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Abstract

Background.—Personal exposure to fine particulate matter (PM2.5) from household air pollution 

is well-documented in sub-Saharan Africa, but spatiotemporal patterns of exposure are poorly 

characterized.

Objective.—We used paired GPS and personal PM2.5 data to evaluate changes in exposure 

across location-time environments (e.g., household and community, during cooking and non-

cooking hours), building density and proximity to roadways.

Methods.—Our study included 259 sessions of geolocated, gravimetrically-calibrated one-

minute personal PM2.5 measurements from participants in the GRAPHS Child Lung Function 
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Study. The household vicinity was defined using a 50-meter buffer around participants’ homes. 

Community boundaries were developed using a spatial clustering algorithm applied to an open-

source dataset of building footprints in Africa. For each GPS location, we estimated building 

density (500m buffer) and proximity to roadways (100m buffer). We estimated changes in PM2.5 

exposure by location (household, community), time of day (morning/evening cooking hours, 

night), building density, and proximity to roadways using linear mixed effect models.

Results.—Relative to nighttime household exposure, PM2.5 exposure during evening cooking 

hours was 2.84 (95%CI=2.70–2.98) and 1.80 (95%CI=1.54–2.10) times higher in the household 

and community, respectively. Exposures were elevated in areas with the highest versus lowest 

quartile of building density (FactorQ1vsQ4=1.60, 95%CI=1.42–1.80). The effect of building density 

was strongest during evening cooking hours, and influenced levels in both the household and 

community (31% and 65% relative increase from Q1 to Q4, respectively). Being proximal to a 

trunk, tertiary or track roadway increased exposure by a factor of 1.16 (95%CI=1.07–1.25), 1.68 

(95%CI=1.45–1.95) and 1.27 (95%CI=1.06–1.53), respectively.

Significance.—Our findings suggest that community-wide solid fuel use for household cooking 

contributes to personal PM2.5 exposure. Building density may exacerbate community exposures 

when multiple households are cooking simultaneously. Proximity to large roadways (trunk) and 

unpaved roadways (tertiary, track) increase PM2.5 exposure.
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INTRODUCTION

The combustion of solid fuels for domestic cooking is the primary source of household 

air pollution in low-and-middle income countries (LMICs). Sub-Saharan Africa continues 

to suffer the highest rate of age-adjusted disease due to household air pollution1. Among 

environmental risk factors, household air pollution is the second largest contributor to the 

global burden of disease, while ambient air pollution is the top contributor2. In regions like 

Africa where over 80% of the population relies on solid fuels, household air pollution may 

contribute significantly to ambient air pollution3.

Few studies have evaluated the relationship between levels of air pollution in the household 

and the community in LMICs. A modeling analysis conducted in Ghana as part of the 

Climate Pollutant Action Plan reported an estimated 64% of anthropogenic emissions of fine 

particulate matter (PM2.5; ≤2.5 μg/m3 aerodynamic diameter) were attributed to residential 

emissions3. A monitoring campaign in Nepal found PM2.5 levels were 37% higher in rural 

sites during times of cooking relative to a background site4. A study in rural China reported 

ambient levels of black carbon in villages were moderately correlated with levels in the 

household (r=0.49)5.

There is also a limited understanding of the influence of geographic features, e.g., building 

density and roadways, on air pollution in rural LMIC communities. A study in Bangladesh 

demonstrated that a household’s use of solid fuels for cooking increased PM2.5 and carbon 
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monoxide levels outdoors, as well as in other neighboring homes that used cleaner fuels (i.e., 

gas, electric)6. Outdoor levels of air pollution may be elevated in areas with a high density 

of households that use solid fuels, especially during typical hours of cooking. Roadways, 

a well-recognized source of air pollution in urban, developed settings7–9, are gaining 

recognition as an important contributor to exposure in rural settings, in tandem with solid 

fuel use10–14. In rural China, a PM2.5 source apportionment analysis reported that outdoor 

sources, including vehicles, may contribute 10–20% of household exposures14. In rural 

Ghana, a greater proportion of PM2.5 was attributed to black carbon in personal samples 

relative to stationary samples in the kitchen, highlighting the need to further investigate 

roadways as an important exposure source13.

Community sources – including neighbors’ cooking – may partially explain why some 

improved cookstove trials have found less-than-expected reductions in personal PM2.5 

exposure. In the Ghana Randomized Air Pollution and Health Study (GRAPHS), modest 

reductions in 48-hour PM2.5 exposure were observed among pregnant women who used an 

LPG cookstove (−35%; 95% confidence interval= −26, −38%) relative to those who used 

traditional cookstoves fueled by wood or charcoal15, 16. Despite using an LPG cookstove, 

67% of these women experienced exposure levels that exceeded WHO interim guidelines 

(35μg/m3). These findings emphasize the need to identify sources beyond the household 

and evaluate patterns of exposure throughout the day. This has important implications for 

energy policy. If neighbors’ emissions contribute meaningfully to an individual’s exposure, 

then household-level clean energy interventions that only reach a portion of households in a 

community (as often is the case with commercial distribution that disproportionately reach 

richer households17) may underdeliver on health benefits.

