 for image generation, and 

AlphaFold2 (ref. 163) for protein structure prediction.
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Box 2

Key concepts relevant to diffusion models

Diffusion: the movement of molecules, atoms, ions or energy from a region of higher 

concentration to a region of lower concentration along a concentration gradient until the 

concentration becomes equal in both regions. Diffusion, which is driven by a gradient 

in Gibbs free energy or chemical potential, is a stochastic process owing to the inherent 

randomness in the movement of the diffusing entities.

Generative model: a type of machine learning model that aims at learning the 

underlying distribution of data to generate new, similar data. These models can 

approximate the joint probability distribution of input features and labels, if available, 

and generate new data points by sampling from the learned distribution.

Markov chain: a stochastic model that describes a sequence of possible states, in which 

the probability of a state depends (or is conditioned) only on its previous state.

Markov chain Monte Carlo: a statistical or computational simulation method that 

constructs a Markov chain to iteratively generate a sequence of samples according 

to a conditional probability distribution between two consecutive states. After running 

the Markov chain for enough iterations, the generated samples converge to the desired 

posterior distribution.

Graph neural network (GNN)30: a type of deep learning model for processing graph-

structured data (for example, molecular graphs and biological networks). Each node in a 

GNN receives messages from its neighbouring nodes, which are used to update its hidden 

representation. By iteratively updating node representations, the GNN can aggregate 

information from both the local neighbourhood and remotely connected nodes in the 

graph.

Equivariant GNN161: a special type of GNN that is equivariant to a transformation (for 

example, translation and rotation) in the input data (for example, of a three-dimensional 

object, such as a protein structure). For example, the translation of an object in the 

input space leads to the translation of the same output of the object generated by the 

equivariant GNN in the output space without changing the value of the output.

SE(3)-equivariant networks162: a special equivariant GNN model that preserves the 

symmetry of the special Euclidean group SE(3). If a SE(3) transformation is applied to 

the input, the output generated by the networks undergoes an equivalent transformation. 

Achieving SE(3) equivariance allows the model to capture the inherent symmetries and 

geometric properties of the input 3D data.

SE(3)-transformer198: a specific implementation of SE(3)-equivariant networks using 

the transformer’s self-attention mechanism to achieve SE(3) symmetry, including three-

dimensional rotations and translations. The SE(3)-transformer is particularly useful for 

tasks involving three-dimensional structures, such as protein structure prediction and 

protein design, where different (x, y, z) coordinates of the same protein structure 

appearing in different orientations and positions can be treated as the exact same object.
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Box 3

A practical guide for applying diffusion models in bioinformatics

Diffusion models are particularly useful in the generation, design or analysis of small 

molecules, proteins and biological images. To decide which diffusion model to apply 

to a specific problem, the representation of the specific data type (for example, small 

molecules) needs to be considered to be suitable for processing by a deep learning 

model in the diffusion process. The conformations of small molecules and drugs can 

be represented in several ways to facilitate the diffusion process; for example, they 

can be treated as a string, such as the SELF-referencing embedded string, which can 

be converted into a two-dimensional (2D) matrix. This matrix can be used as input 

for graph neural networks (GNNs) under a diffusion model framework to generate three-

dimensional (3D) molecular graphs, as exemplified by dynamic graph score matching110. 

Alternatively, they can be presented as 3D graphs that contain spatial direction and 

torsion angles between atoms, which can be used by a combination of SE(3)-equivariant 

GNNs162 and diffusion models, such as the E(3)-equivariant diffusion model54 to capture 

their essential properties. In addition, small molecules can be represented as 3D atomic 

point clouds to be processed by equivariant GNNs, as in DiffLinker113. Proteins can 

be represented as either one-dimensional (1D) sequential features suitable for a 1D 

transformer or 2D contact and distance maps suitable for processing by convolutional 

neural networks. The 3D structure of proteins is usually represented as graphs that consist 

of nodes denoting residues and edges that represent residue pairs in contact, which can 

be handled by both standard GNNs and SE(3)-equivariant GNNs in combination with 

diffusion models. For imaging data, such as cryo-electron microscopy images, various 

diffusion models initially developed for image generation, such as CascadedDiff60, can 

be applied. Biomolecules or cell shapes may also be represented by 3D images, which 

can be reconstructed from 2D images by a combination of autoencoder or U-Net237 with 

a diffusion model, as in CryoDRGN98 and DISPR99. These can model the distribution 

of ground-truth data to generate higher-quality 3D images than other generative artificial 

intelligence methods. For example, DISPR outperforms a VAE-based deep generative 

model SHAPR238 in the context of 3D cell shape reconstruction.
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Key points

• Diffusion models are a generative artificial intelligence technology that can be 

applied in natural language processing, image synthesis and bioinformatics.

• Diffusion models have contributed greatly to computational protein design 

and generation, drug and small-molecule design, protein–ligand interaction 

modelling, cryo-electron microscopy data enhancement and single-cell data 

analysis.

• Many diffusion models are also available as open-source tools.

• Although diffusion models may potentially outperform other generative 

approaches, such as generative adversarial networks and variational auto-

encoders, their computational resource requirements remain high.
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Fig. 1 |. Timeline of advances in diffusion models and their applications in bioinformatics.
Data are taken from refs. 32–36,54,61,72,84,91,97,99, 101–118,130,133,136,138–

140,150,151,256,257,273. Cryo-EM, cryogenic electron microscopy; SDE, stochastic 

differential equations; DPM, diffusion probabilistic model; ODE, ordinary differential 

equations.
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Fig. 2 |. Forward and reverse processes of diffusion models.
Forward and reverse processes are shown for denoising diffusion probabilistic models 

(DDPMs), noise-conditioned score networks (NCSNs) and score stochastic differential 

equations (score SDEs). The forward process progressively (from time 0 to T) adds noise 

to data (for example, to an image of a cat or a three-dimensional protein structure). The 

reverse process generates cleaner data from noisier data (that is, it denoises data) from time 

T to 0. x0 denotes uncorrupted data, t ∈{1,…,T} where T represents the number of diffusion 

steps; βt ∈[0,1) is the hyperparameter denoting the variance schedule across the diffusion 

steps; I is the identity matrix; N(x;μ, σ) is the normal distribution of x with mean μ and 

standard deviation σ; αt = 1 – βt and αt = ∏s = 0
t αs;w represents the standard Wiener process 

known as Brownian motion; f (x, t) and g (t) are the drift and diffusion coefficients of SDE, 

respectively; and p(x) is the probability density function.
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