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ABSTRACT Pharmacokinetic models rarely undergo external validation in vulnerable 
populations such as critically ill infants, thereby limiting the accuracy, efficacy, and safety 
of model-informed dosing in real-world settings. Here, we describe an opportunistic 
approach using dried blood spots (DBS) to evaluate a population pharmacokinetic 
model of metronidazole in critically ill preterm infants of gestational age (GA) ≤31 
weeks from the Metronidazole Pharmacokinetics in Premature Infants (PTN_METRO, 
NCT01222585) study. First, we used linear correlation to compare 42 paired DBS and 
plasma metronidazole concentrations from 21 preterm infants [mean (SD): post natal 
age 28.0 (21.7) days, GA 26.3 (2.4) weeks]. Using the resulting predictive equation, we 
estimated plasma metronidazole concentrations (ePlasma) from 399 DBS collected from 
122 preterm and term infants [mean (SD): post natal age 16.7 (15.8) days, GA 31.4 
(5.1) weeks] from the Antibiotic Safety in Infants with Complicated Intra-Abdominal 
Infections (SCAMP, NCT01994993) trial. When evaluating the PTN_METRO model using 
ePlasma from the SCAMP trial, we found that the model generally predicted ePlasma 
well in preterm infants with GA ≤31 weeks. When including ePlasma from term and 
preterm infants with GA >31 weeks, the model was optimized using a sigmoidal Emax 
maturation function of postmenstrual age on clearance and estimated the exponent 
of weight on volume of distribution. The optimized model supports existing dosing 
guidelines and adds new data to support a 6-hour dosing interval for infants with 
postmenstrual age >40 weeks. Using an opportunistic DBS to externally validate and 
optimize a metronidazole population pharmacokinetic model was feasible and useful in 
this vulnerable population.
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E xternal validation of pharmacokinetic (PK) models is essential for accurate and safe 
use of model predictions in real-world patient care (1, 2). External validation studies, 

in which the performance of published models is vetted in a separate data source (1), 
typically use traditional PK methods of intensive sampling and frequent blood draws. 
However, these methods are often not feasible or ethical in vulnerable populations such 
as critically ill infants (3, 4). As a result, existing PK models in this population are limited, 
and very few have undergone external validation (2, 5, 6). Without external validation, 
model-informed dosing may expose critically ill infants to sub- and/or supra-therapeutic 
concentrations (2), reduced efficacy and/or increased toxicity, and poor outcomes in 
real-world clinical care settings.
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Using dried blood spots (DBS) creates new opportunities for external validation 
studies. DBS are collected by applying a drop of blood to a filter paper, which is later 
extracted for analysis. Compared to traditional blood draws, collecting DBS markedly 
reduces blood volume requirements and eases the logistics of preparation, transport, 
and storage (7). Coupling DBS with opportunistic, or scavenged, sampling can reduce 
study burden while providing the data necessary for PK studies on infants (8). However, 
DBS also require comparability studies (7) and other added steps that can increase 
the complexity, imprecision, and potential for error. Thus, opportunities to use DBS to 
externally validate PK models in critically ill infants have been relatively underutilized.

The objective of this study was to use DBS to evaluate a previously published 
population PK (popPK) model of metronidazole in critically ill preterm infants (9). 
Metronidazole is a nitroimidazole antibiotic widely used to treat a variety of bacterial 
infections in patients of all ages (10, 11). In neonatal intensive care units, metronidazole 
is used to treat necrotizing enterocolitis and is among the most frequently adminis
tered medications (5, 12). Metronidazole distributes into several tissues, including red 
blood cells (13), and throughout the gastrointestinal tract, where it undergoes reductive 
activation of metabolites prior to excretion in urine and feces (11). The PK parameters of 
metronidazole undergo dramatic changes early in life (14), in part due to the ontogeny 
of drug-metabolizing enzymes such as CYP3A, underscoring the importance of model 
evaluation in infants of varying ages (15).

To evaluate the metronidazole popPK model in critically ill infants, we first performed 
a comparability analysis of paired DBS and plasma metronidazole concentrations. The 
resulting predictive equation allowed us to estimate plasma metronidazole concentra
tions from DBS collected in a separate, larger, opportunistic study. We then used the 
estimated plasma metronidazole concentrations to evaluate and optimize the metroni
dazole popPK model.

MATERIALS AND METHODS

Study design and sample collection

We externally evaluated a previously published popPK model of metronidazole in 
critically ill preterm infants with gestational age (GA) ≤31 weeks and suspected intra-
abdominal infection, initially developed with data from the Metronidazole Pharmacoki
netics in the Premature Infants (PTN_METRO, NCT01222585) study (9). This model is 
referred to as the “PTN_METRO model” henceforth. In the PTN_METRO study, 111 plasma 
metronidazole samples were collected and used for popPK modeling. In addition, 42 
paired metronidazole DBS and plasma concentrations were collected and used for the 
comparability analysis reported herein.

