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Abstract

Purpose of review: New therapies are needed to potentiate the effects of current 

immunotherapies and overcome resistance. The stimulator of interferon genes (STING)-pathway 

is an innate immune activating cascade that may enhance current cancer immunotherapies.

Recent findings: Pre-clinical data has shown that the addition of a STING agonist may enhance 

the effect of current treatments such as immune checkpoint inhibitor antibodies and radiation 

therapy. Early phase trials have demonstrated modest efficacy of STING agonists and revealed 

new mechanistic and technical challenges.

Summary: STING agonists are a new class of agents that activate the host response immune 

response to improve tumor control. A wide range of pre-clinical experiments, translational 

data, and ongoing clinical trials support the therapeutic use of STING agonists in patients. 

Trials to determine optimal drug combinations and novel delivery mechanisms are continuing 

in development.
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Introduction

Recent advances in cancer immunotherapy including immune checkpoint inhibitors (ICIs), 

bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR) T cells have 

revolutionized the treatment of many cancers. Unfortunately, not all cancers respond to 

these therapies, and those that do still may develop secondary resistance (1). Resistance 

may result from features in the tumor microenvironment (TME) preventing or limiting the 

anti-tumor immune response (2). For example, lack of response may be due to restriction 

of T cell priming or recruitment, the presence of immune-suppressive cells, secretion of 

immunosuppressive cytokines, and an overexpression of immune checkpoints by cancer 

cells(3) The latter problem can be addressed with immune checkpoint therapies, but 
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the other challenges necessitate the development of new therapeutics and methods for 

administration. The cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes 

(STING) pathway emerged as a rational target to improve the rate of response to existing 

immunotherapies by activation of anti-tumor immune response in the TME. Likewise, the 

development of STING agonists has coincided with the development of novel therapeutic 

delivery mechanisms.

cGAS-STING Pathway and its role in the tumor immune microenvironment

The STING pathway is an innate immune activating cascade triggered by cytosolic DNA 

that potentiates a variety of inflammatory responses that are mediated primarily by type 

I interferons (4). Cytosolic DNA may be generated from viruses, bacteria, damaged 

self-DNA, and tumor DNA. Cytosolic DNA is bound by cGAS which catalyzes cyclic 

GMP-AMP (cGAMP) synthesis (5). cGAMP then binds to the STING receptor located on 

the endoplasmic reticulum. STING then phosphorylates TBK1 and IRF3, leading to the 

production of type I interferons which are known to enhance antigen presentation, augment 

B cell antibody production and amplify the function of dendritic cell and T cell populations 

(4-6).

Activation of the STING pathway has been shown to be an important mediator of the anti-

tumor response of a variety of immune cell types. Prior experiments demonstrated that mice 

deficient in STING and IRF3 had decreased CD8+ T cell response and impaired control of 

tumor growth(7). Similarly, the downstream production of type I interferons has been shown 

to be required for activity of dendritic cells and other tumor-infiltrating antigen presenting 

cells (APCs)(7, 8). Additional mouse models have also revealed the STING pathway to be 

vital in the anti-tumor activity of NK cells (9).

Preclinical Studies of STING agonism

Single Agent STING Agonism

Numerous studies have now determined that the stimulation of the STING pathway, through 

many different approaches, is sufficient to produce immune mediated tumor cell death on 

its own. Intratumoral injection of a direct sting agonist, 5,6-dimethylxanthenone-4-acetic 

acid (DMXAA), in q melanoma murine model enhanced the anti-tumor immune response 

locally, improved control of distal tumors, and invoked T cell memory (10). Other murine 

models have demonstrated superior immune mediated tumor control by macrophages and 

CD8+T cells in melanoma, breast cancer, squamous cell cancer and colon cancer injected 

with cGAMP(11, 12). The synthetic cyclic dinucleotide (CDN) STING agonist ADU-S100 

also resulted in enhanced CD8+T cell infiltration and immunogenic tumor control of cervical 

and pancreatic cancers(13, 14).

STING Agonism with Radiation Therapy

STING agonism may have synergy with a variety of other treatment modalities (Figure 1). 

The STING pathway has been shown to be activated by irradiated tumors, prompting an 

innate immune response which can be strengthened with the administration of exogenous 

cGAMP(15). An inhalable nanoparticle formulation of cGAMP targeting pulmonary APCs 
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(NP-cGAMP) was studied as an adjunct to radiation therapy in mouse models of melanoma 

and breast cancer. NP-cGAMP was found to induce the STING pathway and create 

a synergistic effect with radiation therapy that resulted in increased control of lung 

metastases compared to radiation therapy alone(16). ADU-S100 was also tested alone and 

in combination with radiation therapy in rats with esophageal cancer. The cohort that 

received both ADU-S100 and radiation therapy had decreased tumor volume compared 

to both radiation therapy or ADU-S100 administration alone(17). Similarly, the STING 

agonist dimeric amidobenzimidazole (diABZI) was shown to sensitize non-small lung 

cancer (NSCLC) to radiation therapy(18).

