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Abstract
Bottlenose dolphin (Tursiops) populations, also described as the Burrunan dolphins, 
consist of a resident population of approximately 150 individuals in Port Phillip Bay 
(PPB), Victoria. Previous reports indicate distribution across a small southern region 
of PPB; however, little is known about their full distribution patterns across the en-
tire PPB region. Here, we investigate the spatiotemporal distribution of the Burrunan 
dolphins across four zones representative of PPB benthic habitats and bathymetry to 
gain a better understanding of the potential drivers of the population's habitat use. 
Port Phillip Bay, Victoria, Australia. One hundred and twenty-nine boat-based surveys 
were undertaken between March 2015 and August 2021, encompassing 181 sight-
ings. Generalised linear models (GLMs) were used to investigate annual, seasonal and 
zonal variation. We found no variation in sighting frequencies between years. Austral 
summer and winter had a significantly higher sighting frequency than autumn. We 
found that Burrunan dolphins utilise the entire bay, further extending the species 
range, and show a significantly higher number of sightings in the southern zone than 
in any other zones. Overlaying dolphin sightings with known oceanographic charac-
teristics within PPB, we found bathymetry and benthic habitats were potential driv-
ers for the Burrunan dolphins distribution and habitat use within the bay, with the 
dolphins significantly favouring the 5–10 and 10–15 m contour depths. These results 
show a more widespread distribution across the bay than previously documented. 
We recommend expansion of the current marine protected areas in the north and 
south of the bay. This study has increased our understanding of the vital habitat for 
the Burrunan dolphin populations. By providing evidence-based conservation rec-
ommendations, we hope to improve and contribute to future research, conservation 
management plans and effective marine protected areas across PPB for the resident 
Burrunan dolphin population.
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1  |  INTRODUC TION

Marine mammals are a polyphyletic group comprised of approx-
imately 129 species across three orders: Cetacea, Sirenia and 
Carnivora (Pompa-Mansilla et al., 2011). Cetaceans (whales, dol-
phins and porpoises) are amongst the most endangered taxa due 
to anthropogenic threats. Both coastal and marine habitats are 
threatened by a combination of anthropogenic impacts, such as 
the overexploitation of natural resources, habitat loss and degra-
dation, chemical pollution and noise pollution (Marega-Imamura 
et  al.,  2020; Mirimin et  al.,  2011). Understanding species-
environment relationships is crucial for identifying areas of bio-
logical importance and prioritising areas for conservation, marine 
protected area zoning design, resource management and impact 
assessment (Elith & Leathwick,  2009; Guisan & Thuiller,  2005; 
Zanardo et  al.,  2017). Place-based protection that is appropri-
ately designated in a critical habitat for particular marine mammal 
populations can substantially reduce their likelihood of mortality 
(Hooker et  al., 2011). Marine mammals appear to be one of the 
few groups that have benefitted most from a shift of management 
practices, away from resource exploitation towards wildlife con-
servation (Lotze & Milewski, 2004; Lotze & Worm, 2009; Magera 
et al., 2013).

Assessing spatial distribution, habitat use, site fidelity and the 
potential drivers for habitat usage allows for the prediction of how 
individuals might respond to changes in their environment, and 
provides effective and informed management strategies for en-
dangered marine mammals (Balmer et al., 2013; Prado et al., 2016). 
Identifying the factors that may influence habitat selection at 
multiple spatial and temporal scales, such as food availability and 
predation risk (Heithaus & Dill,  2006), are essential for under-
standing the drivers of a population's distribution. Marine habitats 
are often highly variable and interactions between dolphins and 
their environmental parameters and habitat features are often 
dictated by the distribution and availability of their prey (Bilgmann 
et  al.,  2019). Geospatial analysis of visual sighting data can be 
helpful to gain insight into hotspots for core biological activities. 
Additionally, mitigating the impacts of anthropogenic activities 
requires knowledge about the geographic occurrence of threats 
(Avila et al., 2018; Cox et al., 2018) and marine mammals' interac-
tion with those threats. Therefore, conservation approaches that 
use spatially explicit information on marine wildlife populations 
have the potential to facilitate recovery and contribute to na-
tional and international conservation target commitments (Harvey 
et al., 2017).

The Burrunan dolphins have been previously described as 
Tursiops australis (Charlton-Robb et  al., 2011), an endemic species 
to south-eastern Australia, with a distribution from South Australia, 
eastern Tasmania and Victoria (Bilgmann et  al.,  2019; Charlton 
et  al., 2006; Charlton-Robb et  al., 2011, 2015; Pratt et  al.,  2018). 
The taxonomic status of the Burrunan dolphins, however, is in dis-
pute (see Committee on Taxonomy, 2019; Jedensjö et al., 2017). In 
Victoria, there are only two known resident populations; one in Port 

Phillip Bay (PPB) with approximately 150 individuals and the other in 
Gippsland Lakes (GL) with approximately 60 individuals (Charlton-
Robb et  al., 2011). The effective population size (those contribut-
ing genes to the next generation) of PPB and GL is 81.5 and 65.5 
individuals, respectively (Charlton-Robb et al., 2015). The Burrunan 
dolphins are considered vulnerable and at increased risk of decline 
and/or extinction due to their small population size, genetic dis-
tinctiveness, female natal philopatry, exposure to a large degree of 
associated human and maritime activity and restricted home range, 
which is in close proximity to a major urban city (Charlton-Robb 
et al., 2015; Warren-Smith & Dunn, 2006).