Our study leveraged GPS-tracked personal PM2.5 measurements collected from mothers and 

children living in rural Ghana who are participants of the Child Lung Function Study, a 

cohort extension of GRAPHS. We aimed to compare exposure levels across location-time 

environments (e.g., household and community, during cooking and non-cooking hours), as 

well as by surrounding building density and proximity to roadways. Several previous studies 

from this cohort have demonstrated maternal exposure to PM2.5 is associated with higher 

blood pressure and impaired infant lung function and growth trajectories18–21. This study 

is the first to assess how personal exposure varies across location, time and sources outside 

of the household. Our findings will help to identify environmental conditions that increase 

air pollution exposure, which could lead to improved characterization of personal exposures 

in epidemiologic analyses22. This study also has implications in informing the design of 

policies aimed at reducing the burden of disease due to household and ambient air pollution.

METHODS

Study population

The Child Lung Function Study cohort includes non-smoking women and their children 

originally enrolled in GRAPHS, described elsewhere23. Briefly, a total of 1,414 pregnant 

women were recruited from 35 community clusters (2013–2016) in the now Bono East 

Region of Ghana. Following the randomized trial in which cleaner cookstoves were 

provided and used by participants for a duration of approximately two years24, mother-
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child dyads have continued to participate in several follow-up sessions that have collected 

personal measurements of air pollutants15, 25 and health outcomes including maternal blood 

pressure19, 20, child growth trajectories21 and lung function18, 26.

Our analysis includes GPS-tracked, one-minute personal measurements of PM2.5 collected 

from mothers and children, obtained during 48-hour logging sessions. These measurements 

were collected as part of a follow-up period conducted between August 2018 and July 

2019, when the children in the cohort were approximately four years old. At the time 

of data collection, women had resumed using their traditional cookstoves. The protocol 

for this study was approved by the Kintampo Health Research Center Institutional Ethics 

Committee, Columbia University Medical Center and Mount Sinai. Women in the study 

provided written informed consent for the participation of themselves and their children. 

Analyses were conducted in R version 4.1.2. We interpreted the results using statistical 

measures, including a p-value threshold of <0.05 to discern statistical significance, and 95% 

confidence intervals to capture the range of potential values. For brevity, p-values less than 

0.001 were abbreviated as ‘p-value<0.001’.

Personal exposure data

Participants wore an RTI MicroPEM V3.2 monitor (Research Triangle Park, NC) in a 

comfortable sling with the air inlet placed near the breathing zone. The monitor is equipped 

with a nephelometer for real-time PM2.5 readings, a Teflon filter for PM2.5 collection, 

and sensors for continuous recording of relative humidity and temperature. A built-in 

correction factor for relative humidity was applied to continuous nephelometer readings27. 

The methods and quality control procedures for obtaining one-minute PM2.5 estimates used 

in this study have been previously described15, 25. Briefly, this included the attachment 

of a HEPA filter to the device for at least five minutes before and after each monitoring 

session to assess for drifts in the readings. This facilitated a zero-drift correction applied 

to continuous readings. Monitoring sessions were deemed invalid if HEPA values exceeded 

20μg/m3, or if the readings exhibited step-wise patterns or improbable plateaus. Gravimetric 

PM2.5 concentrations were obtained from the filters deployed in the field, and underwent 

field blank correction, involving the subtraction of a median field blank mass of 5μg, prior 

to concentration estimation. Gravimetric corrections were carried out by multiplying each 

reading by the ratio of the gravimetric PM2.5 concentration divided by the average of 

nephelometer PM2.5 readings for the total deployment time.

A randomly selected subset of participants consented to additionally wearing a Suunto 

Ambit 3 GPX tracker (Amer Sports Corporation, Vantaa, Finland) placed within the sling. 

The tracker recorded coordinate pairs (latitude/longitude at a precision of 6 decimal degrees) 

and corresponding timestamps when movement was detected. Therefore, GPS records were 

more frequent throughout the day (median/average=every 2/19 mins) relative to the night 

(median/average= every 26/95 mins), when participants were less active and removed the 

device before sleeping. Coordinates from the tracker were joined to PM2.5 measurements 

by matching timestamps. Since there was not a GPS record for each minute, we assumed 

participants remained in the same area until the next GPS record. We implemented this 

assumption by assigning the last observed coordinate pair to subsequent one-minute PM2.5 
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measurements until the next coordinate pair. The first coordinate pair linked to a PM2.5 

measurement was carried upward and assigned to any preceding PM2.5 measurements at the 

beginning of the session.

Of the initial 595 GPX tracker sessions, 439 were linked to validated MicroPEM data15. We 

restricted to sessions in which the start time of both devices were within 2 hours (to account 

for set-up time) and with a total logging time of 12 or more hours after linkage (n=283). 

An additional 24 sessions were excluded after visual inspection of GPS trajectories revealed 

locations to be outside of study communities, often explained by the return of the devices 

to the research center in Kintampo after failed deployment, or study participants who were 

temporarily residing away from their home. Our final dataset included 259 sessions among 

145 mothers and 114 children of GPS-tracked, one-minute PM2.5 measurements for a total 

of approximately 695k minutes.

Household boundaries

We estimated participants’ home coordinates using GPS data during the nighttime (21 to 

4 the next day), assuming participants would be home during this time. We evaluated 

GPS coordinates after linkage to continuous one-minute PM2.5 data; therefore, infrequent 

coordinates, likely recorded when the wearer removed the GPS tracker at home before bed, 

served to approximate participants’ location for most of the night. We categorized nighttime 

coordinates into clusters with a 5m radius, and found similar results with a 10m radius28. 

