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Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the 
nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 
18 children and young adults from 10 independent families typified by intellectual disability, motor developmental 
delay and gait disturbance.
In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were 
present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, 
including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss 
of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient 
fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst 
the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. 
Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 
decapping as the activity implicated in altered mRNA homeostasis.
Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlight-
ing the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.
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Introduction
Alterations in mRNA metabolism or mRNA translation are com-

monly associated with neurological disorders.1 Accordingly, aber-

rancies in mRNA modifications can impact the stability and 

translation efficiency of mRNAs.2,3 A key modification is the attach-

ment of 5’ cap structures to nascent mRNAs.4,5 Capping protects 

mRNAs from degradation, increasing their lifetime, and also allows 

recognition by cap-binding proteins of the translational machinery.6

Removal of the cap is catalysed by decapping enzymes, predomin-

antly members of the Nudix (nucleoside diphosphate-linked moi-

ety X) hydrolase superfamily7,8 that exposes 5’ mRNA termini to 

degradation by the exoribonuclease XRN1.9 In addition to Nudix 

hydrolases, the Histidine-triad class of hydrolases primarily func-
tion on dinucleotides and include the DcpS scavenger decapping 
enzymes that cleave the residual cap structure following mRNA 
degradation from its 3’ end.10 A causal link between DCPS as well 
as the mRNA decapping enhancer EDC3 to neurodevelopmental 
disorders has been reported.11-13 However, a link between members 
of the Nudix superfamily and human neuropathologies has not yet 
been rigorously established.

Perhaps the most compelling evidence for the involvement of 
Nudix-type hydrolases in neurodevelopmental disorders relates 
to NUDT2 (Nudix hydrolase 2, MIM *602852), for which homozygous 
truncating variants have been reported in 10 individuals from 
six independent families with global developmental delay and 
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neuropathy (MIM #619844).14-16 Based on these findings, a 
NUDT2-associated recessive neurological disorder has been postu-
lated, but a link to changes in NUDT2 enzymatic activity was not 
reported.

The NUDT2 gene is conserved across vertebrates but its specific 
function in human physiology remains unknown. Initially de-
scribed as a hydrolase of the putative second messenger diadeno-
sine tetraphosphate (Ap4A), NUDT2 was subsequently shown to 
also exhibit activity towards a broad range of capped substrates in-
cluding m7G-cap, unmethylated Gppp-, dpCoA- and FAD-capped 
RNAs.17

Here, we report novel rare damaging homozygous NUDT2 var-
iants and provide evidence from genetic, bioinformatic, cell-based 
and biochemical experiments that biallelic loss-of-function var-
iants in NUDT2 are causally linked to a neurodevelopmental 
syndrome.

Materials and methods
Additional methods are described in the online Supplementary 
material.

Patient enrolment and ethics

The cohort was assembled by consultations between collaborators 
(Families F1–F5, F7 and F9), using GeneMatcher18 (Families F6 and 
F10) and ClinVar19 (Family F8). Families F1 and F2 were previously 
reported,14,15 but are included here because of fibroblast availability 
(Patient F1:II.5), to include an unreported sibling (Patient F2:II.3) and 
phenotyping of affected family members. The study was approved 
by the respective local institution’s ethics committees and in-
formed consent was obtained from all subjects or their guardians 
according to the Declaration of Helsinki.

Genetic testing

Exome genome sequencing and analysis were performed at 
Center for Genomic Medicine, Saudi Arabia; Tübingen University, 
Germany; Centogene, Germany; Genomics England, UK; Oslo, 
Norway; Bergen, Norway; Lyon University Hospital, France; and 
Queen Square Genomics, UK on genomic DNA from affected 
individuals.

Immortalization of patient fibroblasts

Human patient fibroblasts were cultured in Dulbecco’s modified 
Eagle medium (DMEM) medium with D-glucose and pyruvate 
(Gibco) supplemented with 10% fetal calf serum (FBS, Gibco) and 
Penicillin/Streptomycin (Gibco). Fibroblasts were immortalized by 
transfection of SV40 large T antigen with FuGENE (Promega) accord-
ing to the manufacturer’s instructions and then split at a ratio of 1:2 
for at least 10 passages before being considered immortalized. 
Control human fibroblasts were obtained from unaffected indivi-
duals for western blot analysis or Cellsystem Biotech for RNAseq 
analysis.