The Burrunan dolphins were regionally listed as ‘Endangered’ 
under the Victoria Flora and Fauna Guarantee Act 1988 in 2013 
(Department of Sustainability and Environment, 2013), and have 
been recently reassessed following the IUCN Red List criteria and 
the Australian Environmental Protection and Biodiversity Act 1999 
criteria, and is now listed as ‘Critically Endangered’ by the state of 
Victoria (State of Victoria, 2021). This classification was supported 
by the population's exposure to numerous anthropogenic threats, 
such as commercial and recreational fishing, anthropogenic con-
taminants, tourism, shipping, oil and gas mining, seismic explo-
ration and environmental changes (Charlton-Robb et  al.,  2015; 
Duignan et al., 2020; Filby et al., 2014; Foord et al., 2024; Monk 
et al., 2014; Puszka et al., 2021). However, the Burrunan dolphins 
are not classified as threatened (endangered or critically endan-
gered) at a national or global level.  It has been documented that 
the Burrunan dolphins utilise southern PPB (Filby, Christiansen, 
et  al., 2017; Howes et  al., 2012; Scarpaci et  al., 2003; Warren-
Smith & Dunn, 2006); however, if and how the Burrunan dolphins 
utilise the whole of PPB (1930 km2 in size), and the potential 
drivers for their distribution, are yet unknown, making the man-
agement of the population and mitigation of threats difficult. To 
this end, this study provides the first assessment of the Burrunan 
dolphins distribution throughout the whole of PPB, including an-
nual and seasonal variation, and explores possible drivers for the 
distribution of individuals throughout this environment, providing 
baseline analysis for conservation recommendations. It further 
highlights key areas for the consideration of spatial conservation, 
a critical next step for the effective conservation and management 
of these regionally threatened populations.

2  |  METHODS

2.1  |  Study site

Port Phillip Bay (Figure 1) is the largest bay (1930 km2) in the state of 
Victoria, Australia, with 333 km of coastline and an average depth of 
13 m (Department of Environment, Land, Water and Planning, 2017), 
which is unusually shallow for its size (Harris et al., 1996). The catch-
ment area of PPB is 9790 km2, consisting of 21 natural drainage 
basins, eight of which deliver runoff directly into the bay. There is 
limited water exchange due to a narrow, 3-km wide opening to the 
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Bass Strait (Fu et al., 2017), which results in a flushing time of ap-
proximately 12 months (Baker et al., 2016). There are 4.3 million peo-
ple living within the catchment area of PPB and 1.3 million people 
living along the coastline (Department of Environment, Land, Water, 
and Planning, 2017).

2.2  |  Data collection

Seasonal boat-based surveys were undertaken by the Australian 
Marine Mammal Conservation Foundation (Marine Mammal 
Foundation; MMF) from March 2015 to August 2021 across four 
regions/zones of PPB (Figure  1). Austral seasons were defined as 
summer (December–February), autumn (March–May), winter (June–
August) and spring (September–November). The zones chosen are 
representative of the entire 1930 km2 area of the PPB, covering the 
southern to the northern reaches (North-west (NW), North-east 
(NE), South-east (SE) and South (S), and incorporate various habitat 
types and depths). Some opportunistic sightings did occur outside 
of these zones. Surveys were conducted during daylight hours, fol-
lowing line transects across the four zones. A 2C research vessel, 
a 5.7-m Ensign 570 powered by a 90 hp Mercury engine, was used 
at survey speeds of 8–12 knots. Surveys were conducted on calm 
weather days in Beaufort Sea State with conditions of two or less 
(<15 knot winds), as poorer conditions significantly reduce the de-
tectability of surfacing dolphins.

On each survey, GPS information of the vessel travel path 
along the transects was recorded using a Garmin eTrex20 hand-
held GPS, enabling survey effort recording. A crew of three or 
four researchers conducted constant visual scans across the 
horizon to sight the Burrunan dolphins. Once dolphins were 
sighted, the transect was paused, and the research vessel ap-
proached the dolphins in accordance with all required scientific 
research permits and animal ethics guidelines. Photographs of 
the dolphin's dorsal fins were collected, and behavioural focal 
points were undertaken during each sighting; however, the use 
of ID data was outside the scope of this geospatial assessment. 
Observers on the boat commencing audio recording, dictating 
the location, environmental conditions and dolphin observation 
data. Waypoints were recorded at the beginning and end of each 
dolphin sighting, with vessel movement thus equating to dolphin 
movement. Sighting observations were deemed complete when 
observers lost sight of the dolphins and/or the sighting was ter-
minated (e.g., due to poor weather conditions), whereupon the 
line-transect was resumed at the point where the vessel left the 
transect route.

The vessel track of each survey and dolphin waypoints were ex-
ported via GPX data and imported into Q GIS 3.10 A Coruna (QGIS 
Development Team, 2021) to create survey effort maps and to iso-
late sighting data amongst the survey day tracks. Audio files were 
transcribed to gain information on each of the sightings for water 
depth and bathymetry at each 5-min interval throughout a survey 

F I G U R E  1 Port Phillip Bay (PPB), with insert showing location within Victoria, Australia. The four survey zones of PPB and the pre-
determined transect line routes (red), NW – north-west, NE – north-east, SE – south-east and S – south.
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and tallied into eight empirically selected depth contour categories 
(e.g., 0–5, 5–10 m, etc.) for each sighting.