The centroid of the densest cluster was used to estimate the participant’s home longitude 

and latitude. Among those who had available survey data that included field-logged GPS 

coordinates for participants’ homes, the median distance between estimated and field-logged 

home coordinates was 23 meters (IQR=14–139m).

Our next step was to define a boundary around the home coordinates to account for 

imprecision in coordinates (e.g., satellite interference from the walls of a home) as well 

as activities of daily life, such as cooking, which typically occur outside but in the vicinity of 

the home structure15. First, we computed the average distance between unique coordinates 

recorded at nighttime and the estimated home centroid of each participant. The IQR of 

average distances ranged from 16 to 24 meters. Second, we evaluated patterns of average 

PM2.5 exposure when moving away from the home during cooking hours (Figure S1). 

When the household boundary was smallest (25–30m), the distribution of community 

exposures was higher compared to larger household buffer sizes (40–100m). This suggested 

that when the buffer size around the home was too small, household cooking exposures 

were misclassified as community exposures. Such patterns of potential misclassification 

diminished at buffer sizes >40m. Informed by this distribution, we defined household 

boundaries using a 50m radius around the home. As depicted in Figure 1, exposures 

occurring within a 50m buffer around the home are classified as ‘household exposures’.

Community boundaries

Administrative boundaries for communities in the Bono East Region of Ghana are not 

publicly available (and appear not to exist in any form). Therefore, we developed a 

geospatial dataset of community boundaries that encompass participants’ homes. We used 
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the “Open Buildings” public dataset of building footprints for the continent of Africa 

that was developed by the Google AI team in Ghana and released in August 202129, 30. 

Briefly, the dataset was created using a machine learning method, U-net, that classified 50-

centimeter pixels of satellite imagery as ‘building’ or ‘non-building’ along with a confidence 

level for the classification decision. The dataset includes spatial polygons that outline 

the footprints of each building, as well as the building centroid and the corresponding 

confidence level.

We developed community boundaries using buildings that had a confidence level of 

70% or greater, which represented about 77% of buildings in our study region. This 

decision aimed to minimize false positives (such as mistaking other geographic features 

for buildings) and was guided by both the developers’ recommendations30 and our 

observations when overlaying polygons onto Google Maps satellite imagery. Communities 

were distinguished as groups of buildings belonging to the same cluster, identified with 

the spatial algorithm, DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise)31–33. The DBSCAN method provides flexibility, permitting the formation of clusters, 

or ‘communities’ in the context of our study, of various shapes and sizes. It also does not 

require prior knowledge about the number of communities in the dataset, and can disregard 

sparse buildings seemingly not belonging to any community (e.g., outlying or industrial 

buildings). The algorithm requires two parameters: epsilon (the maximum distance between 

a given building and its neighbors within the same community) and the minimum number of 

neighboring buildings required to constitute a community. Reasonable epsilon values were 

determined using k-nearest neighbor graphs (k-NNG), which order the smallest distance 

between each building in our dataset and a specified number of neighboring buildings (k). 

Epsilon values were identified at the ‘elbow’ of the k-NNG, where distances beyond the 

‘elbow’ suggest buildings are too far apart to reasonably belong to the same community 

(Figure S2). These values were inputted into the clustering algorithm and further refined 

based on visual assessment of resulting clusters. Once community clusters were created, 

spatial polygons were drawn around each cluster to form community boundaries (Figure 

S3), allowing for concavity34 and including a 50m buffer35. Otherwise, boundaries would 

intersect the centroid of bordering buildings within the cluster. Participants were assigned 

to the community whose boundaries encompassed their home location. Exposures that 

occurred within each participant’s community but outside their household boundaries were 

classified as ‘community exposures’ (Figure 1). An anonymized R workflow is accessible in 

the GitHub repository: https://github.com/dmedgyesi/GeospatialGhana.

Surrounding building density

The Open Buildings dataset was also used to estimate the building density surrounding 

each GPS coordinate. We chose to estimate building density within a 500m buffer of each 

location, a distance that has been previously used to obtain land use attributes around air 

monitoring sites and demonstrated to be predictive of air pollutant levels36–38.

The following two variables were created for each location: 1) the number of buildings 

within the buffer and 2) the building density, which was calculated as the sum of the area of 

all buildings within the buffer (m2) divided by the total area of the buffer (196,350 m2). Two 
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variations of these variables were created: 1) including buildings with a confidence level of 

at least 70% and 2) further restricting to buildings with at least 80% confidence. The number 

of buildings and building density at both confidence levels were correlated (Spearman’s 

rho=0.97–0.98). Variables were categorized into tertiles and quartiles to evaluate exposure in 

areas with low- to high- building density.

Proximity to roadways

We obtained road data for our study region from OpenStreetMap (OSM), an open-source 

database of geographic features worldwide39. Despite the potential for crowd-sourced data 

like OSM to have less complete information in rural and developing regions40, 41, our 

linkage found a diverse range of road types in our study communities (n=35). Trunk roads 

were present in 46% of communities, secondary roads in 26%, tertiary roads in 11%, 

unclassified roads in 80%, residential roads in 43%, service roads in 14%, track roads in 

26%, and footway roads in 6% (Table S1). As detailed in Table S1, it should be noted that 

‘unclassified’ refers to minor roads classified lower than tertiary, not roads of unknown type.