RNA generation and in vitro decapping assays

5’ end triphosphate pcDNA3 polylinker RNA (pppG-pcP RNA) was in 
vitro transcribed from pcDNA3 polylinker PCR DNA template with 
T7 RNA polymerase (Promega, #P2075), as previously described.20

32P-5’ end labelled N7-methylated capped RNA was generated using 
the vaccinia virus capping enzyme21 in the presence of [α-32P]GTP 
and S-adenosyl-dismethionine (SAM), as described.20 In vitro 

decapping assays were carried out by incubating 5’ 32P-cap labelled 
RNA with 50 nM recombinant NUDT2 wild-type or mutant proteins 
in 20 µl reaction mix containing 100 mM KCl, 2 mM MgCl2, 4 mM 
MnCl2, 2 mM DTT, 10 mM Tris-HCl (pH 7.5) at 37°C for 30 min. The 
decapping products were resolved by PEI-cellulose thin layer chro-
matography (TLC) plates (Sigma-Aldrich, #Z122882) developed in 
0.45 M (NH4)2SO4 at room temperature and visualized with 
Amersham Typhoon PhosphorImager.

Ap4A hydrolysis assay

Diadenosine tetraphosphate (Ap4A, 5 mM) (Sigma-Aldrich, #D1262) 
was incubated with 100 nM recombinant NUDT2 wild-type or mu-
tant proteins in 20 µl reaction containing 100 mM KCl, 2 mM 
MgCl2, 4 mM MnCl2, 2 mM DTT, 10 mM Tris-HCl (pH 7.5) at 37°C 
for 60 min. Hydrolysed products were resolved by PEI-cellulose 
TLC plates (Sigma-Aldrich, #Z122882), developed in 0.45 M 
(NH4)2SO4 at room temperature and visualized under short wave 
UV light.

Endogenous mRNA stability assay and qRT-PCR

Fibroblasts were cultured with DMEM/10% FBS medium. At 70% 
cell density, 5 µg/ml final concentration of Actinomycin D 
(Sigma-Aldrich, #A4262) was added to the medium to block RNA 
transcription. Total RNA was isolated with TRIzol™ reagent and 
treated with RNase-free DNase. Reverse transcription was per-
formed on 2 μg of RNA with M-MLV reverse transcriptase 
(Promega, #M1701) and oligo(dT), according to the manufacturer’s 
instructions. qRT-PCR was performed with the primers listed in 
Supplementary Table 1 and carried out on Applied Biosystems 
QuantStudio 3 Real-Time PCR (ThermoFisher) with iTaq SYBR 
Green Supermix (Bio-Rad Laboratories, #1725124). Relative mRNA 
levels were normalized to endogenous GAPDH mRNA.

Statistics

Gene expression differences were determined using pairwise 
Wald tests in DESeq2, corrected for multiple measurements with 
the Benjamini-Hochberg false discovery rate (FDR) (as adjusted 
P-value).