2.3  |  Data analysis

Dolphin sighting locations were extracted from GPX survey tracks using 
the position of the vessel at the time of the first sighting of a dolphin 
(typically within 20 m of the dolphin group). Heatmaps were created 
using Q GIS 3.10 A Coruna with plugin ‘Heatmap’ (QGIS Development 
Team, 2021) to display population distribution, zone usage and seasonal 
and annual variation of the Burrunan dolphins in PPB.

We used generalised linear models (family Poisson) to inves-
tigate spatiotemporal variation in the number of sightings during 
each survey using zone (NW, NE, SE and S) Austral season (sum-
mer, autumn, winter and spring) and year (2015–2016, 2018–
2021) as factors and effort as a continuous explanatory variable. 
These statistical analyses were conducted using R Version 4.2.0, 
in RStudio 2022.02.0 Build 443. To investigate any significant 
factorial effects on the number of sightings in more detail, includ-
ing post-hoc testing, we used package emmeans (Lenth, 2023). 
For annual comparison, a p-value adjustment using the Tukey 
method was used to compare a family of six estimates, for season 
and zone, a p-value adjustment using the Tukey method was used 

TA B L E  1 The number of Burrunan dolphin sightings, number of survey days and the hours of survey effort across Port Phillip Bay, March 
2015 to August 2021.

Summer Autumn Winter Spring Total

Sightings
Effort 
(hours) Sightings

Effort 
(hours) Sightings

Effort 
(hours) Sightings

Effort 
(hours) Sightings Effort (hours)

2015 0 0 (0) 7 9 (37) 34 17 (87) 0 0 (0) 41 26 (124)

2016 24 10 (44) 13 13 (67) 13 10 (55) 14 7 (41) 64 40 (207)

2018 8 3 (17) 0 4 (23) 5 6 (33) 10 7 (42) 23 20 (114)

2019 3 4 (19) 8 6 (34) 15 7 (41) 7 6 (35) 33 23 (129)

2020 5 4 (21) 2 3 (11) 4 3 (18) 3 4 (14) 14 14 (63)

2021 1 3 (6) 3 2 (11) 2 1 (5) 0 0 (0) 6 6 (23)

Total 41 24 (108) 33 37 (183) 73 44 (238) 34 24 (131) 181 129 (660)

F I G U R E  2 Port Phillip Bay, Victoria, Australia, with survey tracks (red) from March 2015 to August 2021.
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to compare a family of four estimates; the significance level used 
α = .05.

PPB presents a unique study site to explore whether small in-
cremental bathymetry gradients (minimum 0 m – maximum 40 m) 
influence marine mammal distribution. Ivlev's selectivity or Jacob's 
index (Jacob, 1974) was used to evaluate the degree of preference 
for each depth category:

where Ui represents the proportion of use of a depth category i and 
Ai its proportional availability. The selectivity index Ei varies from −1 
(indicating a use lower than the availability of the category i) to 1 (indi-
cating overuse); a value of zero indicates a proportional use of a depth 
category in relation to its availability.

To visually explore habitat as a potential driver for the distribu-
tion of Burrunan dolphins, we used theme layers including Marine 
and Coastal Feature Atlas, Victorian Biotope Atlas and Planning 
and Administration from the online data repository CoastKit 
(Victorian Department of Environment, Land, Water and Planning). 

Ei =

(

Ui − Ai

)

(

Ui + Ai

)

F I G U R E  3 Investigating annual, seasonal and zonal influence of Burrunan dolphin distribution between March 2015 and August 2021 
using emmeans. For annual comparison, a p-value adjustment using the Tukey method for comparing a family of six estimates, for season and 
zone, a p-value adjustment using the Tukey method for comparing a family of four estimates, significance level used α = .05.

F I G U R E  4 Seasonal heatmaps of Burrunan dolphin sightings from March 2015 to August 2021 in Port Phillip Bay, Victoria, with colours 
graduating from areas of high sightings (red) to areas of low sightings (green), (a) Summer, (b) Autumn, (c) Winter and (d) Spring.
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These themes provided information about National Parks in 
PPB and Marine Protected Areas in PPB. The Combined Biotope 
Classification Scheme (CBiCS) Level 3 Class map (Figure 7) involv-
ing 19 different habitat complexes for the study area was devel-
oped and provided by the Victorian Department of Environment, 
Land, Water and Planning for exploration of physical benthic 
habitat types and communities (Mazor et  al., 2021). CBiCS is an 
ecologically based hierarchical classification system unifying and 
standardising classifications across marine environments (Edmunds 
et al., 2021; Edmunds & Flynn, 2015, 2018). The term ‘Biotope’ de-
scribes a community of species in a defined abiotic habitat and is 
used throughout CBiCS; however, as this is not a common term in 
the literature, hereafter the term used will be ‘benthic habitats’. 
Desired themes were downloaded as shapefiles and imported into 
Q GIS. These shapefiles were then overlain with distribution maps 
of the Burrunan dolphin sighting tracks to display associations of 
habitat use across PPB.

3  |  RESULTS

During the study period from March 2015 to August 2021, a total 
of 181 sightings of Burrunan dolphins were recorded across 129 
boat-based survey days in PPB, with 660 hours of survey conducted 
(Table 1), across all four survey zones, inclusive of vessel transit re-
gions (Figure 2).