We assessed proximity to roadways within a 100m radius of each GPS coordinate, a buffer 

size relevant to first-order decay of air pollutants from major roadways7, and shown to be 

associated with risk of several health outcomes (e.g., premature mortality, asthma) for those 

living near roadways at this distance9, 42. For each road type, we computed the segment 

length (meters) within a 100m radius of each location. The effect of nearby roadways on 

PM2.5 exposure was first assessed using a binary variable indicating whether any piece of 

road was within 100m. We created additional variables that further categorized locations 

near roadways as below or at or above the median segment length.

Statistical analyses

We described the distribution of logging time for mothers and children, as well as the 

percentage of total logging time by location (household vicinity, community boundaries 

or elsewhere) and wearing compliance during daylight hours (after 4 GMT and before 21 

GMT). Wearing compliance was estimated using data from an embedded accelerometer in 

the MicroPEM device that indicates whether the device was worn at a given time (yes/no).

The distribution of average PM2.5 exposure per participant is reported overall and by 

participant type and whether the session occurred during the Harmattan season (December-

March), a dry period with high winds that increase dust levels15. We also evaluated the 

distribution of PM2.5 exposure per participant averaged across categories of the following 

variables: time of day (morning cook hours: 5–9 GMT, evening cook hours: 16–20 GMT, 

nighttime: 21–4 GMT the next day, and other daytime hours), location, surrounding building 

density, nearby roadways and wearing compliance. Time of day and location were combined 

to evaluate exposure by location-time environment (e.g., community during cooking hours).

Our data follows a hierarchical structure, consisting of multiple non-independent PM2.5 

measurements for each participant, many of whom reside in the same community. To 

account for such dependencies, we employed linear mixed effects models that incorporated 

nested random effects: community and participant ID. We estimated the change in log-

transformed PM2.5 exposures by our fixed variables of interest including time of day, 
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location, surrounding building density and nearby roadways. Models were adjusted for 

additional fixed variables including whether the session occurred in the Harmattan season, 

participant type and wearing compliance. Estimates are expressed as a factor, calculated as 

the exponent of the beta coefficient [eβ], along with corresponding 95% confidence intervals 

(95%CI). Additionally, we computed the conditional R2 for each model, which reflects the 

variance explained by both fixed and random effects.

Our primary models were designed to answer the three main research questions: 1) Does 
exposure differ by location and time of day?, 2) Does exposure in the household and 
community vary by time of day?, and 3) Is exposure also influenced by surrounding 
building density and nearby roadways? (Figure S4). Our first model estimated the change 

in exposure by time of day and location, included as separate variables. Our second model 

then combined these variables to evaluate exposure by location-time environment (e.g., 

in community during cooking periods). Building density was added to the third model, 

adjusting for location-time environment. Finally, all binary variables of nearby road types 

were added to the fourth model, adjusting for both location-time environment and building 

density. For road types that were associated with PM2.5 exposure, we further explored 

effects when split at the median segment length. In secondary analyses, we jointly modeled 

location-time environment and quartiles of building density, hypothesizing that the effect of 

building density may be greater during cooking hours. Given the strong influence of the 

Harmattan season on ambient dust levels, we also conducted stratified analyses, separately 

modeling sessions occurring in the non-Harmattan (n=193) and Harmattan season (n=66).

We evaluated our models for residual temporal autocorrelation using ACF plots and Durbin 

Watson Tests (DWT). To reduce temporal autocorrelation in our models due to high 

correlation between one-minute PM2.5 measurements (model series a), we also present 

results for 30-minute averaged data (model series b). In this approach, measurements were 

discarded if participants were observed in more than one location during a 30-minute 

window. While this resulted in data being lost for short-trips into the community, this 

approach has the advantage of removing brief observations on the household-boundary, 

likely reducing location misclassification. In addition to aggregating data to 30-minutes, 

we integrated a first-order autocorrelation structure within participant (model series c), 

which fully accounted for the dependence of lagged PM2.5 measurements (based on non-

significant DWT). We evaluated for spatial autocorrelation using Moran’s I test. Before 

modeling, there was evidence of dependence in PM2.5 measurements at a small distance of 

approximately 200 meters (Moran’s I=0.20, p-value<0.001). We found limited evidence of 

spatial dependence in model series a-b residuals (Moran’s I=0.02–0.03) and no significant 

evidence of dependence in model series c residuals (Moran’s I=0.002), suggesting location 

and geographic covariates in our models accounted for spatial dependence.

RESULTS

Total logging time was similar for children and mother participants (median=48 hours); 

Table 1. The majority of participant logging time was spent within household boundaries 

(IQR=73–96% of total logging time). Most of the remaining time spent outside the 

household was within the community boundaries (IQR=2–13%). Time spent outside 
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household and community boundaries varied by participant, where 25% of participants 

never left the community during the exposure monitoring period and another 25% of 

participants spent >10% of their time elsewhere. On average, children spent 4% more of 

their logging time in the community compared to mothers. Mothers spent about 6% more 

time outside both household and community boundaries than children, likely farming. On 

average, devices were worn by participants for 54% of daytime logging hours; distributions 

of wearing compliance for children and mothers were similar.