STING Agonism with Immune Checkpoint Inhibitors (ICIs)

Several preclinical studies have demonstrated the potential benefit of STING agonists in 

combination with ICIs. Inhibition of ataxia telangiectasia mutated protein (ATM) activates 

the STING pathway by promoting the leakage of mitochondrial DNA into the cytosol 

and was shown in murine models to delay tumor growth and overcome resistance to 

anti-programmed cell death protein 1 (PD-1) therapy(19). A lipid nano-particle containing 

a CDN STING agonist (NP-STING) was also used in a murine model to demonstrate a 

synergistic anti-tumor effect with anti-PD-1 therapy in metastatic melanomas that were 

previously unresponsive to anti-PD-1 monotherapy (20). A similar study showed that 

a NP-STING enhanced the response of ICIs in neuroblastoma in vivo(21). In a study 

of peritoneal carcinomatosis of colon cancer, ADU-S100 in combination with anti-PD-1 

therapy greatly reduced tumor burden when compared to either therapy alone (22). Recently, 

the co-administration of manganese (Mn2+), which has been shown to be an inducer of 

the STING pathway, and YM101, a TGF-β/ programmed cell death ligand 1 (PD-L1) 

bispecific antibody, also had a synergistic effect and was able to overcome immunotherapy 

resistance(23).

STING Agonism with vaccines, cytokines, and CAR-T therapies.

Beyond checkpoint blockade and radiation therapy, STING agonists have been investigated 

in combination with various other immunotherapeutic agents. Preclinical data have 

examined the combination of STING agonism with cancer vaccines. CDNs have been 

observed to improve the effect of peptide-based vaccines in murine melanoma models(24). 

Additionally, a synergistic effect was demonstrated with the dual use of ADU-S100 and a 

chimeric peptide vaccine in melanoma cells and lung epithelial cells transfected with HPV16 

E6/E7 or c-H-ras oncogenes (25). A comparable study showed the enhanced efficacy of a 

Listeria monocytogenes-based vaccine with the addition of cyclic diguanylate (c-di-GMP) 

in metastatic breast cancer cells(26). The coaction of interleukin-15 and an analogue of 

ADU-S100 had in increased proportion of tumor cell death in an in vitro prostate cancer 

model when compared to either agent alone(27). Finally, agonism of the STING pathway 

with DMXAA or cGAMP has been shown to increase the effect of Th/Tc17 CAR T cells in 

an orthotopic model of breast cancer(28).
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STING Agonists in Clinical Trials

Flavonoid small molecule: dimethylxanthone acetic acid (DMXAA, ASA404, vadimezan)

DMXAA was the first STING-targeted therapy to be evaluated in oncologic clinical trials 

and is the only agent to have reached Phase III (Table 1). During the time of its clinical 

development by Novartis (2000s through early 2010s), it was primarily thought to act as 

an anti-angiogenic agent (29). Preclinical work suggested that the drug’s primary utility 

was as an adjunct to traditional chemotherapy backbones, as its activity as a monotherapy 

was limited. It was thought to synergize with cytotoxic agents by targeting poorly perfused 

tumoral regions that might be underexposed to other systemic therapies. It was not until after 

the publication of Phase III trials that DMXAA’s additional mechanism as a STING agonist 

was identified (30).

DMXAA’s advancement to Phase III trials in advanced (stage IIIb/IV) NSCLC was 

based on Phase II data demonstrating improved overall response rates (ORRs) in the first 

line setting for intravenously administered DMXAA in combination with paclitaxel and 

carboplatin compared to paclitaxel and carboplatin alone [31% (95% confidence interval 

(CI) 15.2-47.3) vs 22% (95% CI 6.5-37.9)] (31). Neither median time to progression 

(TTP) [hazard ratio (HR) 0.94, 95% CI 0.56-1.57, p=0.82] nor median overall survival 

(OS) (HR 0.86, 95% CI 0.47-1.57, p=0.63) were improved. A subsequent retrospective 

analysis pooling data from two Phase II trials suggested that patients benefitted regardless 

of histology, but that DMXAA might offer particular benefit in individuals with squamous 

tumors, in whom ORR was 40.0% (95% CI 19-64%) vs 14.3% (95% CI 0.4-58%), median 

TTP was 5.6 months (95% CI 4.1-8.1 months) vs 1.6 months (95% CI 1.3-11.4 months), and 

median OS was 10.2 months (95% CI 6.0 months-not reached (NR)) vs 5.5 months (95% 

CI 2.1-12.5 months) (32). The significance of this finding was underscored by the fact that 

another anti-angiogenic agent, bevacizumab, was known to be associated with diminished 

activity and increased vascular risk among those with squamous disease compared to those 

with non-squamous disease (33).