To evaluate the PTN_METRO model, we used DBS collected as part of the Anti
biotic Safety in the Infants with Complicated Intra-Abdominal Infections (SCAMP, 
NCT01994993) trial (16). The SCAMP trial was a multicenter, prospective, partially 
randomized, open-label trial of antimicrobials, including metronidazole, in critically ill 
term and preterm infants with complicated intra-abdominal infections. Inclusion and 
exclusion criteria were previously reported (16). Metronidazole was administered as a 
30-minute intravenous infusion with a 15-mg/kg loading dose followed by a 7.5-mg/kg 
maintenance dose at 24 hours. Subsequent maintenance doses were administered at 
intervals defined by post-menstrual age (PMA, defined as GA plus chronologic age in 
weeks) according to published guidelines (9, 10, 16–18) as follows: 7.5 mg/kg every 12 
hours for PMA 23–<34 weeks, every 8 hours for PMA 34–40 weeks, and every 6 hours for 
PMA >40 weeks (17). DBS were collected on FTA DMPK Type C cards opportunistically 
alongside clinical care, guided by an optimal PK collection scheme (i.e., DBS collected 
when standard-of-care assessments aligned with a timepoint in the optimal PK collection 
scheme: 0–15 minutes and 1–2 hours after the end of infusion; followed by 4–6 or 8–10 
hours after or 0–30 minutes before the next dose, depending on the dosing interval; and 
elimination sample 12–18, 16–24, or 24–36 hours after the end of the final dose). DBS 
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were shipped to the Pediatric Trials Network central laboratory (OpAns, LLC, Durham, NC) 
for analysis.

DBS analysis

DBS underwent new analysis using a similar methodology as previously reported (9). 
Metronidazole was extracted from DBS 6 mm punch using a methanol solvent and 
quantified using a validated liquid chromatography-tandem spectrometry assay with 
the Agilent 1200 series, Poroshell 120 SB C18 (30 × 2.1 mm id, 2.7 um; Agilent Technol
ogies, Santa Clara, CA) and a gradient mobile phase. The validation range was 50 to 
50,000 ng/mL with a linear quantification over the 1,000-fold validation range. Quality 
control samples included nominal concentrations of 150, 4,000 and 40,000 ng/mL. 
Accuracy and precision assessed using five determinations at theoretical levels of 150, 
4,000, and 40,000 ng/mL were within the Food and Drug Administration bioanalytical 
assay validation criteria (i.e., ±15%) (19).

Comparability analysis

Paired plasma and DBS samples from the PTN_METRO study were analyzed using 
simple linear regression and mixed-effect (random intercept) models using both raw 
and log-transformed concentrations. Bias and imprecision were calculated using median 
percentage prediction error (MPPE) and median absolute percentage prediction error 
(MAPE), respectively. MPPE and MAPE <15% were considered acceptable. The regression 
model with the lowest MPPE and MAPE was selected to estimate the plasma metronida
zole concentrations (ePlasma) from DBS samples collected in the SCAMP trial. Calcula
tions were:

MPPE  =  median  100%  ×   CONCplasma_PRED  −  CONCplasma_OBS /CONCplasma_OBS
MAPE  =  median  100%  ×   | CONCplasma_PRED  −  CONCplasma_OBS | /CONCplasma_OBS ,

where CONCplasma_OBS is the observed plasma concentration and CON
Cplasma_PRED is ePlasma.

Validation

The PTN_METRO model was first evaluated using estimated plasma metronidazole 
concentrations (ePlasma) derived from DBS samples collected from SCAMP trial 
participants with GA ≤31 weeks, to be consistent with the inclusion criteria of the 
PTN_METRO study. The PTN_METRO model is a one-compartment model with covariates 
PMA on clearance (CL) and weight (WT) on the CL and volume of distribution (V). The 
predictive performance of the PTN_METRO model was evaluated by fixing the structural 
model and parameter estimates, as well as fixing the structural model and re-estimating 
parameters. For both approaches, evaluation was performed at both the individual and 
population levels. At the individual level, prediction error (PEi = observedi − predictedi), 
mean prediction error (MPE = ∑i = 1