Average participant PM2.5 exposures ranged from a median of 78μg/m3 and IQR of 49–

114μg/m3 (Table 2). Average participant exposures were greater if conducted during the 

Harmattan season (median=105μg/m3) versus the non-Harmattan season (median=72μg/

m3). Exposures during the day were higher when participants were wearing their device 

(median=110μg/m3) versus non-wearing periods (median=58μg/m3). Average exposures by 

time of day were lowest during the night (median=31μg/m3) and elevated during morning 

and evening cooking hours (median=83 and 123μg/m3, respectively). Patterns of elevated 

exposures during times of cooking were observed both in the household vicinity and 

community. In the community, median exposure was about 20μg/m3 higher during evening 

cook hours relative to non-cooking daytime hours. In the household, the median difference 

in exposure during morning (5–9 GMT) and evening (16–20 GMT) cook hours was about 10 

and 40μg/m3 greater for mothers compared to children (Table S2).

Participant average exposures were generally greater in areas with higher versus lower 

building density/number of buildings. We observed the greatest differences across quartiles 

of building density with 80%+ confidence (medians Q1=57, Q2=53, Q3=62 and Q4=70μg/

m3), and therefore we present this variable in our main findings (Table 2) and list 

other variations of surrounding buildings in supplementary information (Table S3). The 

distribution of average exposures in areas with the highest (Q4) versus lowest (Q1) building 

density, stratified by time of day, reveal differences are most pronounced during times of 

cooking (Figure 2).

We observed a large variation in the distribution of average exposures on/near roadways 

(Table 2), and no consistent patterns in exposure by roadway density (< or ≥ median 

segment length); Table S3. Only exposures occurring near trunk roadways were consistently 

greater at the mean (154μg/m3) and median (82μg/m3) relative to participant averages 

(mean=100μg/m3; median= 78μg/m3). Average exposure near trunk roadways was greater 

during the nighttime but not during the daytime when other sources of air pollution, such as 

cookstove emissions, likely dominate (Figure S5).

Results of our linear mixed effect models for one-minute and 30-minute averaged data, 

with and without first-order autocorrelation structure, are presented in Table 3. Results 

were similar for one- versus 30-minute data, albeit autoregressive results were attenuated, 

particularly during cooking hours when PM2.5 measurements are elevated and strongly 

correlated in time. Herein, we present results for 30-minute averaged data (model series 

b). Our models accounted for about 50% of the total variance in PM2.5, with marginal 

improvements from Model 1 to Model 4 (conditional R2=0.50 to 0.53, respectively).
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Model 1.

Exposures on average were 1.72 (95%CI=1.64–1.81) and 2.74 (95%CI=2.62–2.87) times 

higher during morning and evening cook hours, respectively, relative to nighttime exposure. 

Relative to exposure outside the community boundaries, PM2.5 exposure was 2.12 

(95%CI=1.98–2.28) and 1.60 (95%CI=1.46–1.76) times greater in the household and 

community, respectively. On average, exposure was over three times higher during the 

Harmattan season (3.20, 95%CI=2.53–4.05). When the device was worn, exposure on 

average was 1.36 (95%CI=1.31–1.41) times higher. Exposure among mothers compared 

to children was lower (0.74, 95%CI=0.61–0.91), controlling for cooking times.

Model 2.

Modeling time and location jointly, we found exposure was greatest during evening cooking 

hours in respective locations (household: 2.84, 95%CI=2.70–2.98; community: 1.80, 

95%CI=1.54–2.10; reference=household, nighttime). Exposure during morning cooking 

hours was also elevated in the household (1.69, 95%CI=1.61–1.78) and community (1.49, 

95%CI=1.28–1.72). Exposure during non-cooking daytime hours was somewhat higher in 

the household (1.14, 95%CI=1.10–1.19) and lower in the community (0.89, 95%CI=0.82 to 

0.97).

Model 3.

Exposures were greater in areas with higher building density, although the second 

quartile was somewhat lower in reference to the first quartile (Q2=0.90, 95%CI=0.80–

1.02; Q3=1.47, 95%CI=1.31–1.65, and Q4=1.60, 95%CI=1.42–1.80); ptrend<0.001. When 

modeling location-time environment and quartiles of building density jointly, the effect of 

building density was strongest during cooking hours in both the household and community 

(Figure 3). For example, the relative percentage increase from Q1 to Q4 during evening 

cooking hours was 31% and 65% in the household and community, respectively.

Model 4.

Exposures were significantly higher by a factor of 1.16, 1.68 and 1.27 when near a 

trunk, tertiary or track road, respectively; exposures were somewhat lower when near a 

secondary, residential or footway road. We observed further increases in exposure when near 

a higher density (≥median segment length) of trunk (1.19, 95%CI=1.08–1.31), tertiary (1.83, 

95%CI=1.54–2.19) or track (1.77, 95%CI=1.37–2.28) road.

In our analysis stratified by the Harmattan season, we found the change in PM2.5 

exposure during cooking times was more pronounced among sessions conducted outside 

the Harmattan season (Table S4). Likewise, the effect of being proximal to a road 

was more pronounced during the non-Harmattan versus Harmattan season (trunk=1.10 

versus 1.07, tertiary=1.88 versus 1.27, track=1.20 versus 1.14, respectively). However, the 

effect of building density was stronger during the Harmattan season (FactorQ1vsQ4=2.23, 

95%CI=1.80–2.75) versus non-Harmattan season (FactorQ1vsQ4=1.28, 95%CI=1.09–1.49).
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DISCUSSION

Our study described patterns of personal exposure to PM2.5 among mothers and children 

living in rural Ghana by location, time of day, as well as geographic features including 

building density and nearby roadways. We found that PM2.5 exposure was elevated in the 

morning and evening cooking hours. Exposure during cooking times was elevated both 

within the household and community. We found higher building density was associated with 

higher exposure, and that the effect was strongest during typical cooking hours. Finally, we 

report that PM2.5 exposure is greater when proximal to roadways.