DMXAA was then studied in two large, randomized, placebo-controlled, double-blinded 

international Phase III trials for individuals with advanced NSCLC. In 1,299 patients treated 

in the first-line setting, DMXAA combined with paclitaxel/carboplatin failed to demonstrate 

benefits in response rate, progression-free survival (PFS), or OS over paclitaxel/carboplatin 

alone (34, 35). Subgroup analyses in patients with non-squamous and squamous diseases 

demonstrated no benefit in each group. DMXAA was associated with increased rates of 

grade 4 neutropenia (27% vs 19%) and infusion site pain (10% vs 0.5%) but was not 

associated with increased rates of dose reductions or delays. The study was discontinued 

due to futility. The 2nd-line trial compared DMXAA/docetaxel with placebo/docetaxel and 

also showed no ORR, PFS, or OS benefit, regardless of histology (36). Rates of grade 3/4 

adverse events (AEs) were similar by group (80.4% vs 78.0%).

DMXAA also reached Phase II development in metastatic hormone-resistant prostate cancer 

and extensive-stage small cell lung cancer (SCLC). Among 74 patients in the prostate 

cancer trial, radiologic ORR was numerically increased for DMXAA/docetaxel vs docetaxel 

alone (23.1% vs 9.1%), prostate-specific antigen (PSA) response rate (≥50% reduction from 
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baseline) (59.4% vs 36.8%), and median PSA reduction (85% vs 61.9%) without reporting 

of statistical significance (37). The trial did not demonstrate PFS or OS benefits (2-year OS 

was with DMXAA/docetaxel was 33.3% vs 22.8% in control arm). Rates of AEs leading 

to death (6.1% vs 2.6%) and subjects experiencing ≥1 serious AE (SAE) (42.4% vs 34.2%) 

were numerically higher in the DMXAA/docetaxel group. In the single-arm SCLC trial, 17 

patients with previously untreated tumors received DMXAA with carboplatin and docetaxel 

with an ORR of 94%, disease control rate (DCR) of 100%, median PFS of 7.0 months, 

and median OS of 14.2 months (median follow-up 17.7 months). In light of the negative 

Phase III NSCLC trial results, all further development of DMXAA was halted: no further 

development in mHRPC was pursued, the SCLC was discontinued early (planned accrual 

was originally n=56), and no data were published on a planned Phase II urothelial cancer 

trial.

Subsequent translational studies provided some potential explanations for DMXAA’s 

disappointing results in late-phase trials. First, DMXAA selectively binds and activates 

mouse STING versus human STING (38). This finding helps explain the discrepancy 

between DMXAA’s preclinical promise and its lack of clinical activity in NSCLC. 

Furthermore, the human STING protein was found to be highly polymorphic and DMXAA 

failed to activate any of the STING isoforms associated with the five main human allele 

variants (10, 39). Beyond these barriers, DMXAA was mainly tested in combination with 

cytotoxic chemotherapies (generally taxanes with or without carboplatin) and combinations 

with newer monoclonal antibody therapies (e.g., immunotherapies) were never studied (a 

planned combination trial with cetuximab in solid tumors was withdrawn prior to starting 

accrual). As such, DMXAA’s (and potential derivative compounds’) clinical potential in 

combination with modern therapies and/or in larger prostate cancer, SCLC, and urothelial 

cancer trials remain unknown.

Cyclic dinucleotides (CDNs)

In the wake of DMXAA’s disappointing clinical results and the discovery of its STING-

targeting mechanism, researchers sought to identify therapeutics that might be active across 

multiple human STING variants. This led to the development of CDNs, which are thought 

to agonize STING because of their structural similarity to endogenous cyclic cGAMP (40). 