N
PEiN ), and root mean square error (RMSE = ∑i = 1

N
PEi2N ) 

were calculated using the predicted and observed metronidazole concentrations. At 
the population level, 1,000 metronidazole concentrations per timepoint were simulated 
and compared to observed concentrations using prediction-corrected visual predictive 
checks (pcVPCs), which were normalized using the median prediction for each bin across 
time after dosing to account for influential covariates. The predictive performance was 
also evaluated using normalized prediction errors (NPDEs) for 1,000 simulated versus 
observed concentrations and visual assessment of the distribution of NPDEs versus the 
predicted concentration and time after dosing. Nonparametric bootstrapping of 1,000 
replicates was used to generate 95% confidence intervals (CIs) for parameter estimates 
for the refitted model using ePlasma concentrations.
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Optimization

ePlasma concentrations from the SCAMP trial were merged with plasma concentrations 
from the PTN_METRO study; using this combined data set, covariates were re-evaluated 
using the PTN_METRO model base one-compartment model without the covariate of 
PMA on CL, but including the linear relationship between WT and CL and V using a fixed 
exponent as follows:

CLi = CL ∗WT1

Vi = V ∗WT1
,

where WT denotes the body weight of an individual participant; CL and V are body 
weight normalized CL and V, respectively; and CLi and Vi are the estimates for each 
participant. Potential covariates including GA, PMA, postnatal age (PNA), sex, race, serum 
creatinine concentration, albumin concentration, and concomitant administration of the 
CYP3A inducer and/or CYP3A inhibitor were first explored in plots of covariate values 
versus population-typical value PK parameters (Eta). Covariates which showed a trend 
and had biological plausibility were then systematically evaluated for inclusion in the 
model using a forward inclusion [P < ~0.05 and reduction in objective function (dOFV ) 
> ~3.84 per 1 degree of freedom] and backward elimination (P < ~0.005 and dOFV > 
~7.88 per 1 degree of freedom) approach. The final model, referred to as “optimized 
model” henceforth, was evaluated based on minimization, diagnostic plots, plausibility 
and precision of parameter estimates, dOFV, shrinkage, bootstrapping (1,000 replicates), 
and pcVPCs.

Statistical analyses, data manipulation, and visualization were conducted using R 
(3.4.1, R Foundation for Statistical Computing, Vienna, Austria) and/or Stata (15.1, College 
Station, TX, USA). PK analyses were conducted using the NONMEM (7.4) first-order 
conditional estimate method with interaction, ADVAN1 TRANS2 subroutines, with Pirana 
(2.8.1) run management, Perl-speaks-NONMEM (3.6.2) for visual predictive checks, and 
bootstrapping and R package (npde) for NPDEs.

RESULTS

Comparability

A total of 42 paired plasma and DBS samples with quantifiable concentrations and 
adequate DBS size from 21 infants in the PTN_METRO study were used for the compara
bility analysis (Table S1). Mean (SD) concentrations for metronidazole were 11,702 (5,391) 
ng/mL for plasma and 9,965 (4,631) ng/mL for DBS. Concentrations were consistently 
lower in DBS than in plasma, and this finding was true across the range of concentra
tions. MPPE and MAPE were <9% for all regression methods, with simple linear regression 
having the lowest MPPE and MAPE of 1.7% and 3.2%, respectively. The following linear 
regression model was therefore chosen:

Cplasma = 1.11 ∗ CDBS + 253

where Cplasma is measured plasma concentration and CDBS is the DBS concentration 
from the PTN_METRO study and R2 = 0.86 (Fig. S1). This model was used to estimate 
ePlasma from DBS samples from the SCAMP trial, where ePlasma = Cplasma and CDBS is 
the DBS concentration.

Validation

In the SCAMP trial, 122 infants treated with metronidazole contributed a total of 446 
DBS (Table S1); 47 DBS were not included due to inadequate spot size (34), incorrect or 
missing time (9), abnormally high concentrations after receiving standard-of-care doses 
prior to enrollment (3), and abnormally high concentrations 144 hours after the last 
dose (1). The median (range) number of DBS samples contributed per infant was 3 (1–7). 
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Validation was performed using DBS from 59 of 122 infants in the SCAMP trial with 
GA ≤31 weeks, who contributed a total of 209 DBS.