To our knowledge, this is the first study to describe both spatial and temporal patterns 

of personal exposure to PM2.5 in communities that primarily rely on solid fuels for 

domestic cooking and energy. We demonstrated that exposures in the community follow 

patterns observed in the household during typical hours of cooking. Few studies have 

reported that air pollution levels in the community are influenced by solid fuel use in 

households4–6. A comparison of ambient PM2.5 measurements collected at the center of 

two rural communities in Nepal found community levels were 37% higher during hours of 

cooking relative to a background site (i.e., forest region)4. In comparison to exposure in the 

household at nighttime, we report exposures were 49–80% greater (Factor=1.49–1.80) in the 

community during cooking hours.

We found exposures were greater in areas with higher building density, and that this effect 

was strongest during typical cooking hours. Further, we found building density influenced 

both levels within the household vicinity (50m buffer) and the community during hours 

of cooking. This provides evidence that neighboring home activities not only contribute to 

outdoor PM2.5 levels, but could also influence levels in other households especially in more 

densely populated communities. This aligns with a study conducted in Bangladesh, which 

found that when a household used solid fuels for cooking, PM2.5 levels increased in both 

the surrounding outdoor environment, as well as within neighboring households that used 

cleaner fuels6.

We observed exposures were higher at the fourth quartile of building density when including 

buildings with 80%+ detection confidence (median/average= 70/148 μg/m3) versus 70%+ 

confidence (median/average= 63/133 μg/m3). Buildings detected with a higher degree of 

confidence tend to be larger in size, which may imply a greater presence of multi-family 

compounds in our defined 80%+ confidence range. Multi-family compounds are common in 

our study region and often feature shared courtyards typically used for simultaneous cooking 

activities, which may significantly contribute to nearby PM2.5 exposure. While definitively 

distinguishing multi-family homes is challenging due to a lack of detailed building 

information (e.g., number of rooms), future work to enhance our dataset by describing 

building contour and size could enable us to differentiate multi-family compounds and 

further understand their impact on PM2.5 exposure in communities.

We found evidence that PM2.5 exposure is greater when near a trunk, tertiary or track 

road. This highlights that traffic-related exposures, in addition to solid fuel use, may be an 

important contributor to personal exposure in rural settings10–14. The Techiman-Tamale Rd 

Medgyesi et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(N-10), extending north to south from the city center of Kintampo, is the primary trunk 

road in our study region and is likely an important source of vehicle exhaust43. Proximity 

to a trunk road increased PM2.5 exposure by a factor of 1.16. Being near a tertiary road 

had a greater impact on exposure (Factor=1.68). The tertiary roads within our study region 

are typically smaller, unpaved roads leading to communities and may be an important 

source of resuspended dust44. Likewise, track roads, which are often unpaved and used for 

agricultural activities, increased exposure by a factor of 1.27. Our findings align with a study 

in Bogotá, Colombia, which found unpaved roads emitted about five times more PM10 and 

twice as much PM2.5 per kilometer compared to paved roads45. However, proximity to other 

road types (e.g., secondary, residential, unclassified, service and footway) did not increase 

exposure and may be due to characteristics not captured by our approach, such as traffic 

volume.

Exposures were more than three times greater during the Harmattan season, underscoring 

the need to account for seasonality differences. When restricting to sessions in the non-

Harmattan season, the impact of cooking periods and proximity to roadways on exposure 

was more pronounced. Dust during the Harmattan season is an important source of air 

pollution, and therefore higher background levels may diminish the relative changes due 

to other sources. On the contrary, the influence of building density on exposure was more 

marked during the Harmattan season. Although we can only speculate, regions with greater 

building density may experience higher PM2.5 levels during the Harmattan season due to 

altered pollutant dispersion, lower vegetation or other community-wide burning activities, 

like trash burning or bush burning.

Our findings have important implications for the design of policies that aim to reduce the 

burden of disease from household and outdoor air pollution. Our findings underscore the 

importance of prioritizing community-wide transitions to cleaner fuel use in the household. 

This includes community-wide initiatives to reduce inequities in access to clean fuels, often 

driven by education, employment and income17. Otherwise, even if wealthier households 

switch to cleaner cookstoves, they and the rest of the community remain at risk of 

unsafe exposure levels if other households continue to use solid fuels. Our observations 

of increased exposure near roadways and in areas with high building density highlight the 

potential benefits of development initiatives such as road surfacing and sustainable urban 

planning (e.g., incorporation of greenspaces and greenways)46–49. However, the successful 

implementation of these initiatives depends on an understanding of the local context and 

residents’ needs, effective public education and policy advocacy, and the strengthening of 

institutional capacities47–49. It should also be noted that the generalizability of our findings 

may be somewhat limited by the specific characteristics of our study communities. These 

communities, while rural and small, feature closely spaced households which may not be 

representative of other rural settings. In addition, household cooking often occurs outside 

near the house, which may not be representative of other communities that use solid fuels for 

cooking.