These compounds are thought to work best as intratumorally administered therapies, as 

they are susceptible to destruction by serum phosphatases and hydrolases (41). In 2015 

Aduro Biotech developed the CDN ADU-S100, which was shown to activate all five known 

STING isoforms (10). Aduro clinically developed ADU-S100 jointly with Novartis for 

oncologic conditions. Intratumorally administered ADU-S100 was tested in Phase I studies 

as a monotherapy and in combination with immunotherapy agents. ADU-S100 monotherapy 

phase I data were published in 2021(42). A total of 47 patients were treated with weekly 

intratumoral injections ranging from 50 to 6,400 micrograms in a weekly. The most frequent 

treatment-related adverse events (AEs) were noted to be on-target expected toxicities, such 

as pyrexia and injection site pain. Only one patient discontinued due to AEs. Though the 

vast majority of injected lesions (94%) were stable or decreased in size, overall efficacy 

was modest with one confirmed and two unconfirmed PRs. Correlative studies in this trial 

demonstrated signs of systemic immune activation, including dose-dependent increases in 

Hines et al. Page 5

Curr Oncol Rep. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interferon-β levels and clonal T cell proliferation. Interestingly, PK demonstrated rapid 

absorption into plasma with a half-life was 24 minutes. This suggested that retention of 

drug in the tumor emerged as an unanticipated challenge to the intratumoral approach. 

The combination study of ADU-S100 plus spartalizumab concluded and data has not yet 

been published. A Phase II study was started for first-line recurrent/metastatic squamous 

cell carcinoma of the head and neck (SCCHN) This study enrolled 16 patients then was 

terminated after a review of the totality of clinical data with ADU-S100. In June 2020, 

Aduro merged with Chinook Therapeutics, and given competing priorities the company 

elected not to further develop ADU-S100(43).

Merck’s intratumorally administered CDN STING agonist MK-1454 (ulevostinag) reported 

promising Phase I data. The DCR rate was 48% with PRs seen in 6 out of 25 patients 

(24%) treated in combination with pembrolizumab (3 SCCHN, triple negative breast cancer 

(TNBC), and 2 anaplastic thyroid cancer (ATC)) (44). Among responders, target lesions 

(including injected and non-injected lesions) were reduced in size by a median of 83%. 

The most common AE (experienced by ≥10% of patients) was pruritis and 7% of patients 

discontinued due to AEs. Ulevostinag advanced to a randomized phase II of development 

as a combination with pembrolizumab in first-line recurrent/metastatic SCCHN with PD-L1 

CPS ≥1. Phase II results have not been reported and the trial was closed with no further 

development plans reported (45) (46).

Phase I clinical studies are ongoing for multiple other CDN-derivatives including 

BMS-986301, BI 1387446, and E7766. Bristol-Myers Squibb’s (BMS’s) BMS-986301 

is being studied in advanced solid tumors as a single agent and in combination 

with nivolumab/ipilimumab. Its clinical development program is differentiated from 

predecessors in its focus on systemic administration such as intramuscular (IM) and 

intravenous (IV) routes. Intratumorally administered BI 1387446 is being studied with and 

without Boehringer Ingelheim’s (BI’s) PD-1 inhibitor ezabenlimab and with and without 

radiotherapy. Eisai and H3 Biomedicine’s E7766 is a macrocycle-bridged CDN that has 

demonstrated pan-genotypic activity across human STING variants in preclinical studies 

(47). It is being studied as an intratumorally administered monotherapy for advanced solid 

tumors (48). A planned study the compound as an intravesical treatment for non-muscle 

invasive bladder cancer, including those unresponsive to Bacillus Calmette-Guerin (BCG), 

was withdrawn, given challenges in recruitment (49).

Future Directions:

Other small molecules

Non-CDN small molecule STING agonists have also been developed with different 

properties The structures of most have not yet been disclosed by manufacturers. In this 

group, the only product whose structure is publicly known is GlaxoSmithKline’s (GSK’s) 

GSK3745417, a diABZI. (50). The product was discovered in part with the intention of 

developing a therapy that could be systemically administered (rather than CDNs, which 

have largely been studied as intratumorally administered therapies). At the cellular level, 

the product is thought to work similarly to CDNs (i.e., by agonizing STING at its cGAMP 

binding pocket). However, its structure is likely more amenable to systemic administration. 
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Like Merck, BMS, and BI, GSK is using the strategy of developing its STING agonist 

along with its proprietary PD-1 inhibitor (for GSK, the PD-1 monoclonal antibody 

(mAb) is dostarlimab). Genor Biopharma is also employing this strategy, combining its 

PD-1 inhibitor geptanolimab with its intratumorally administered STING agonist GB492 

(IMSA101), which it is co-developing with ImmuneSensor Therapeutics. Merck has also 

conducted a phase I study with its STING agonist, MK-2118 (being tested with and 

without pembrolizumab) and results are pending. Meanwhile several other manufacturers 

are combining their STING agonists with approved PD-1 inhibitors: Both Stingthera 

and Takeda are combining their STING agonists (SNX281 and TAK-676, respectively) 

with pembrolizumab. Stingthera has a formal agreement to co-develop SNX281 with 

Merck. Finally, F-star Therapeutics is testing its intravenously-administered SB 11285 in 

collaboration with Roche, combining the novel agent with Roche’s atezolizumab (although 

it was originally planned as a combination with nivolumab) (51).

