TABLE 3.
Application of Apriori algorithm in Chinese medicine data analysis in descending order of lift.
| Antecedents | Consequents | Antecedent support | Consequent support | Support | Confidence | Lift | Leverage | Conviction |
|---|---|---|---|---|---|---|---|---|
| ['當歸', '醋', '甘草'] | ['枳殻', '蜜'] | 0.886 | 0.821 | 0.804 | 0.907 | 1.105 | 0.076 | 1.929 |
| ['枳殻', '蜜'] | ['當歸', '醋', '甘草'] | 0.821 | 0.886 | 0.804 | 0.979 | 1.105 | 0.076 | 5.511 |
| ['當歸', '蜜', '醋', '甘草'] | ['枳殻'] | 0.884 | 0.823 | 0.804 | 0.910 | 1.105 | 0.076 | 1.955 |
| ['枳殻'] | ['當歸', '蜜', '醋', '甘草'] | 0.823 | 0.884 | 0.804 | 0.976 | 1.105 | 0.076 | 4.939 |
| ['大黄'] | ['黄芩'] | 0.852 | 0.852 | 0.801 | 0.940 | 1.103 | 0.075 | 2.476 |
| ['黄芩'] | ['大黄'] | 0.852 | 0.852 | 0.801 | 0.940 | 1.103 | 0.075 | 2.476 |
| ['當歸', '醋'] | ['枳殻', '蜜'] | 0.891 | 0.821 | 0.806 | 0.905 | 1.102 | 0.075 | 1.884 |
| ['枳殻', '蜜'] | ['當歸', '醋'] | 0.821 | 0.891 | 0.806 | 0.982 | 1.102 | 0.075 | 6.156 |
| ['枳殻', '蜜', '甘草'] | ['當歸', '醋'] | 0.818 | 0.891 | 0.804 | 0.982 | 1.102 | 0.075 | 6.138 |
| ['當歸', '醋'] | ['枳殻', '蜜', '甘草'] | 0.891 | 0.818 | 0.804 | 0.902 | 1.102 | 0.075 | 1.856 |
| ['枳殻'] | ['當歸', '蜜', '醋'] | 0.823 | 0.889 | 0.806 | 0.979 | 1.102 | 0.075 | 5.410 |
| ['當歸', '蜜', '醋'] | ['枳殻'] | 0.889 | 0.823 | 0.806 | 0.907 | 1.102 | 0.075 | 1.908 |
| ['枳殻', '甘草'] | ['當歸', '蜜', '醋'] | 0.821 | 0.889 | 0.804 | 0.979 | 1.102 | 0.074 | 5.394 |
| ['當歸', '蜜', '醋'] | ['枳殻', '甘草'] | 0.889 | 0.821 | 0.804 | 0.905 | 1.102 | 0.074 | 1.879 |
| ['當歸', '醋', '甘草'] | ['枳殻'] | 0.886 | 0.823 | 0.804 | 0.907 | 1.102 | 0.074 | 1.903 |
| ['枳殻'] | ['當歸', '醋', '甘草'] | 0.823 | 0.886 | 0.804 | 0.976 | 1.102 | 0.074 | 4.837 |
| ['木香', '當歸'] | ['白术', '蜜', '醋'] | 0.872 | 0.835 | 0.801 | 0.919 | 1.101 | 0.073 | 2.044 |
| ['白术', '蜜', '醋'] | ['木香', '當歸'] | 0.835 | 0.872 | 0.801 | 0.959 | 1.101 | 0.073 | 3.162 |
| ['白术', '醋'] | ['木香', '當歸', '蜜'] | 0.840 | 0.867 | 0.801 | 0.954 | 1.100 | 0.073 | 2.888 |
| ['木香', '當歸', '蜜'] | ['白术', '醋'] | 0.867 | 0.840 | 0.801 | 0.925 | 1.100 | 0.073 | 2.119 |