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Hepatic Fibrosis and Cancer: The Silent Threats of 
Metabolic Syndrome
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Metabolic dysfunction-associated steatotic (fatty) liver disease (MASLD), previously termed non-alcoholic fatty liver disease, is a 
worldwide epidemic that can lead to hepatic inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The disease is 
typically a component of the metabolic syndrome that accompanies obesity, and is often overlooked because the liver manifesta-
tions are clinically silent until late-stage disease is present (i.e., cirrhosis). Moreover, Asian populations, including Koreans, have a 
higher fraction of patients who are lean, yet their illness has the same prognosis or worse than those who are obese. Nonetheless, 
ongoing injury can lead to hepatic inflammation and ballooning of hepatocytes as classic features. Over time, fibrosis develops fol-
lowing activation of hepatic stellate cells, the liver’s main fibrogenic cell type. The disease is usually more advanced in patients with 
type 2 diabetes mellitus, indicating that all diabetic patients should be screened for liver disease. Although there has been substan-
tial progress in clarifying pathways of injury and fibrosis, there no approved therapies yet, but current research seeks to uncover the 
pathways driving hepatic inflammation and fibrosis, in hopes of identifying new therapeutic targets. Emerging molecular meth-
ods, especially single cell sequencing technologies, are revolutionizing our ability to clarify mechanisms underlying MASLD-asso-
ciated fibrosis and HCC.
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INTRODUCTION 

Obesity is linked to well recognized co-morbidities that com-
prise the metabolic syndrome, including type 2 diabetes mellitus 
(T2DM), hypertriglyceridemia, and hypertension [1]. However, 
the additional presence of steatotic liver, with or without inflam-
mation and fibrosis, is often overlooked because these abnor-
malities typically do not have specific symptoms. This article re-
views the fundamental mechanisms of fibrosis in steatotic (fatty) 
liver disease and their epidemiologic and mechanistic links to 
primary liver cancer, or hepatocellular carcinoma (HCC).

The terminology of steatotic liver disease has recently been 
standardized through an international effort [2]. Henceforth, 
the diseases formerly known as non-alcoholic fatty liver dis-
ease (NAFLD) and non-alcoholic steatohepatitis (NASH) are 

now termed metabolic dysfunction-associated steatotic liver 
disease (MASLD) and metabolic dysfunction-associated ste-
atohepatitis (MASH), and these new terms are used in this re-
view article. These new terms eliminate stigmatization by re-
moving the word ‘fatty,’ by defining the disease by what is pres-
ent instead of what is not present (e.g., non-alcoholic), and by 
accounting for the co-existence in some patients of liver dis-
ease-associated with both alcohol and metabolic dysfunction.

The escalating prevalence of obesity and T2DM has given 
rise to a staggering increase in MASLD and its more advanced 
form, MASH. A significant subset (approximately 20%) of in-
dividuals with MASLD progress to MASH, but the underlying 
factors that either promote or protect some individuals from 
progression of MASLD to either MASH, cirrhosis and HCC 
remain unclear. Overall, once cirrhosis is present there is an 
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approximately 1.5% to 2% per year risk of developing incident 
HCC [3,4].

The distribution of MASH varies worldwide but is rising es-
pecially in Asia [5]. In Korea, the prevalence of MASLD is ap-
proximately 30% of the population [6,7], and is increasing in 
association with increasing T2DM [8]. MASH is estimated to 
occur in 10% of those with MASLD in Korea [9]. Worldwide, 
MASH in lean individuals (“lean MASH”) represents about 5% 
to 20% of the overall MASLD population [10,11]. Its prognosis 
is no better than in obese patients with MASH, and may be 
worse [12]. The mechanisms underlying lean MASH are not 
understood, but it is more prevalent among Asians, including 
Koreans [13]. 

Recent data indicates that the world is ill-prepared to handle 
the growing burden of MASLD, as few countries have imple-
mented adequate public health measures to identify and man-
age the anticipated surge in patients while awaiting effective 
therapies [14,15] for a disease that significantly impairs health-
related quality of life [16]. Thus, improving the awareness, di-
agnosis and treatment of MASLD and MASH are very high 
public health priorities.