Diagnostic plots of ePlasma concentrations versus population predictions for SCAMP 
trial participants with GA ≤31 weeks, using the PTN_METRO model with fixed structural 
model and fixed or re-estimated parameters (as reported in Table S2), showed no 
specific trends (Fig. S2). For the PTN_METRO model with fixed structural model and fixed 
parameters, the median PE was 337 ng/mL, MPE 439 ng/mL, and RMSE 6,980 ng/mL. 
For the PTN_METRO model with fixed structural model and re-estimated parameters, the 
median PE was 663 ng/mL, MPE 1,013 ng/mL, and RMSE 6,980 ng/mL. pcVPCs demon
strated similar central tendency and distribution between the PTN_METRO model with 
fixed parameters and re-estimated parameters (Fig. 1). The percentages of observations 
falling outside the 90% prediction interval were nearly identical at 20/193 (10.4%) 
versus 18/193 (9.3%) for the PTN_METRO model with fixed parameters and re-estima
ted parameters, respectively. The NPDE showed a trend of under-prediction at lower 
concentrations for the PTN_METRO model with fixed parameters; this trend resolved 
after re-estimating parameters (Fig. S3).

Optimization

After combining plasma metronidazole concentrations from the PTN_METRO study and 
all ePlasma concentrations from the SCAMP trial, including participants with GA >31 
weeks, re-estimation of the model parameters using the PTN_METRO model resulted 
in lower estimates for CL, V, and exponent of PMA on CL (Table S2). To optimize the 
PTN_METRO model using the combined data set, the PTN_METRO one-compartment 
base structural model with a linear relationship between WT and both CL and V was 
used, and covariates were re-evaluated for inclusion on both CL and V. The covariate 
selection process is summarized in Table S3. The final optimized model parameter 
estimates are shown in Table 1. Eta shrinkage for CL and V was 8% and 29%, respectively, 

FIG 1 Prediction-corrected visual predictive check for external validation of the PTN_METRO population pharmacokinetics model (9) of metronidazole 

using estimated metronidazole concentrations from critically ill infants in the SCAMP trial (16) with gestational ages ≤ 31 to match the PTN_METRO study 

demographics. Panel A shows the original PTN_METRO model with fixed parameters, and Panel B shows the original PTN_METRO model with re-estimated 

parameters. The shaded region denotes the 90% prediction interval of the simulated data. The solid lines from the bottom to the top represent the predicted 

5th, 50th, and 95th percentiles. The dashed lines from the bottom to the top represent observed 5th, 50th, and 95th percentiles. Abbreviations: PTN_METRO, 

Metronidazole Pharmacokinetics in Premature Infants; SCAMP, Antibiotic Safety in Infants with Complicated Intra-Abdominal Infections.
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and epsilon shrinkage was 17%. Diagnostic plots revealed no obvious trend (Fig. S4). 
pcVPCs showed reasonable fit between observed and predicted concentrations, with 7% 
of observed concentrations outside of the 90% prediction interval (Fig. 2). The NPDE 
distribution was normal and centered on 0 (Fig. S5). Using a 1,000-set bootstrap analysis, 
99.7% of data sets converged to >3 significant digits, and the median of all estimates was 
within 5% of population estimates from the original data set. Comparing the optimized 
model to the PTN_METRO model fitting the same data, IIV on V was lower (25.4% vs 
28.4%), IIV on CL was essentially unchanged (35.6% vs. 36.1%), as was the residual error 
(19.7% vs. 19.7%).

FIG 2 Prediction-corrected visual predictive check for an optimized population pharmacokinetics model 

of metronidazole in critically ill term and preterm infants. The shaded region and solid lines denote the 

90% prediction interval based on 1,000 simulations.

TABLE 1 Optimized population pharmacokinetic model parameter estimates for metronidazole derived 
from plasma and estimated from plasma in two studies (9, 16) of critically ill infants with intra-abdominal 
infectionsa

Parameter Estimate RSE (%) 2.5th 

percentile
Bootstrapb 

median
97.5th 

percentile

Structural model
CL = θCL * WT * [PMAHill/(TM50Hill+PMAHill)]
V = θV * WTθWT-V

  θCL (L/kg/h) 0.036 4 0.033 0.036 0.039
  θV (L/kg) 0.853 3 0.802 0.857 0.921
  TM50 (weeks) 25.6 2 24.4 25.6 26.5
  Hill 7 37 8.4 15.9 41.0
  θWT-V 0.763 8 0.645 0.752 0.876
Interindividual variability (%CV)
  CL 35.6 21 28.4 35.5 43.4
  V 25.4 31 16.5 24.8 31.6
Residual error
  Proportional error (%) 19.1 13 16.5 18.9 21.1
aθCL, typical value for CL; θV, typical value for V; θWT-V, exponent of body weight on V; CL, clearance; CV, 
coefficient of variation; Hill, Hill coefficient in sigmoidal maturation function; PMA, postmenstrual age (weeks); 
TM50, maturation half-life calculated as a function of PMA (weeks); V, volume of distribution; WT, body weight.
b1000 bootstrap runs were performed, 99.5% converged to >3 significant digits.
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DISCUSSION