Results
Clinical characterization of individuals with 
homozygous NUDT2 variants

We present findings from 18 individuals with homozygous NUDT2 
variants, from 10 different families [13 individuals from nine inde-
pendent families previously unreported (Families F2–F10)], aged 3 
to 21 years at last assessment. Common to all were symptom onset 
within the first 18 months of life, muscular hypotonia, motor devel-
opmental delay, gait disturbance and mild intellectual disability, 
with additional features like sensorimotor neuropathy present in 
some of the patients (Fig. 1A). Major clinical findings are summar-
ized in Supplementary Table 2. Detailed clinical descriptions are 
provided as case reports in the Supplementary material. Cerebral 
MRI was available for review in 13 patients aged 5 months to 20 
years at investigation. Partial agenesis and hypoplasia of the corpus 
callosum were present in nine individuals (Fig. 1B–D), delayed 
myelination in two individuals, and brain malformation in one in-
dividual (Fig. 1E). In four siblings (Families F2 and F3), bilateral- 
symmetric basal ganglia signal abnormalities were present, with 
findings being more pronounced in the older siblings (Fig. 1F–M). 
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Figure 1 Clinical findings, brain imaging and NUDT2 structure. (A) While dysmorphic features were reported in 13 of 18 individuals, an evaluation of 
clinical photography by two experienced physicians (F.A., R.A.H.) revealed no recognizable syndrome based on facial gestalt. n = 18, unless otherwise 
noted. (B–D) Sagittal T1 brain imaging of individuals Patients F1:II.3, F3:II.2 and F4:II.2. Hypoplasia (arrows) and/or shorter anterior-posterior length 
(short arrows) of the corpus callosum was a common abnormality. (E) Coronal T1 imaging. Occipital midline malformation with dysgyria (dashed 
line) in Patient F1:II.5. (F–M) Globus pallidus bilateral-symmetric signal abnormalities (arrows) in axial scans with low signal in susceptibility-weighted 
imaging (SWI) (F, Patient F3:II.1; H, Patient F3.II.2), moderately high signal in phase-contrast (G, Patient F3:II.1; I, Patient F3.II.2), routine spin echo se-
quences with low signal in T2-weighted (J, Patient F2:II.1; L, Patient F2:II.2) and moderately high signal in T1-weighted images (K, Patient F2:II.1; M, 
Patient F2:II.2). Additionally, Patient F3:II.1 showed bilateral-symmetric susceptibility artefacts in the substantia nigra (not shown). Interestingly, earl-
ier imaging in Patient F2:II.1 at age 5 years, in Patient F3:II.1 at age 2 years 7 months and in Patient F3:II.2 at age 2 years 9 months did not show these 
signal abnormalities indicating an occurrence after early childhood. (N and O) SWI showed disturbance of susceptibility in phase image in Patient F3: 
II.1 (N, detail from G, axial slice including pineal gland). Arrow: Bright point with dark rim corresponding to calcification in the pineal gland. This finding 
is caused by the diamagnetic character of calcium. (O) Arrows: Dark points with bright rim corresponding to small iron deposition. This dipole finding is 
caused by the paramagnetic character, which is a strong hint of iron deposition. (P) Top: Gene structure. Protein-coding exons 4 and 5 are highlighted in 
black. Middle: NUDT2 protein sequence with homology grading from conserved (dark blue) to non-conserved (white) amino acids across eight species. 
Bottom: Magnification of selected regions of NUDT2. Nudix hydrolase domain [orange line, 1-139 amino acids (aa)], Nudix box motif (red line, 43–64 aa) of 
the gene product, position of the engineered null variant (grey line, 61–62 aa), position of identified variants in patients, and conservation of affected 
amino acids across different species (black boxes).
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Specific findings in susceptibility-weighted imaging (SWI) were in-
dicative of abnormal accumulation of iron or other paramagnetic 
inorganic substances22 in the globus pallidus (Fig. 1N and O). 
Laboratory investigations, including iron and copper metabolism, 
showed no abnormalities.

Genetic analysis

Standard genomic diagnostic work-up of 13 unreported individuals 
failed to detect likely pathogenic variants in established disease 
genes. Prioritizing biallelic non-synonymous variants with a minor 
allele frequency <0.1% without homozygous occurrence in 
gnomAD as well as in-house exome and genome datasets from in-
dividuals with unrelated phenotypes, we detected rare homozy-
gous variants in NUDT2 (NM_001161.5) in all affected individuals 
(Table 1 and Supplementary Table 2) including novel missense 
c.174G > T (p.Glu58Asp) and in-frame deletion c.410_412del 
(p.Glu137del) variants. Segregation analyses showed autosomal- 
recessive inheritance (Supplementary Fig. 1). In line with the homo-
zygous genotype, consanguinity has been reported in 5 of 9 families 
(Families F1, F2, F8, F9 and F10). The changes p.Ala63Glnfs*3 
(Families F4–F9 of European and northern African origin) and 
p.Arg12* (Families F1 and F2 of Arab-Saudi origin) were identified 
in several families. While the change p.Arg12* is most likely a foun-
der variant, as indicated by previously reported haplotype ana-
lysis,15 identification of p.Ala63Glnfs*3 in families of different 
ethnicities without extended runs of homozygosity and overlap-
ping haplotypes renders this variant a likely recurrent change.