Novel delivery systems

To improve the stability of drug after administration another approach has been to devise 

new ways to “package” traditional CDNs. exoSTING is an intratumorally administered 

exosome containing Codiak Bioscience’s proprietary CDN STING agonist (52). The 

exosome not only protects the CDN payload from degradation, but also has surface 

PTFGRN that is meant to facilitate specific uptake by tumor-resident antigen presenting 

cells (53). A Phase I/II trial studying exoSTING as a monotherapy in advanced solid tumors 

is ongoing (54). The trial has dedicated SCCHN, TNBC, ATC, and cutaneous squamous 

cell carcinoma (cSCC) cohorts. An interim analysis included n=8 subjects with evaluable 

tumors and showed variable activity from lesion-to-lesion, even within an individual. For 

example, in a subject receiving exoSTING as a fifth-line agent for parotid gland carcinoma, 

the injected lesion grew by 50% while a non-injected lesion shrank by 74% (the growth 

was thought to represent pseudoprogression, or tumor growth due to inflammation rather 

than due to disease progression). This subject remained on therapy for over seven months. 

A patient receiving exoSTING as fourth-line therapy for cSCC experienced stable size of 

an injected lesion and 77% decreased size of a non-injected lesion, while a patient with 

receiving third-line therapy for chondrosarcoma experienced responsive evaluation criteria 

in solid tumors (RECIST) SD overall. These data do suggest a meaningful abscopal effect.

Synlogic developed SYNB1891, which is a live Escherichia coli probiotic engineered to 

produce STING-agonist CDNs in vivo when administered intratumorally with or without 

systemic atezolizumab (55, 56). A Phase I trial in advanced solid tumors is ongoing. 

Among 23 patients whose treatment course has been reported, two patients (one with 

vulvar cancer and one with SCLC, both refractory to immunotherapy) experienced RECIST 

SD (RECIST −28% and −12%, respectively). Four patients experienced cytokine release 

syndrome, including one grade 3 event that qualified as a dose-limiting toxicity (DLT). No 

other SAEs have been reported.

Cell therapy and vaccine

A final STING-targeting approach that has reached clinical development is the 

administration of University of Miami’s STING-dependent activator (STAV)-loaded 
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autologous leukemic cells combined with a dendritic cell vaccine. A Phase I study in 

aggressive relapsed/refractory leukemias is planned (57).

In addition to the above immunotherapy combinations, there may be a role for the addition 

of STING agonists in traditional chemotherapy regimens whose mechanisms have been 

revealed to involve the STING pathway. Bortezomib, a proteosome inhibitor most used in 

the treatment of multiple myeloma, has been shown to use a STING mediated pathway to 

induce an immune response against myeloma cells(58). Multiple studies have also shown 

that inhibitors of poly(ADP-ribose) polymerase (PARP) promote anti-tumor immunity via 

activation of the STING pathway(59-61). Likewise, temiposide, a topoisomerase inhibitor, 

and 5-fluorouracil have been shown to utilize the STIGN pathway for their therapeutic 

effects (62, 63)

Other mechanisms for delivery of STING agonists are also in development. A recent 

abstract described the ability of a STING-agonist antibody-drug conjugate (ADC)to induce 

a complete response and create immunologic memory (64). Given recent growth in effective 

ADCs for cancer therapy, this strategy may be the most logical to improve intratumoral 

delivery across multiple tumor sites while pragmatically limiting systemic exposure. 

Similarly, an oral STING agonist was shown to create sustainable tumor regression and 

a synergistic effect with ICIs in a murine model(65).

Conclusion:

Resistance to immunotherapies remains a challenge in the growing arsenal of anti-cancer 

drugs. First generation STING agonist demonstrated modest activity, but a new wave of 

technologies and combination with other therapies may result in improved outcomes. Many 

early phase trials and preclinical studies investigating the use of STING agonists and new 

mechanisms of drug delivery are ongoing and will inform the viability of STING as a 

successful target for cancer immunotherapy regimens.
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Figure 1. 
The stimulator of interferon genes (STING) pathway is activated though cytosolic DNA 

sensors including cyclic GMP-AMP synthase (cGAS). Activation leads to the production 

of Type I interferons. STING agonists may synergize with various other forms of 

immunotherapy including CAR-T cells, CPIs, BiTEs, and radiotherapy to improve anti-

tumor activity.
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