METABOLIC DYSREGULATION IN MASH

MASH is associated with various pathways of metabolic dys-
regulation, both within the liver and systemically in extracellu-
lar tissues like adipose, muscle, and pancreas [17]. The liver, in 
particular, has altered signaling in pathways governing lipid 
homeostasis and carbohydrate metabolism. The result is an ac-
cumulation of fat from de novo lipogenesis, impaired lipolysis 
and hepatic export, as well as increased hepatic glucose uptake 
and impaired glucose utilization. These changes reflect an en-
ergy metabolism imbalance, with an excess of energy entering 
the liver compared to its capacity to oxidize or export these 
substrates. Multiple inputs from the microbiome, visceral adi-
pose, muscle, the immune system, and the central nervous sys-
tem influence these pathways.

Of all the co-morbidities associated with metabolic syndrome 
and steatotic liver disease, T2DM is single greatest risk factor for 
the development and progression of MASLD to MASH, and for 
accelerated progression of fibrosis in those with MASH [18,19]. 
Based on the strong association between T2DM and MASLD, 
the American Diabetes Association [20] and the American As-
sociation for the Study of Liver Diseases [21] have recommend-
ed screening all patients with T2DM for the presence of MASLD 

or MASH. Screening approaches vary based on the country and 
technologies available to clinicians, but typically include use of  
a non-invasive score (e.g., fibrosis-4 [FIB-4] or enhanced liver 
fibrosis [ELF]) combined with liver stiffness (Fibroscan, Echo-
sens, Paris, France) [22,23]. Detection of MASLD or MASH 
among patients with T2DM is important in part because im-
proved glycemic control may improve MASLD [24]. MASLD  
is also linked to increased adverse pregnancy outcomes in a Ko-
rean population [25]. 

UPSTREAM DRIVERS OF HEPATOCYTE 
INJURY IN MASH

The factors initiating hepatocyte injury in MASH are not yet de-
finitively identified, but several candidates have been proposed. 
These include dysregulated circulating adipokines and inflam-
matory molecules [26-29], elevated circulating insulin and insu-
lin like growth factor (IGF), and signals from the gut microbi-
ome, which exhibits abnormalities in MASH patients and ani-
mal models. With the advent of single cell RNA sequencing 
technologies, subsets of hepatocytes have been identified that 
may selectively promote the development of MASLD [30].

Gut dysbiosis, characterized by an unbalanced gut microbial 
community, is a compelling candidate for initiating and per-
petuating MASLD, fibrosis, and HCC [31-33]. Dysbiosis can 
lead to increased gut permeability, enabling intestinal products 
to enter the portal vein, causing hepatocellular damage and 
sterile inflammation. Additionally, gut bacteria or their prod-
ucts may promote hepatocyte senescence and stimulate stellate 
cell activation. Intriguingly, certain gut bacteria in MASH have 
been found to generate ethanol, leading to liver injury, known 
as ‘autobrewery syndrome’ [34] although its overall contribu-
tion to MASH remains uncertain. Recent findings also suggest 
that the composition of the gut microbiome might influence 
the responsiveness of MASH and other disease treatments. 
Mouse models, although optimistic in predicting drug efficacy, 
have limitations due to genetic homogeneity and less complex 
microbiota compared to outbred mice, which better emulate 
human drug responses.

HEPATOCYTE DAMAGE AND FIBROSIS IN 
MASH

Upon hepatocyte injury, a cascade of signals involving intercel-
lular crosstalk stimulates the activation or transdifferentiation 
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of hepatic stellate cells into myofibroblasts, leading to increased 
fibrogenesis. These stellate cell-derived myofibroblasts play a 
central role in liver injury resulting from MASH and other 
causes of parenchymal cell damage [35,36]. They originate from 
the cardiac mesoderm/septum transversum during develop-
ment and resemble pericytes in other tissues. These cells reside 
in the subendothelial space surrounding the sinusoid, where 
they can regulate sinusoidal blood flow [37]. With the advent  
of single cell RNA sequencing technologies, subsets of hepato-
cytes have been identified that may selectively promote the de-
velopment of MASLD [30].