Functional characterization of NUDT2 variants

To address a putative causal link between NUDT2 alterations 
and disease, we investigated the functional properties of NUDT2 
variant proteins. Variants p.Arg12* and p.Ala63Glnfs*3 result in pre-
mature stop codons and likely no functional protein product 
(Supplementary Fig. 2A). p.Glu58Asp is located within the Nudix 
box motif (Fig. 1P), affecting a critical residue required for catalysis 
(Supplementary Fig. 2B).23 While these variants are predicted to 
cause loss-of-function, the consequences of the in-frame deletion 
p.Glu137del, resulting in the loss of Glu137, are less clear. 
Structural considerations predict a conformation stabilizing role 
of Glu137 as it interacts with Arg78 on the adjacent β5 strand 
(Supplementary Fig. 2B). In line with these predictions, NUDT2 pro-
tein was absent from patient fibroblasts harbouring variants 
p.Arg12* and p.Ala63Glnfs*3 (Fig. 2A), while NUDT2 was detected 
in fibroblasts from patients carrying variant p.Glu58Asp. Plasmid 
transfections confirmed expression of the p.Glu58Asp and 
p.Glu137del variants, albeit at much decreased levels for the latter 
(Supplementary Fig. 2C). These findings showed that variants 
p.Arg12* and p.Ala63Glnfs*3 do not yield NUDT2 protein while var-
iants p.Glu58Asp and p.Glu137del give rise to full-length protein.

Mutant NUDT2 proteins show severely diminished 
enzymatic activity

To determine whether NUDT2 mutants were enzymatically active, 
NUDT2p.Glu58Asp and NUDT2p.Glu137del variant proteins were purified 
from Escherichia coli (Fig. 2B) and tested in in vitro activity assays to-
gether with wild-type NUDT2 and the catalytically inactive mutant 
NUDT2EE/QQ as positive and negative controls, respectively.7 Both 
variants were essentially devoid of enzymatic m7G-RNA decapping 
activity, confirming loss-of-function (Fig. 2C). In addition to decap-
ping, NUDT2 exhibits hydrolase activity towards Ap4A, a side 

product of aminoacyl-tRNA loading reactions.24 As shown in 
Fig. 2D, NUDT2p.Glu58Asp and NUDT2p.Glu137del possessed little to no 
detectable Ap4A hydrolase activity. We conclude that NUDT2 var-
iants associated with a neurodevelopmental disorder have an 
underlying loss-of-function due to lack of protein expression or 
loss of enzymatic activity.

We investigated the subcellular distribution of NUDT2 and 
whether this was altered in the pathogenic variants. Increasing 
evidence indicates that mRNA processing machineries localize to 
discrete structures, including processing bodies (P-bodies) that 
can be formed by phase separation in the cytosol.25 Consistently, 
heterologously expressed NUDT2 accumulated at punctate cytosol-
ic structures (Supplementary Fig. 3). While NUDT2p.Glu58Asp largely 
co-localized with wild-type NUDT2, NUDT2p.Glu137del distributed 
to larger, horseshoe-shaped structures that were clearly different 
from the foci decorated by wild-type NUDT2. Thus, in addition 
to the reduction in enzymatic decapping activity, NUDT2p.Glu137del 

featured an aberrant subcellular distribution.