Assessment of pooled sightings throughout the 2015–2021 
study period found that Burrunan dolphins were observed in 
all four survey zones in PPB. No annual variation was observed 
in sighting frequency during 2015–2021, with no differences 

observed between individual years. Emmeans graphs showed 
some seasonal variation in the sighting frequency of Burrunan 
dolphins. Autumn had a lower number of sightings than both sum-
mer and winter (p-value = .01 and .04, respectively), with spring 
being indistinguishable from other seasons (Figure 3). Zonal vari-
ation was also observed, with the S zone having a higher number 
of sightings than the NW and NE zones (p-value = .05 and <.01, 
respectively) (Figure 3).

Seasonal movement patterns were observed throughout the 
2015–2021 survey period. Dolphin sightings were higher within the 
S zone of PPB in summer (December–February) and autumn (March–
May), whilst a wider region of PPB was utilised during winter (June–
August) and spring (September–November) (Figure 4).

Dolphin sighting tracks closely follow bathymetric contour 
lines (Figure 5) in both the north and south of PPB. The NE zone, 
SE zone and the southern region of PPB displayed high dolphin 
sightings; these regions also had complex bathymetrical contours 
(Figure 5).

The preference for Burrunan dolphins to use particular depth 
contours was explored using Ivlev's selectivity index (Figure 6). The 
Burrunan dolphins showed preference for the 5–10 and 10–15 m 
depth categories (I = 0.29 and 0.30, respectively). Furthermore, 
the Burrunan dolphins avoided areas of depth lower than 5 m and 
greater than 20 m (I = −0.06 and −0.87, respectively).

Using the CBiCS classification and seagrass layers to create 
exploratory maps, areas of high dolphin sighting tracks were seen 
around several benthic habitats, in particular sublittoral seagrass 
beds, sublittoral rhodolith beds and high and low energy infralit-
toral rock regions that transition into sublittoral mud and sand re-
gions (Figure 7). These regions correspond with areas of bathymetry 

F I G U R E  5 (a) Burrunan dolphin sighting tracks (red) from March 2015 to August 2021 with bathymetry contours of Port Phillip Bay 
(grey). Inserts showing greater details in high sightings areas with colour coded bathymetry depths, (b) NE zone, (c) SE zone and (d) S zone.



    |  7 of 17BEDDOE et al.

complexity (Figure 6). There was a high number of sightings around 
the transitional boundaries of benthic habitats.

Of the four marine parks and sanctuaries across PPB, the 
Burrunan dolphins frequented the Ricketts Point Marine Sanctuary 
in the NE zone (Figure 8). None of the sightings seen in the NW zone 
overlapped with the Point Cooke Marine Sanctuary. Few sightings 
were seen within the boundary of the protected areas within the 
Port Phillip Bay Heads Marine National Park, and three sightings 
were seen within the Ticonderoga Bay Sanctuary Zone.

4  |  DISCUSSION

Baseline information on the distribution and movement patterns 
of a population is critical for effective conservation and manage-
ment of wildlife. The analysis of population distribution patterns 
at a fine-scale provide the best resolution for examining local 
species-environment relationships, habitat usage and anthropo-
genic impacts (Brough et al., 2019; Harwood et al., 2014; Zanardo 
et  al., 2016). Food availability, predation risk and anthropogenic 
activities are known to influence delphinid habitat use (Heithaus & 
Dill, 2006; Pirotta et al., 2019). Using sightings data collected dur-
ing 2015–2021 from four survey zones representative of numer-
ous benthic habitats and bathymetrically complex areas in PPB, 
we found that the Burrunan dolphins utilise the entirety of PPB, 
from the northern to the southern reaches, show seasonal distri-
bution changes and have higher sightings in regions of complex 

bathymetry. Sublittoral seagrass beds, sublittoral rhodolith beds 
and high- and low-energy infralittoral rock regions that transition 
into sublittoral mud and sand regions were found to have a high 
number of sightings also.

4.1  |  Seasonal variation in Burrunan dolphins 
distribution

Marine animal populations tend to shift their geographic ranges 
in response to varying environmental conditions, resulting in sea-
sonal shifts in population distribution. In particular, dolphin asso-
ciations with environmental parameters and habitat features are 
often dictated by the distribution and availability of prey (Bilgmann 
et  al.,  2019; Hastie et  al.,  2004; Heithaus & Dill,  2002; Rayment 
et al., 2010). Seasonal shifts in population distribution provide an ad-
ditional challenge for the spatial protection of dolphin populations. 
We found consistent sightings across all seasons in the southern 
region, and a northwards trend in the Burrunan dolphins distribu-
tion was observed during the winter (SE zone, Figure 4) and spring 
(NE zone, Figure 4). We hypothesise that a subgroup of the popula-
tion displays high site fidelity within the southern zone, remaining in 
the area year-round, whilst another subgroup of the population mi-
grates north in winter and spring. Higher density of sightings across 
more zones during winter and spring indicates a broader region of 
PPB is being utilised throughout these seasons. Individual or small 
group movement patterns within a population can also vary greatly, 

F I G U R E  6 Burrunan dolphin depth contour preference between 0 and 35 m from March 2015 to August 2021 (Ivlev's selectivity index).
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as some members of a resident population may remain within a 
small home range (Gubbins,  2002; Zolman,  2002), whereas other 
members of the same population may display little preference for 
a particular area (Toth et  al., 2011). Shane et  al.  (1986) suggested 
that ranging patterns of populations can vary from permanent local 
ranges to seasonal migration to short-term seasonal site fidelity. 
Confirmation of this high site fidelity perceived in certain subgroups 
is critical for effective conservation management, ensuring that the 
subgroup has a protected area to continue core biological activities 
and respite from anthropogenic activities such as high vessel traffic. 
Ongoing research is required to confirm this hypothesis, with con-
tinued boat-based surveys and photographic dorsal fin identification 
of individuals within the PPB population. This robust identification 
methodology would allow for individual and potential subgroup site 
fidelity and movement patterns to be further investigated.