Opportunistic DBS sampling yielded sufficient quantity and quality of data to externally 
validate a previously published popPK model of metronidazole in critically ill preterm 
infants. Furthermore, ePlasma concentrations derived from DBS were used to optimize 
the model to include more mature preterm infants and term infants. The optimized 
model adequately characterized the PK of metronidazole in infants of 22.7–41.0 weeks 
GA and 0–80 days PNA (23 to 48 weeks PMA). These findings support existing age-based 
dosing guidelines for metronidazole in term and preterm infants: 15 mg/kg loading 
dose followed by maintenance doses of 7.5 mg/kg every 12 hours for PMA <34 weeks 
and 8 hours for PMA 34–40 weeks (9, 10, 14, 16–18). Additionally, findings address 
the ambiguity in maintenance dosing for infants with PMA >40 weeks within existing 
guidelines by supporting the maintenance dosing of 7.5 mg/kg every 6 hours for term 
and preterm infants with PMA >40 weeks. Because metronidazole is widely used in this 
population and the PK is known to change markedly early in life, defining and validating 
PK are especially important (9, 14, 20).

The validity of the original PTN_METRO model in SCAMP trial participants is 
evidenced by adequate predictions of ePlasma concentrations from SCAMP trial 
participants with GA ≤31 weeks. Refitting the PTN_METRO model to ePlasma concen
trations of SCAMP trial participants with GA ≤31 weeks did result in some changes, 
including an improved agreement between model predictions and observations, slightly 
lower estimates of CL and V (less than 10%), lower IIV on CL, a lower exponent of PMA 
on CL (27% lower), and higher IIV for V (greater than twofold). The lower IIV for CL 
may be related to the relatively homogeneous study population in the SCAMP trial. The 
difference in estimates of CL and V may be related to physiological changes associated 
with complicated intra-abdominal infection in SCAMP trial participants, including the 
development of perforation or ischemia of the bowel, third-spacing, intra-abdominal 
hypertension, multiple organ dysfunction (21, 22), and/or demographic differences (i.e., 
higher ages and weights in the SCAMP trial). When including ePlasma concentrations 
from SCAMP trial participants with GA >31 weeks, population mean parameter estimates 
for CL and V were similar, but the relationship between PMA and CL was better captured 
using a maturation function rather than power function, likely due to the wider age 
range in the SCAMP trial to define this relationship. Additionally, weight on volume 
of distribution was better represented with an estimated exponent. Ultimately, the 
optimized model adequately characterized the pharmacokinetics of metronidazole in 
infants across a wider range of ages than previously published.

A strength of this study is its design, which leverages a small cohort of paired 
plasma and DBS samples to enable an opportunistic PK study collecting DBS alone. 
Although DBS offer practical and logistical advantages (7, 8), these advantages must be 
weighed against analytical challenges (i.e., the potential need for novel assays, reference 
intervals, and decision to measure drug and/or metabolite concentrations in DBS) and 
the additional required step(s) for comparability studies (7). The utility of DBS may 
be limited in specific settings due to drug-related factors, i.e., erythrocyte partitioning, 
protein binding (13, 23), or large across-patient variability (24). Future PK studies of 
various therapeutics in vulnerable populations may benefit from planning an initial, 
small study collecting paired liquid matrix samples alongside DBS to establish feasibility 
and comparability. If feasibility and comparability are established, DBS could enable an 
array of PK studies, including modeling, external evaluation, and optimization.

One limitation of this study is the lack of hematocrit data to evaluate the dilutional 
effect of metronidazole partitioning into erythrocytes in DBS (13). However, simple 
linear regression modeled the relationship between DBS and plasma well, with very 
low measures of bias and imprecision. For other drugs, in which a simple model may 
fail to accurately estimate plasma concentrations from DBS, this approach may require 
adjustment for hematocrit and other variables. Furthermore, plasma concentrations were 
not collected in the SCAMP trial to validate the linear regression model. It remains 
possible that systematic differences in demographics, physiology, or pertinent covariates 
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across the two studies could bias results; however, the overall consistency of demograph
ics (Table S1) and parameter estimates (Table S2) is reassuring.

Overall, we successfully estimated plasma metronidazole concentrations from DBS 
and subsequently conducted an external popPK model validation and optimization 
study collecting opportunistic DBS alone. This approach requires additional analytic 
steps but showed high feasibility and utility in a vulnerable population of critically ill 
infants. For future PK studies in vulnerable populations, we suggest collecting paired DBS 
and liquid matrix samples in early, smaller studies, conducting comparability analyses, 
and continuing to refine the comparability over time to maximize the advantages of DBS 
in future, larger studies.
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