Altered transcriptome in patient-derived fibroblasts 
harbouring NUDT2 variants

Loss of NUDT2 decapping activity suggests that NUDT2 variant cells 
could possess an altered transcriptome of mRNAs. To test this pos-
sibility, mRNA was isolated from immortalized patient fibroblasts 
(F1:II.3/p.Arg12* and F3:II.1/p.Glu58Asp) and control wild-type im-
mortalized fibroblasts and subjected to next generation sequen-
cing. Volcano plots (Fig. 2E) show reference transcripts with at 
least a 2-fold change in expression level and ≤5% FDR in NUDT2 
mutant compared to control cells. Distribution of overlapping tran-
scripts elevated in both cell lines identified 37% congruency be-
tween the two NUDT2 variants (Fig. 2F and Supplementary 
Table 3). Gene ontology (GO) pathway analysis using high strin-
gency (FDR ≤5%, ≥10 transcripts per term) identified five major 
biological process (BP) terms with the most prevalent within em-
bryonic morphogenesis, interferon (IFN) and antiviral responses 
(Fig. 2G). To validate the RNA-seq data, three upregulated tran-
scripts and one unaltered transcript were randomly selected 
(Fig. 3A) and their mRNA levels assessed by qRT-PCR in the different 
cell lines. Consistent with RNA-seq data, mRNA levels were signifi-
cantly elevated in p.Glu58Asp and p.Arg12* cells, except for the 
LIMK2 mRNA, which was unaltered in RNA-seq analysis (Fig. 3A). 
In addition, stability of all three mRNAs, but not of the unaltered 
LIMK2 mRNA, was increased in cells with disrupted NUDT2 catalyt-
ic activity, pointing to a reduced degradation rate (Fig. 3B). 
Validation analysis of eight additional transcripts found to be ele-
vated in NUDT2 mutant cells by RNA-seq analysis further con-
firmed the validity of the analysis (Supplementary Fig. 4). To 
delineate whether the observed reduction in mRNA stability was 
a consequence of reduced mRNA decapping or defective Ap4A hy-
drolysis and consequently aberrant accumulation of Ap4A, we uti-
lized the Arabidopsis thaliana NUDX26 (AtN26) protein. AtN26 
possesses robust Ap4A hydrolase activity (Ogawa et al.26 and 
Fig. 3C) but minimal to no mRNA decapping activity (Fig. 3D). 
Stably transformed p.Glu58Asp cell lines that expressed either 
EGFP, AtN26 or catalytically dead AtN26 (AtN26EE/QQ) were gener-
ated and used. As shown in Fig. 3E, Ap4A levels were elevated 
in the Nudt2 defective E58D cells relative to control cells. 
Importantly, expression of AtN26 but not the catalytically inactive 
AtN26EE/QQ reduced Ap4A levels to that observed in control cells 
demonstrating AtN26 can complement the loss of NUDT2 and re-
duce cellular Ap4A levels. Significantly, analysis of mRNAs used 
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in Fig. 3A revealed comparable steady state levels regardless of 
whether the cells expressed wild-type or catalytically inactive 
AtN26 (Fig. 3F) and consistent with the premise that altered 
mRNA levels are not a consequence of Ap4A accumulation in the 
NUDT2 loss-of-function cells. These results support the concept 
that NUDT2 is a true decapping protein that directly, and possibly 
indirectly, modulates the stability of a specific subset of target 
mRNAs.

Discussion
Our study focuses on 18 patients from 10 unrelated families, pre-
senting a consistent neurological clinical pattern with onset of 
symptoms within the first 1.5 years of life, harbouring four inde-
pendent, rare, evolutionary conserved, homozygous NUDT2 var-
iants. Clinical features in all patients were muscular hypotonia, 
motor developmental delay, gait disturbance and mild intellectual 
disability. Muscle weakness, sensorimotor neuropathy and corpus 
callosum abnormalities were present in 78%, 71% and 69% of the 
patients, respectively. These observed clinical findings are in line 
with those from previous reports of patients with homozygous 
NUDT2 variants.14-16 Notably, there were indications of basal gan-
glia iron deposition in one-third of the patients investigated. Gait 
disturbance and distal muscular atrophy in the legs due to periph-
eral neuropathy are likely to be progressive, as are basal ganglia 
changes. We postulate a common mechanism leading to damage 
of both the central and peripheral nervous systems.

So far, a NUDT2-associated disorder has only been described clin-
ically and genetically. Our biochemical and cell biological findings 
strongly support that loss of NUDT2 function is common to all iden-
tified variants and a likely cause of disease. Loss-of-function resulted 
from premature translation termination preventing expression of 
NUDT2 protein or from a severe reduction in enzymatic activity. 
The undistinguishable pathophysiological consequences of both 
scenarios suggests that the aetiology of the neurodevelopmental 
symptoms is due to loss of NUDT2 enzymatic activity. Given the 
role of NUDT2 in mRNA decapping, it is reasonable to expect that 
NUDT2-decapped mRNAs will have greater stability and a longer 
lifespan in patient cells. Consistent with this premise, 602 tran-
scripts were found to be elevated in NUDT2 mutant cells 
(Supplementary Table 3) and a subset of mRNAs tested from this 
population exhibited enhanced mRNA stability in the absence of 
NUDT2 function. Alternatively, loss of NUDT2 activity could also 
manifest in increased Ap4A levels and signalling. Our Ap4A mea-
surements confirm this premise and show that NUDT2 may be a 
key player in the regulation of cellular Ap4A levels. The precise func-
tion(s) of Ap4A as second messenger is poorly understood. Previous 
findings linked Ap4A accumulation to stress responses and the 
regulation of gene expression, DNA repair and immune re-
sponses.27 Our experiments using a novel hydrolase that discrimi-
nates decapping activity and Ap4A hydrolysis strongly indicate 
that the observed increased mRNA stability and concomitant 
transcript changes are primarily a consequence of defective 
NUDT2-dependent mRNA decapping. Although compensatory ef-
fects by other decapping enzymes cannot be ruled out, these re-
sults support that NUDT2 acts in mRNA decapping and indicate 
that its decapping activity may contribute to the neurodevelop-
mental disorder presented here.