Throughout all seasons, the southern region of PPB experienced 
a high dolphin presence (Figure 3). A decline in dolphin presence was 
previously hypothesised during the summer period due to increased 
recreational boat traffic and tour operator activity (Filby et al., 2014; 
Scarpaci et al., 2003); however, this was not evidenced during the 
current study. Four swim-with-dolphin tour vessels operate within 
the region, with each vessel running a maximum of two trips daily 
between October and May (Filby, Christiansen, et  al., 2017). Filby 
et al.  (2014) highlight the impacts of tour vessels and recreational 
boat interactions on dolphin behaviour, with these interactions 

often resulting in the expenditure of greater amounts of energy 
avoiding vessels in the dolphins impacted. Dolphins may remain in an 
area of high vessel disturbance while altering behaviour to minimise 
the disturbance (Lusseau, 2003; Williams et  al., 2004). For exam-
ple, they may temporarily move away during periods of high ves-
sel activity but return once vessel traffic has reduced, or they may 
abandon a region that was once preferred due to vessel disturbances 
(Bejder et al., 2006). These impacts can indirectly affect the fecun-
dity and survival of the population (Gill et al., 2001; Steckenreuter 
et al., 2011). Despite the biological cost linked to these human im-
pacts, the Burrunan dolphins remained in the southern region during 
peak vessel activity (Figure 3). The Indo-Pacific bottlenose dolphin 
population found in Port Stephens, NSW (Steckenreuter et al., 2012; 
Wiszniewski et al., 2009, 2010) exhibited changes in their activity 
budgets in the presence of boats, with no resting, reduced feeding 
and socialising recorded and an increase in milling and travelling 
behaviours when boats were in the area. Similarly, the Burrunan 
dolphins spent less time foraging when swim-with-dolphin tourism 
vessels were present (Filby, Christiansen, et al., 2017). Unfortunately, 
the PPB population may not be able to avoid anthropogenic distur-
bance by moving away from the current habitat, as they have likely 
adapted to the environmental and ecological conditions of the area.

A potential driver for the observed seasonal shifts in the con-
traction and expansion of distribution ranges could be in re-
sponse to breeding and/or birthing seasons (Clutton-Brock,  1997; 

F I G U R E  7 (a) Burrunan dolphin sighting tracks (red) from March 2015 to August 2021 overlain with Port Phillip Bay biotope regions. 
Inserts showing greater details in high sightings areas, (b) NE zone, (c) SE zone and (d) S zone.
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Greenwood, 1980; Sprogis et al., 2016). Long-term studies of bot-
tlenose dolphin populations have found that females tend to have a 
smaller home range and stronger site fidelity (Gubbins, 2002; Smith 
et  al., 2013; Urian et  al.,  2015; Wells, 2003), while males tend to 
have lower site fidelity and larger home ranges, especially during 
nonbreeding seasons when they may adjust their home ranges to 
optimise prey intake (Sprogis et  al., 2016, 2018). The age and sex 
of individuals included in this study are unknown; however, further 
investigation into the sex-specific distribution of the Burrunan dol-
phins would be beneficial for supporting the sub-group hypothesis 
previously mentioned.

Another potential driver for the observed seasonal shifts of distri-
bution, and potential subgroup movement patterns, is prey availabil-
ity. Information regarding the diet of the Burrunan dolphin is limited, 
although through observation and isotope analysis, the dolphins are 
thought to feed on garfish, calamari squid, snapper, sand flathead, 
yellowfin bream and barracouta (Filby, Stockin, & Scarpaci, 2017; 
Owen et al., 2011) (Appendix S1). Further to this, the examined con-
tents of deceased PPB dolphins suggest that King George whiting 
and Australian salmon may also occur within their diet (Mason, 2007 
as cited in Filby, Stockin, & Scarpaci, 2017). In comparing the high 
prevalence of sightings across all seasons in southern PPB with po-
tential prey resources, we note peak spawning of southern calamari 
occurs in nearshore habitats typically between spring and early 
summer; however, this can occur all year round (Moltschaniwskyj 
& Steer,  2004; Smith et  al.,  2015). Spawning typically occurs in 

inshore coastal regions, with eggs laid in seagrass and algal reef hab-
itats (Commissioner for Environmental Sustainability, 2021). Garfish 
have also been observed in deep seagrass regions in February and 
March within the south of PPB (Smith et al., 2012). We suggest that 
increased foraging occurs at the southern end of PPB due to ba-
thymetry complexity, seagrass regions and prey availability, espe-
cially during the summer. However, it is also possible, given the close 
proximity of this region to Bass Strait, Burrunan dolphins may travel 
outside of PPB in search of resources. Stable isotope analysis con-
ducted by Owen et  al.  (2011) found that the PPB population was 
4.5% higher in δ15N than the average signature of potential prey 
items within PPB. This suggests that the PPB population have ad-
ditional unidentified prey resources that have a higher trophic level 
than that of the prey items sampled. This supports the hypothesis 
that a subgroup of Burrunan dolphins shows high site fidelity to the 
southern region of PPB all year round, and when resources inside 
the southern end of PPB are no longer sufficient, they may forage 
in Bass Strait and then utilise the inside of the bay in the southern 
region for other core biological activities (e.g., milling/resting and 
social activities).