The use of personal measurements provided a more accurate assessment of exposure levels 

near the breathing zone, but is dependent upon wearer compliance and is subject to exposure 

measurement and location error. Our study evaluated patterns of personal exposure to 
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PM2.5 at a fine temporal and spatial resolution. Geolocated exposure data at a one-minute 

resolution allowed us to quantify geographic features within small spatial scales, such 

as roadways within 100m, a distance that is relevant to the decay of vehicle emissions. 

However, the fine resolution of our data also introduced spatial and temporal autocorrelation 

in our models of PM2.5 exposure. Spatial dependency, observed at a small distance of 

200 meters, was mostly explained by our covariates of interest. We reduced temporal 

autocorrelation by aggregating data to 30-minutes. A first-order autoregressive model fully 

resolved temporal autocorrelation, but likely underestimated the change in exposure during 

cooking hours when lagged PM2.5 measurements are strongly correlated.

While we defined the household vicinity based on patterns of PM2.5 exposure near the 

home in an effort to account for outside cooking activities, the size of each household’s 

vicinity is likely to vary and could result in misclassification when evaluating household 

versus community exposures. We quantified roadway and building density using buffer 

sizes around each GPS location based on previous literature7, 9, 36–38, 42, but exploration of 

various buffer sizes may provide insight into PM2.5 dispersion. While not readily available, 

the integration of meteorological variables, such as precipitation, wind speed and direction, 

could improve the precision of our effect estimates and overall model performance. Wind 

speed and direction, in particular, play a significant role in pollutant dispersion, and their 

integration could provide a more nuanced understanding of the influence of roadways on 

personal PM2.5 exposure. Our models demonstrated moderate explanatory power, ranging 

from a conditional R2 of 0.38 to 0.53, which would likely improve with the addition of 

meteorological conditions.

In our geospatial analysis of personal PM2.5 exposure among mothers and children in 

rural Ghana, we found that exposure was elevated within the household vicinity and the 

community during the morning and evening hours when solid fuels are typically used 

for cooking. Additionally, exposures on average were greater in areas with the highest 

versus lowest building density, and the effect of building density on PM2.5 exposure was 

pronounced during hours of cooking. We report that roadways also contribute to elevated 

PM2.5 exposure, particularly main and unpaved roads leading to rural communities. Our 

study provides evidence that, in some settings at least, policies intended to promote 

cleaner fuel use will be most effective at reducing household and ambient air pollution 

if implemented at the community-level. Future work should consider the role of solid 

fuel use in the household on air pollution levels in the community, and investigate other 

community-wide burning activities, such as trash burning and bush burning during the dry 

season.
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IMPACT STATEMENT

Household air pollution from cooking with solid fuels in sub-Saharan Africa is a major 

environmental concern for maternal and child health. Our study advances previous 

knowledge by quantifying the impact of household cooking activities on air pollution 

levels in the community, and identifying two geographic features, building density and 

roadways, that contribute to maternal and child daily exposure. Household cooking 

contributes to higher air pollution levels in the community especially in areas with greater 

building density. Findings underscore the need for equitable clean household energy 

transitions that reach entire communities to reduce health risks from household and 

outdoor air pollution.
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Figure 1. 
Example of a GPS trajectory throughout a session. GPS points are color-coded as being 

within the vicinity of the household (50m buffer), community boundaries or elsewhere. 

Outlines of arbitrary shapes represent buildings in the area and lines represent roadways.
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Figure 2. 
Distribution of average participant PM2.5 exposures (μg/m3) for the fourth versus first 

quartile (Q4 vs. Q1) of surrounding building density (80%+ confidence) by time of day. The 

intersecting black vertical line in each histogram represents the mean value.
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Figure 3. 
Factor change in 30-minute average log-transformed PM2.5 exposure (μg/m3) and 95% 

confidence intervals for location-time environments modeled jointly with quartiles of 

surrounding building density. Reference is exposures during nighttime in the household. 

Model adjusted for nested random effects community and participant ID and fixed effects 

Harmattan season, participant type (child or mother) and wearing compliance. Dark blue 

box shows the relative percentage increase from Q1 to Q4.
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Table 3.

Factor change and 95% confidence interval (95%CI) in log-transformed PM2.5 exposure (μg/m3) by time, 

location, surrounding building density and nearby roadways among children and mothers in the Child Lung 

Function Study1. Estimated with linear mixed effects models with nested random effects: community and 

participant ID. Results for model series a) one-minute data, b) 30-minute averaged data and c) 30-minute 

averaged data with first-order autocorrelation structure within participant.

a) One-minute b) 30-minute c) 30-minute autoregressive

Factor (95CI)2 Factor % (95CI) Factor % (95CI)

MODEL 1: Time of day and location

Time of day

 Nighttime (21–4 next day) REF REF REF

 Morning cook hours (5–9) 1.62 (1.6, 1.64) 1.72 (1.64, 1.81) 1.44 (1.36, 1.54)

 Evening cook hours (16–20) 2.50 (2.47, 2.52) 2.74 (2.62, 2.87) 1.63 (1.54, 1.74)

 Other daytime hours 1.12 (1.11, 1.13) 1.16 (1.12, 1.21) 1.18 (1.13, 1.23)

Participant location

 Outside both boundaries (elsewhere) REF REF REF

 Household vicinity 2.15 (2.12, 2.18) 2.12 (1.98, 2.28) 2.17 (1.99, 2.37)