Accumulating evidence suggests that NUDT2 may be involved 
in various aspects of the host immune response. NUDT2 reportedly 
trims off phosphates from 5’-triphosphate-capped viral RNAs, pro-
moting their degradation.28 Others reported a role of NUDT2 in T
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Figure 2 Characterization of NUDT2 variant proteins. (A) Immortalized fibroblasts from four healthy controls (Controls C1-C4) and Patients F3:II.1 
(p.Glu58Asp), F3:II.2 (p.Glu58Asp), F1:II.5 (p.Arg12*) and F6:II.1 (p.Ala63Glnfs*3) were lysed and processed for western blot detection of NUDT2 and 
ACTB as loading control. (B) Coomassie blue stain of indicated NUDT2 mutant proteins purified from E. coli. (C) Decapping assay using radiolabelled 
m7Gppp-RNA as a substrate (32P denoted in red) and 50 nM of the indicated recombinant protein. Samples were resolved by thin layer chromatography 
(TLC). Migration of the NUDT2 decapping reaction products, m7Gp and m7Gpp are marked. (D) Hydrolase assay using 100 nM of the indicated recom-
binant proteins in the presence of 5 mM Ap4A. Reaction products were resolved by TLC and visualized under short UV light. The position of Ap4A and 
the two reaction products Ap and Appp is marked. (E) Volcano plot of transcripts altered as a consequence of the NUDT2 variants relative to wild-type 
(Wt) control cells. The log2 fold change is plotted versus the −log10 FDR (false discovery rate). Each transcript is indicated as a dot on the plot. Dots 
above the horizontal dashed line are <5% FDR. The vertical dashed lines indicate ±4-fold differences. Dots to the right of the +4-fold line are coloured 
red and to the left of the −4-fold are coloured in grey (only if they are detected with at least 10 mean counts). Transcripts validated in Fig. 3 and 
Supplementary Fig. 4 are labelled with gene symbols. (F) Venn diagram of elevated transcripts from E (dots coloured red) from each variant. (G) 
Tree plot of Gene Ontology Biological Process (GO-BP) enriched terms generated from transcripts upregulated in common in E. Size of the circles re-
present the number of genes in each category and the colour of the circles reflect P-value of enrichment, as calculated using the clusterProfiler package 
in R and plotted using the enrichplot package.
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dendritic cell function mediated by its Ap4A hydrolase activity.29

Our findings that the majority of NUDT2-responsive mRNAs uncov-
ered in p.Glu58Asp and p.Arg12* cells were related to immunity, 
ranging from interferon response, viral defence mechanisms to 
regulation of viral replication (Fig. 2G), support the possibility that 
dysregulated immunity contributes to disease aetiology. In particu-
lar, the observed upregulation of IFN-related genes in NUDT2 mu-
tant cells may point to dysfunctional IFN signalling as a factor 
contributing to disease development. It is noteworthy that a link 
between defective mRNA degradation and neurodevelopmental 
disorders in humans is not unprecedented, as illustrated by syn-
dromes associated with SMG8 and SMG9, two components of the 
nonsense-mediated decay pathway of mRNA degradation.30

Together with the findings reported here, a picture emerges in 
which inadequate control of mRNA degradation and homeostasis 
may be a central theme in the aetiology of congenital neurological 
disorders.

Data availability
DNA sequence datasets have been generated and contributed by 
different study sites and have not generally been deposited in a 
public repository due to varying local consent regulations. For 
Family F5, genome sequencing data are available in the National 
Genomic Research Library (https://doi.org/10.6084/m9.figshare. 
4530893.v6). Selected datasets will be made available by the 

corresponding author on reasonable request. Novel variants were 
submitted to the ClinVar database (https://www.ncbi.nlm.nih.gov/ 
clinvar; accession numbers: VCV002446368.2; VCV002506450.1). 
RNA sequencing data are deposited in GEO (Gene Expression 
Omnibus, https://www.ncbi.nlm.nih.gov/geo/, accession number: 
GSE230789).
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