Genetic contributions to the pathogenesis of NAFLD (MASLD) 
are recognized [38-42]. A growing number of single nucleotide 
DNA polymorphisms, many of which are associated with lipid 
handling within liver cells (hepatocytes), have been identified as 
potential risk factors and therapeutic targets in NASH (MASH). 
The extent to which these genetic factors contribute to the on-
set and severity of MASH remains unclear, but they are likely 
among several multifactorial determinants of the disease. The 
importance of genetic contributions is further emphasized by 
the high frequency of MASH fibrosis among first-degree rela-
tives [43,44], although it’s worth considering that familial clus-
tering of the disease could also be influenced by a shared micro-
biome, particularly for those living in the same household. Al-
though genetic variability is clearly a risk factor for the develop-
ment of MASH and MASLD, genetics alone does not account 
for the increasing prevalence of the disease, and instead it is one 
of the factors that collectively enhance risk of disease or predis-
pose patients to disease progression [45,46].

Therapeutic targets that have emerged are categorized based 
on their intervention points in the pathogenic sequence. Al-
though not the primary focus of this review, general classes of 
therapeutics include those aiming to reduce fat accumulation in 
hepatocytes, improve insulin signaling and glucose homeostasis, 
counteract inflammation resulting from hepatocellular injury, 
decrease oxidative stress and restore metabolic and structural 
integrity of hepatocytes, as well as directly antagonizing fibro-
genic signaling by activated stellate cells/myofibroblasts [47-49].

DIAGNOSIS OF MASLD AND FIBROSIS

The definitive diagnosis of MASLD and MASH still necessi-
tates a liver biopsy of sufficient size and containing an adequate 
number of portal tracts to classify and stage the disease [50,51]. 
Initial studies primarily relied on the NASH Clinical Research 

Network (CRN), activity score, which comprises three main 
components: steatosis, lobular inflammation, and ballooning. 
Fibrosis is assessed separately using either a 0–4 (Brunt Kleiner 
score or SAF [steatosis, activity, and fibrosis] scores) or 0–6 
scale (Ishak score). However, accumulating data have revealed 
limitations in the NASH CRN score, particularly due to signifi-
cant sampling variability of its three features and challenges in 
defining and quantifying ballooning within a liver section. On 
the other hand, fibrosis has consistently emerged as the most 
crucial histologic feature predicting clinical events. This finding 
is supported by a significant longitudinal study from the NASH 
CRN, which followed almost 1,800 patients for 10 years and es-
tablished the importance of fibrosis as a risk factor for death 
from any cause, hepatic decompensation, and HCC [52]. Con-
sequently, both the disease’s pathologic scoring systems and 
therapeutic efforts are increasingly focused on accurately quan-
tifying fibrosis and targeting pathways that enhance fibrogene-
sis or stimulate matrix degradation, directly or indirectly.

Recent data also support the superiority of digital pathologic 
methods in more accurately quantifying fibrosis content along 
a continuous scale [53-55]. As these methodologies are validat-
ed in longitudinal trials, they are likely to replace or comple-
ment conventional scoring systems. Furthermore, efforts are 
intensifying to replace liver biopsy altogether with non-invasive 
disease staging methods to broaden enrollment in clinical trials 
and improve patients’ eligibility for effective therapies once ap-
proved by regulatory authorities such as European Medicinces 
Agency or U.S. Food and Drug Adminstration.

FIBROSIS AND MASH

Fibrosis plays a pivotal role in determining clinical outcomes in 
MASH, making it crucial to delve into its pathogenesis in great-
er detail (Fig. 1). For decades, the activation of hepatic stellate 
cells has been recognized as a central event in fibrosis develop-
ment [56,57]. Typically, these activated stellate cells express al-
pha smooth muscle actin and various cell surface and intracel-
lular molecules that collectively promote their fibrogenic be-
havior. Recent advancements in single cell sequencing have 
shed light on stellate cell heterogeneity, revealing diverse phe-
notypes beyond the conventional ‘activated’ state [58]. This 
newfound understanding suggests the existence of stellate cell 
subtypes, including those previously activated but inactivated 
yet ‘primed’ to reactivate quickly after repeated liver injury 
[57,59]. Additionally, senescent hepatic stellate cells stimulated 
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by microbiome signals adopt a pro-inflammatory senescence-
associated secretory phenotype that contributes to fibrosis pro-
gression. Targeting these senescent subpopulations through 
therapeutic approaches, such as CAR-T cells, has shown prom-
ise in improving fibrosis and injury in experimental MASH 
models in mice [60]. There remain other stellate cell subtypes 
whose functions are yet to be fully elucidated [58], but they 
likely contribute to the regional and individual differences ob-
served in fibrosis extent and rate among MASH patients.

