Skip to main content
. 2024 Mar 22;15:1347882. doi: 10.3389/fphar.2024.1347882

TABLE 3.

Application of Apriori algorithm in Chinese medicine data analysis in descending order of lift.

Antecedents Consequents Antecedent support Consequent support Support Confidence Lift Leverage Conviction
['當歸', '醋', '甘草'] ['枳殻', '蜜'] 0.886 0.821 0.804 0.907 1.105 0.076 1.929
['枳殻', '蜜'] ['當歸', '醋', '甘草'] 0.821 0.886 0.804 0.979 1.105 0.076 5.511
['當歸', '蜜', '醋', '甘草'] ['枳殻'] 0.884 0.823 0.804 0.910 1.105 0.076 1.955
['枳殻'] ['當歸', '蜜', '醋', '甘草'] 0.823 0.884 0.804 0.976 1.105 0.076 4.939
['大黄'] ['黄芩'] 0.852 0.852 0.801 0.940 1.103 0.075 2.476
['黄芩'] ['大黄'] 0.852 0.852 0.801 0.940 1.103 0.075 2.476
['當歸', '醋'] ['枳殻', '蜜'] 0.891 0.821 0.806 0.905 1.102 0.075 1.884
['枳殻', '蜜'] ['當歸', '醋'] 0.821 0.891 0.806 0.982 1.102 0.075 6.156
['枳殻', '蜜', '甘草'] ['當歸', '醋'] 0.818 0.891 0.804 0.982 1.102 0.075 6.138
['當歸', '醋'] ['枳殻', '蜜', '甘草'] 0.891 0.818 0.804 0.902 1.102 0.075 1.856
['枳殻'] ['當歸', '蜜', '醋'] 0.823 0.889 0.806 0.979 1.102 0.075 5.410
['當歸', '蜜', '醋'] ['枳殻'] 0.889 0.823 0.806 0.907 1.102 0.075 1.908
['枳殻', '甘草'] ['當歸', '蜜', '醋'] 0.821 0.889 0.804 0.979 1.102 0.074 5.394
['當歸', '蜜', '醋'] ['枳殻', '甘草'] 0.889 0.821 0.804 0.905 1.102 0.074 1.879
['當歸', '醋', '甘草'] ['枳殻'] 0.886 0.823 0.804 0.907 1.102 0.074 1.903
['枳殻'] ['當歸', '醋', '甘草'] 0.823 0.886 0.804 0.976 1.102 0.074 4.837
['木香', '當歸'] ['白术', '蜜', '醋'] 0.872 0.835 0.801 0.919 1.101 0.073 2.044
['白术', '蜜', '醋'] ['木香', '當歸'] 0.835 0.872 0.801 0.959 1.101 0.073 3.162
['白术', '醋'] ['木香', '當歸', '蜜'] 0.840 0.867 0.801 0.954 1.100 0.073 2.888
['木香', '當歸', '蜜'] ['白术', '醋'] 0.867 0.840 0.801 0.925 1.100 0.073 2.119