Port Phillip Bay also experiences a major immigration of larger 
reproductive snapper during spring and summer, which have a lim-
ited summer spawning period (Hamer & Jenkins, 2004). High sight-
ings of Burrunan dolphins in the NE zone (Figure 4) correspond with 
the peak recreational fish catch seen in late winter and spring, and 
this is driven by snapper movement into northern regions PPB in 

F I G U R E  8 Burrunan dolphin pooled sighting from March 2015 to August 2021, represented as heatmaps with colours graduating from 
areas of high sightings ‘hotspots’ (red) to areas of low sightings (green), overlain with the Marine National Parks within Port Phillip Bay 
(green) and proposed protected areas (blue arrow).
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anticipation of spawning season (Hamer et al., 2011; Longmore, 2014; 
Ryan et  al.,  2019). The shallow reefs along the NE coastline have 
been identified as highly suitable for subadult snapper (Morris & 
Ball, 2006). In addition, spawning for King George whiting occurs 
near coastal reefs in autumn and early winter (Fowler et al., 2000; 
Jenkins & King,  2006), which spend their first 4 years maturing 
in the PPB seagrass nurseries (Commissioner for Environmental 
Sustainability, 2021). It is therefore likely that the numerous poten-
tial prey species aggregating in higher abundance in the northern 
reaches of the bay during this period, may enable greater foraging 
opportunities for the Burrunan dolphins. The seasonal distribution 
of these prey items supports the hypothesis of a subgroup migrating 
north to the SE zone during winter and moving further north to the 
NE zone during spring to follow prey resources. Further research in-
vestigating the foraging behaviour and prey choice of the Burrunan 
dolphins, both inside of PPB and possibly in the Bass Strait region, is 
encouraged to help identify other key regions of Burrunan dolphin 
distribution and confirm the population's specific diet preferences.

4.2  |  Oceanographic drivers of distribution across 
Port Phillip Bay

Bathymetry is an important variable in explaining habitat distribu-
tions, as it acts as an indirect proxy of light availability (Ierodiaconou 
et al., 2018), which in turn may directly or indirectly affect zooplank-
ton, fish phenology (Durant et al., 2019) and benthic communities 
(Douglas et  al., 2022; Rovelli et  al.,  2019). Bathymetric variability 
and bottom structure can lead to increased biological productiv-
ity (Simard et al., 2015); surface complexity can also influence the 
availability of food, protection from predation, exposure to currents 
and wave action (Ierodiaconou et al., 2007). Studies have found that 
water depth and bathymetrical complexity are significant factors in 
determining the distribution of marine species (Gross et al., 2009; 
Hastie et al., 2004, 2005), with bathymetry strongly associated with 
patterns of marine mammal species richness and complementarity 
(Astudillo-Scalia & de Albuquerque, 2020). A high association be-
tween the Burrunan dolphins' movement patterns and the bathym-
etric contour lines was found (Figure 5), with sighting tracks often 
running parallel with bathymetry lines. These high sighting areas 
correlate to gradients in depth, with gradients from 5 to >15 m oc-
curring close to shore (Figure  5), creating a complex bathymetry 
environment. Complex landscapes can facilitate prey capture by 
providing physical barriers to corral prey, slowing down the escape 
of prey and providing predator stalking cover (Bouchet et al., 2015; 
Chundawat,  1990; Sweanor et  al.,  2000). Orcas in the Pacific 
Northwest have been found to herd prey using bathymetric features, 
by driving fish towards physical barriers to concentrate the prey into 
denser groups (Bouchet et al., 2015; Heimlich-Boran, 1988). This is 
similar to the PPB Burrunan dolphin, which has shown a preference 
for complex bathymetrical regions, likely to aid with prey capture.

The PPB Burrunan dolphin population provides an insight into 
the effects of depth as a driver of distribution in a shallow coastal 