Stellate cell heterogeneity may also have significant implica-
tions for HCC pathogenesis [58,61]. Studies utilizing single cell 
sequencing have identified stellate cell subpopulations that ei-
ther promote or inhibit HCC, depending on their secretory 
and genetic phenotypes [62]. These findings help resolve long-
standing debates and contradictory observations regarding 
whether fibrogenic cells hinder tumor growth by encapsulat-
ing cancer cells, or promote tumor development through di-
rect stimulation of cancer cell growth. The complexity of the 
tumor microenvironment is further highlighted by these dis-
coveries, as it involves not only immune cells but also stromal 
cells, including activated stellate cells.

An important feature of advanced MASH fibrosis, not previ-
ously recognized, is the expansion and physical elongation of 
hepatic stellate cells as the disease progresses. These features 
help stellate cells develop a dense network of autocrine cell-cell 
interactions driven by a unique repertoire of ligand receptor 
combinations [63]. This insight suggests that as fibrosis advanc-
es, therapeutic targets evolve, potentially necessitating different 
drugs than those used when the disease primarily exhibits fat 
and inflammation with less fibrosis. This ‘cold’ fibrosis stage, 
characterized by autocrine interactions [64], likely explains why 
fibrosis continues to progress in advanced MASH patients, 
even after their livers have lost fat and other classic histologic 
features associated with MASH.

Understanding the intricate pathogenesis of fibrosis in MASH 
is of utmost importance, as it opens up new possibilities for tar-
geted therapies that can effectively halt disease progression and 
improve patient outcomes. The emerging knowledge of stellate 
cell heterogeneity and its impact on HCC development offers 
promising avenues for future research and the development of 
innovative treatment approaches.

Fig. 1. Hepatic drivers of MASLD and fibrosis. A number of upstream signals converge on hepatocytes to induce injury, com-
bined with dysregulated immunity and insulin resistance. These lead to hepatocyte-derived molecules that activate hepatic stellate 
cells and amplify inflammation. Within activated stellate cells, a number of intracellular changes contribute to progressive fibrosis. 
IGF1, insulin like growth factor 1; ER, endoplasmic reticulum. 
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MASH-HCC: GENERAL FEATURES AND 
MASH-SPECIFIC DRIVERS

The incidence of MASH-HCC is on the rise globally, although 
its rates vary significantly across different regions [3,65]. Nota-
bly, MASH-related HCC has the fastest-growing rate among 
various chronic liver diseases and HCC etiologies. One dis-
tinctive clinical feature of MASH-HCC is its higher tendency 
to develop before cirrhosis is established. Roughly one-third of 
MASH-HCC cases arise in non-cirrhotic livers, whereas 95% 
of HCC cases associated with viral hepatitis occur in cirrhotic 
livers [3,66,67]. Nevertheless, cirrhosis remains the most sig-
nificant risk factor for HCC in MASLD, emphasizing the im-
portance of efforts to regress fibrosis in potentially protecting 
patients from liver cancer in the context of MASH.

Numerous features of MASH contribute to the unique clini-
cal behavior of HCCs arising in this disease. Obesity, in partic-
ular, is a prominent risk factor for various cancers, including 
liver cancer. Obesity leads to chronic inflammation, heightened 
oxidant stress, DNA damage, and genomic mutations [26]. Ad-
ditionally, it is associated with increased levels of mitogenic sig-
nals such as IGF and hepatocyte growth factor, as well as dys-
regulation of adipokines. The interplay between these factors, 
combined with potential genetic determinants specific to HCC 
risk and alterations in the gut microbiome, creates a dysregu-
lated tumor microenvironment where HCC emergence may 
no longer depend solely on cirrhosis, although advanced fibro-
sis is still typically present. Obesity-induced systemic immune 
alterations, including heightened Th17-related inflammation, 
further impact the liver’s immune environment [26].

Recently, various molecular differences between MASH-HCC 
and non-MASH-HCC have been identified [65]. Of particular 
interest is the role of linoleic acid accumulation, leading to in-
creased reactive oxygen species, cluster of differentiation 4 (CD4) 
T-cell depletion, auto-aggressive CXC motif chemokine recep-
tor 6 (CXCR6) CD8 T-cells, metabolic reprogramming, and 
heightened DNA damage [27,68]. These changes are exacerbat-
ed by chronic dyslipidemia, endoplasmic reticulum stress, and 
other immune inflammatory changes associated with obesity.