 Community boundaries 1.65 (1.62, 1.68) 1.60 (1.46, 1.76) 1.70 (1.54, 1.89)

Harmattan season

 No REF REF REF

 Yes 3.17 (2.47, 4.08) 3.20 (2.53, 4.05) 3.07 (2.44, 3.85)

Participant type

 Child REF REF REF

 Mother 0.68 (0.55, 0.84) 0.74 (0.61, 0.91) 0.77 (0.64, 0.94)

Wearing compliance

 No REF REF REF

 Yes 1.37 (1.36, 1.39) 1.36 (1.31, 1.41) 1.23 (1.19, 1.27)

 Conditional R2 0.413 0.498 0.384

MODEL 2: Location-time environment 3

Household, nighttime REF REF REF

Household, morning cook hrs 1.58 (1.56, 1.6) 1.69 (1.61, 1.78) 1.44 (1.35, 1.53)

Household, evening cook hrs 2.61 (2.58, 2.63) 2.84 (2.70, 2.98) 1.71 (1.61, 1.82)

Household, other daytime hours 1.10 (1.09, 1.11) 1.14 (1.10, 1.19) 1.18 (1.13, 1.23)

Community, morning cook hrs 1.41 (1.37, 1.44) 1.49 (1.28, 1.72) 1.14 (1.00, 1.3)

Community, evening cook hrs 1.81 (1.76, 1.85) 1.80 (1.54, 2.10) 1.37 (1.20, 1.56)

Community, other daytime hours 0.85 (0.84, 0.87) 0.89 (0.82, 0.97) 0.91 (0.83, 1.00)

Another place/time 0.61 (0.60, 0.62) 0.62 (0.58, 0.67) 0.63 (0.57, 0.69)

Conditional R 2 0.414 0.499 0.385
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a) One-minute b) 30-minute c) 30-minute autoregressive

Factor (95CI)2 Factor % (95CI) Factor % (95CI)

MODEL 3: Surrounding building density3,4

Quartiles building density (500m)

 Q1[0.000,0.011) REF REF REF

 Q2[0.011,0.018) 0.89 (0.86, 0.91) 0.90 (0.80, 1.02) 0.96 (0.84, 1.08)

 Q3[0.018,0.032) 1.42 (1.39, 1.46) 1.47 (1.31, 1.65) 1.28 (1.13, 1.45)

 Q4[0.032,0.155] 1.57 (1.53, 1.61) 1.60 (1.42, 1.80) 1.36 (1.19, 1.55)

 Conditional R2 0.426 0.518 0.396

MODEL 4: Proximal to roadways3,4,5

On or nearby (100m) road type?

 Trunk
No REF REF REF

Yes 1.13 (1.11, 1.14) 1.16 (1.07, 1.25) 1.23 (1.15, 1.32)

 Secondary
No REF REF REF

Yes 0.93 (0.91, 0.95) 0.90 (0.81, 1.00) 1.00 (0.91, 1.11)

 Tertiary
No REF REF REF

Yes 1.6 (1.55, 1.66) 1.68 (1.45, 1.95) 1.31 (1.13, 1.51)

 Unclassified
No REF REF REF

Yes 0.97 (0.95, 0.99) 0.97 (0.89, 1.06) 1.02 (0.94, 1.10)

 Residential
No REF REF REF

Yes 0.83 (0.81, 0.84) 0.77 (0.70, 0.85) 0.93 (0.84, 1.02)

 Service
No REF REF REF

Yes 0.69 (0.65, 0.73) 1.15 (0.87, 1.52) 1.12 (0.91, 1.38)

 Track
No REF REF REF

Yes 1.10 (1.05, 1.15) 1.27 (1.06, 1.53) 1.18 (1.01, 1.39)

 Footway
No REF REF REF

Yes 1.28 (0.9, 1.82) 0.54 (0.27, 1.08) 0.96 (0.65, 1.41)

 Conditional R2 0.435 0.531 0.400

Model 4.1: Roadway density (100m)3,4,5

 Trunk

Zero REF REF REF

<median (1, 164m) 1.07 (1.05, 1.09) 1.12 (1.03, 1.22) 1.21 (1.13, 1.31)

≥median (165, 403m) 1.18 (1.16, 1.21) 1.19 (1.08, 1.31) 1.28 (1.17, 1.41)

 Tertiary

Zero REF REF REF

<median (3, 168m) 1.44 (1.38, 1.50) 1.34 (1.13, 1.59) 1.21 (1.05, 1.40)

≥median (169, 263m) 1.64 (1.58, 1.71) 1.83 (1.54, 2.19) 1.62 (1.33, 1.98)

 Track

Zero REF REF REF

<median (0.3, 104m) 1.05 (1.00, 1.11) 1.08 (0.87, 1.34) 1.18 (0.99, 1.39)

≥median (105, 344m) 1.25 (1.17, 1.33) 1.77 (1.37, 2.28) 1.31 (1.02, 1.69)

 Conditional R2 0.430 0.523 0.404
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1
Includes 259 participant sessions with geo-located PM2.5 measurements

2
Computed as the exponent of the beta coefficient [eβ]

3
Adjusted for Harmattan season, participant type, and wearing compliance

4
Additionally adjusted for location-time environment

5
Additionally adjusted for building density
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