environment. We show evidence of the selection-avoidance of 
habitat types of differing depths, with the 20–25 m depth cate-
gory being utilised in a significantly lower proportion relative to the 
percentage of this depth category within PPB (27%). Burrunan dol-
phins were found to prefer the 5–10 and 10–15 m depth contours. 
Our findings are similar to shallower water depth preference and/
or occurrence of Australian humpback dolphin, Ningaloo Marine 
Park (Western Australia) 5–10 m (Hunt et  al., 2020); the southern 
Australian bottlenose dolphin, Coffin Bay (South Australia), 2–4 
and 7–10 m (Passadore et  al.,  2018); and the Indo-Pacific hump-
back dolphin Bay of Bengal (India) 5–15 m (Lin et al., 2021). In each 
of these studies, prey and predator avoidance have been the most 
commonly documented drivers for these depth preferences. Areas 
at these particular depths or gradients have been documented to 
improve accessibility to demersal fish, and the regional bathymetry 
profile could positively affect the handling efficacy of catching prey 
(Durden et al., 2019; Hastie et al., 2003, 2004; Wang et al., 2021; 
Wu et  al., 2017). In this case, demersal fish, such as snapper and 
King George whiting, are documented prey items of Burrunan dol-
phins (Filby, Stockin, & Scarpaci, 2017; Owen et al., 2011). There is 
little peer-reviewed documentation on the preferred depths of the 
Burrunan dolphin's prey species in PPB. Trawls conducted by Parry 
et al. (1995) found the largest biomass of snapper at depths of 12 m, 
and anecdotal evidence describes King George whiting's preferred 
depth as 3–10 m. In an adjacent Victorian embayment, Western Port 
Bay, the highest proportion of snapper was found between 7 and 
18 m, and the King George whiting was found within 2–10 m (Jenkins 
et al., 2020). Therefore, we loosely hypothesise, based on the limited 
data, that the Burrunan dolphin's preference for 5–10 and 10–15 m 
depth contours may be associated with prey availability and capture; 
however, more research is required to explore this theory.

Benthic habitat, or particular habitat regions (e.g., soft sedi-
ment, seagrass rock and reefs) play an important role as predictors 
of a species' spatial distribution. A wide range of benthic habitats 
have been thought to drive dolphin distribution around the world 
(Bennington et al., 2021; Bonneville et al., 2021; Gross et al., 2009; 
Sprogis et al., 2022; Zanardo et al., 2017). South Australian bottle-
nose dolphins were found to have a year-round preference for bare 
sand habitat; however, preference for seagrass regions was seen to 
increase during summer and autumn, which could be indicative of a 
seasonal variation in habitat preference (Cribb et al., 2013; Zanardo 
et  al., 2017). Alternatively, Indo-Pacific bottlenose dolphins in the 
coastal areas of Noumea and Plum were found to favour muddy 
bottoms (Bonneville et al., 2021). Whereas, Indo-Pacific bottlenose 
dolphins in Bunbury southwestern Australia were found to have a 
preference for reef habitat, followed by a preference for sand and 
mud/silt (Sprogis et  al.,  2018). These regions likely constitute the 
habitat regions where the prey of the coastal dolphin are concen-
trated (Gross et al., 2009).

This study showed a higher number of sightings of Burrunan 
dolphins in sublittoral seagrass beds, sublittoral rhodolith beds and 
high-  and low-energy infralittoral rock regions that transition into 
sublittoral mud and sand regions, indicating these regions provide 
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suitable habitat for the dolphins and/or potential prey items. Seagrass 
beds and rhodolith beds have greater fish diversity and density than 
adjacent flattened areas (Costa et al., 2020; Heck et al., 1997; Horta 
et  al., 2016). These zones also provide nursery grounds for many 
fish assemblages (Madi Moussa et al., 2020; Verweij et al., 2008), in-
cluding some of the Burrunan dolphin prey species such as snapper 
(Owen et al., 2011), King George whiting and squid (Filby, Stockin, 
& Scarpaci, 2017). It is often assumed that dolphins feed primarily 
within seagrass beds, as these habitats are where fish are most abun-
dant (Wilson et al., 2017). However, recent studies have suggested 
that these environments may hinder foraging, as seagrass attenu-
ates echolocation and fish vocalisations by scattering sound energy 
(Wilson et al., 2013). Therefore, dolphins may prefer to forage in less 
dense seagrass patches (Mann et al., 2021) or on the edge of sea-
grass beds, in transitional zones (Allen et al., 2001; Nowacek, 2005), 
where acoustic detection of prey is more efficient. Infralittoral reefs 
are key habitats for many fish species because they can provide a 
source of food and shelter (Davis et al., 2020; Young et al., 2022). 
Anderson (2003) also found that sand-associated fish species such 
as sand flatheads were more common in close proximity to struc-
tured rather than completely unvegetated habitats, which further 
supports findings from Ferrell and Bell (1991) that non-seagrass fish 
species are more abundant in sand within 10 m of seagrass (Smith 
et al., 2008). Juvenile snapper has also been found to be most abun-
dant over soft sediments that are adjacent to rocky reef areas, pre-
ferring reef-sand boundaries (Langlois et al., 2005; Rees et al., 2021; 
Ross et al., 2007). As these are both prey species, this may explain 
why Burrunan dolphins are frequently sighted in these transitional 
zones (infralittoral rock to sublittoral mud and sand, and seagrass to 
sand regions). Overall, benthic habitats appear to play a key role in 
driving the distribution of Burrunan dolphins in PPB, in combination 
with other factors.