One crucial consequence of the MASH-HCC-specific chang-
es in hepatic immunity is the reduced efficacy of immunother-
apy regimens that utilize checkpoint blockade [68]. Hepatic 
stellate cells may play a role in immunotolerance and resistance 
to checkpoint inhibition, thereby linking fibrogenic responses 
directly to a dysregulated immune microenvironment. While 

the success of some checkpoint inhibitors in treating primary 
HCC and reducing recurrence in MASH is promising, this area 
is rapidly evolving, and many questions remain unanswered.

FIBROSIS REGRESSION IN MASLD: 
CLINICAL FINDINGS AND UNDERLYING 
MECHANISMS

The development of highly effective therapies to either suppress 
hepatitis B, or cure hepatitis C, have created opportunities to 
unearth delivers and the alternate capacity to regress scar. In 
particular, long term suppression of hepatitis B virus (HBV) 
leads to marked diminution in advanced cirrhosis [69]. Simi-
larly, curative therapies for hepatitis C virus (HCV) have again 
revealed the capacity of the healing liver to resorb the scar [70].

There are now also data suggesting that fibrosis is reversible 
in patients with MASH, primarily those who have undergone 
successful bariatric surgery associated with significant weight 
loss [71]. These patients have reduced fibrosis stage and im-
proved overall outcomes for years after bariatric surgery [72]. 
Of note, however, cirrhosis associated with MASH may not be 
as reversible as in HBV and HCV, since a recent study indicates 
that cirrhosis persists if bariatric surgery is conducted after the 
disease has reached this advanced stage [73]. Bariatric surgery 
in MASLD has also been linked to reduced risk of HCC [74], 
which in part may be determined by underlying gene signatures 
of the disease that predict risk of cancer [75].

The mechanisms underlying fibrosis regression in any hu-
man liver disease remain understudied and unclear. Many 
years ago, sources of proteolytic enzymes or defined based on 
cellular and molecular methods, and focused on hepatic mac-
rophages as a primary source of collagenases and enzymes that 
degrade other components of the extracellullar matrix [76]. 
More recently, subsets of macrophages, especially in Ly6Clo 
macrophages in mouse, have been implicated [77]. However, 
the overall activity of proteolysis is regulated not only by the 
amount of proteases, but also by the associated activity of me-
talloproteinase inhibitors or tissue inhibitors of metallopro-
teinases, as well as the localization of these enzymes relative to 
accumulating scar. To date, we lack a cohesive understanding 
of the cellular sources and disease-associated proteases that 
degrade scar. It is anticipated that with the availability of single 
cell methodologies, the mechanisms underlying scar degrada-
tion will be clarified. This is important, because such informa-
tion could provide critical clues to develop novel therapies se-
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lectively amplifying scar degradation.
In summary, understanding the pathogenic features of MASLD 

and MASH-HCC is a top priority in hepatology. Recent advanc-
es have been significant, but there are still numerous unanswer-
ed questions that future studies must address. Some of these in-
clude:

1.  Identifying the specific signals that explain why only a frac-
tion of MASLD patients to develop MASH. Are genetics, 
the microbiome, diabetes, lipotoxicity, immune dysregula-
tion, or a combination of these factors involved?

2.  Considering whether MASH is a single disease with dif-
ferent subgroups, each with predominant pathways or ab-
normalities like insulin resistance, lipotoxicity, microbi-
ome, or immune system dysfunction.

3.  Exploring whether metabolic, anti-inflammatory, or anti-
fibrotic therapies alone will suffice or if combination ther-
apies are necessary to improve outcomes and reduce HCC 
in the majority of patients. Currently, even successful ther-
apies benefit only a minority of patients, underscoring the 
need for further research.

Investigating and understanding these aspects of MASH and 
MASH-HCC will pave the way for more effective treatments 
and management strategies in the future. In particular the im-
pact of T2DM on MASLD progression, mechanisms of fibro-
sis, and risk of HCC is not fully understood. Greater integra-
tion of expertise from endocrinology and hepatology will ac-
celerate progress and improve outcomes for patients with met-
abolic syndrome and steatotic liver disease.
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