4.3  |  Marine protected areas

Port Phillip Bay has four Marine National Parks and Sanctuaries; 
however, only one dolphin sanctuary zone is specified for the ‘pro-
tection’ of dolphins, located in southern PPB (Figure 8). Ticonderoga 
Bay Sanctuary Zone (TBSZ) was established in 1996, aiming to 
provide respite and refuge for resident Burrunan dolphins (Howes 
et  al.,  2012) through the introduction of stringent approach and 
speed regulations in place for vessels (Department of Environment, 
Land, Water, and Planning,  2019). However, as stated by Filby, 
Stockin, and Scarpaci (2017), the implementation of this sanctuary 
zone was not based on robust scientific observational data; rather, 
the proposal was based on anecdotal dolphin observations in the 
area, which did not reveal whether TBSZ was of critical importance 
to the population in terms of usefulness for core biological activities 
(Filby, Stockin, & Scarpaci, 2017) and was lacking scientific valida-
tion (Howes et al., 2012). As TBSZ is the only designated protected 
area for the Burrunan dolphins in PPB, we explored how the sight-
ings observed in this study compared with the overall region. Of the 

181 sightings that occurred during 2015–2021, only three sightings 
were observed in the TBSZ. This raises further questions about 
whether this one sanctuary zone is effective for the conservation 
management of the species. A much higher density of dolphin sight-
ings was noted in the southern zone, further east of TBSZ (Figures 4 
and 8). This higher sighting density area is of particular concern as 
anthropogenic activities intensify during the summer period in this 
location, with an increased number of recreational vessels, tour boat 
operations and swim-with-dolphin tourism. This peak in human ac-
tivities is likely to overlap with Burrunan dolphin habitat use and po-
tentially cause disturbances to the population.

Further, the Ricketts Point Marine Sanctuary, established in 2002 
in the north-eastern PPB, appears to be a habitat ‘hotspot’ zone for 
the Burrunan dolphin population, showing a high sighting density 
(Figures 4d and 8). Ricketts Point Marine Sanctuary covers 115 ha, 
within which fishing is prohibited. In the shallows of the marine park, 
there are seagrass beds that form nurseries and feeding grounds 
for many animals. Australian marine reserves were found to have a 
28% greater abundance and 53% greater biomass of fished species 
compared to open fishing areas (Goetze et al., 2021). Additionally, 
many MPAs can produce ‘habitat spillover’ where species from in-
side the protected area move to surrounding unprotected areas 
(Forcada et al., 2009), and can be seen to benefit areas adjacent to 
implemented MPAs. The benefits of marine reserves were greater 
in highly protected (no-take reserves), like Ricketts Point Marine 
Sanctuary, and increased with size, age, connectivity and depth 
(Goetze et al., 2021). In this study, we see evidence of this, with a 
high number of dolphin sightings in and around the Ricketts Point 
Marine Sanctuary zone. As such, it is likely to be a worthy candidate 
for further protection. We recommend expanding the sanctuary 
borders to the 15 -m depth contour line to increase the overall size 
and depth range incorporated in the sanctuary zone.

Overall, we found that the Burrunan dolphins used areas within 
and around existing protected areas. However, other core areas 
of high use still remain unprotected. As the Burrunan dolphins are 
regionally listed as a critically endangered species by the state of 
Victoria (State of Victoria, 2021), the successful implementation of 
MPAs (and marine mammal-specific MPAs) is critical for this pop-
ulation's survival. The Burrunan dolphins distribution and habitat 
use were found to have a low association with the TBSZ, with only 
three sightings within the zone throughout the 6 years of survey. As 
such, we recommend that TBSZ remain a dedicated dolphin sanc-
tuary zone until further research into the area is conducted. Two 
additional areas of PPB were identified as critical ‘hotspot’ zones 
and areas of importance for the Burrunan dolphins; the southern 
zone of PPB to the east of TBSZ and the NE zone of PPB, near the 
Ricketts Point Marine Sanctuary. Given the known anthropogenic 
threats impacting the species, and of particular note, Filby, Stockin, 
and Scarpaci (2017) and Puszka et al. (2021) observing behavioural 
impacts in the dolphins in response to vessel interactions, we rec-
ommend affording these two additional areas the same level of pro-
tection as TBSZ (no approach of vessels within 200 m, no approach 
of jet skis within 300 m, 5 knots speed limit in the zone), allowing 
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for greater protection of the Burrunan dolphins in both habitat 
‘hotspots’. This would see the creation of a new MPA in the south-
ern zone, which we recommend to provide year-round protection 
for the Burrunan population since they are seen in the southern 
zone all throughout the year (Figures 4 and 8). In the NE zone, we 
recommend the expansion of Ricketts Point Marine Sanctuary. This 
expansion could be a seasonal protection that considers the influx of 
Burrunan dolphins into the NE zone during spring (Figure 4).

5  |  CONCLUSION

For the first time, this study investigates the distribution and habitat 
use of the Burrunan dolphins throughout PPB, greatly increasing our 
understanding of species presence across PPB. The distribution of 
Burrunan dolphins was seen to vary seasonally, with prey resources 
presumably acting as a seasonal driver. The observed seasonality of 
sightings also inferred potential subpopulation site fidelity, with dol-
phin presence year-round in southern PPB, and more wide-spread 
distribution during winter and spring. Further, we found the dolphins 
favouring certain depth contours (5–10 and 10–15 m) and benthic 
habitat transitional zones (sublittoral seagrass beds, sublittoral rho-
dolith beds and high- and low-energy infralittoral rock regions that 
transition into sublittoral mud and sand regions). As the impacts of 
human activities may threaten the survival of this species, we rec-
ommend two additional dolphin sanctuary zones be established to 
serve as critical habitat hotspots for the population. This includes 
the addition of a new static sanctuary zone in the southern zone of 
PPB and the seasonal expansion of the current Ricketts Point Marine 
Sanctuary. We provide a baseline PPB-wide distribution study and 
recommend continued monitoring in the current zones and explora-
tion into other undocumented areas across PPB based on these find-
ings, as well as for the implementation of successful conservation 
management strategies for the protection of the Burrunan dolphins.
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