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Automatic detection and characterization of cancer are important clini-
cal needs to optimize early treatment. We developed a deep, semisu-
pervised transfer learning approach for fully automated, whole-body
tumor segmentation and prognosis on PET/CT. Methods: This retro-
spective study consisted of 611 '®F-FDG PET/CT scans of patients
with lung cancer, melanoma, lymphoma, head and neck cancer, and
breast cancer and 408 prostate-specific membrane antigen (PSMA)
PET/CT scans of patients with prostate cancer. The approach had a
nnU-net backbone and learned the segmentation task on "®F-FDG and
PSMA PET/CT images using limited annotations and radiomics analy-
sis. True-positive rate and Dice similarity coefficient were assessed to
evaluate segmentation performance. Prognostic models were devel-
oped using imaging measures extracted from predicted segmentations
to perform risk stratification of prostate cancer based on follow-up
prostate-specific antigen levels, survival estimation of head and neck
cancer by the Kaplan—Meier method and Cox regression analysis, and
pathologic complete response prediction of breast cancer after neoad-
juvant chemotherapy. Overall accuracy and area under the receiver-
operating-characteristic (AUC) curve were assessed. Results: Our
approach yielded median true-positive rates of 0.75, 0.85, 0.87, and
0.75 and median Dice similarity coefficients of 0.81, 0.76, 0.83, and
0.73 for patients with lung cancer, melanoma, lymphoma, and prostate
cancer, respectively, on the tumor segmentation task. The risk model
for prostate cancer yielded an overall accuracy of 0.83 and an AUC
of 0.86. Patients classified as low- to intermediate- and high-risk
had mean follow-up prostate-specific antigen levels of 18.61 and
727.46 ng/mL, respectively (P < 0.05). The risk score for head and
neck cancer was significantly associated with overall survival by uni-
variable and multivariable Cox regression analyses (P < 0.05). Predic-
tive models for breast cancer predicted pathologic complete response
using only pretherapy imaging measures and both pre- and postther-
apy measures with accuracies of 0.72 and 0.84 and AUCs of 0.72 and
0.76, respectively. Conclusion: The proposed approach demonstrated
accurate tumor segmentation and prognosis in patients across 6 can-
cer types on '8F-FDG and PSMA PET/CT scans.

Key Words: deep learning; semisupervised transfer learning; PET/CT;
tumor segmentation; cancer prognosis

J Nucl Med 2024; 65:643-650
DOI: 10.2967/jnumed.123.267048

Received Nov. 10, 2023; revision accepted Jan. 29, 2024.

For correspondence or reprints, contact Kevin H. Leung (kleung8@jhmi.edu).
Published online Feb. 29, 2024.

COPYRIGHT © 2024 by the Society of Nuclear Medicine and Molecular Imaging.

AuToMATED PET/CT TuMOR QUANTIFICATION ~ *

Cancer is a worldwide health concern and the second leading
cause of death in the United States, with approximately 2 million
projected cases in 2023 (7). Prostate, breast, lung, melanoma, lym-
phoma, and oral cavity and pharyngeal cancers were among the
leading types of new estimated cases (/). Delays in cancer diagno-
sis and treatment were associated with increased mortality for sur-
gical, chemotherapeutic, and radiotherapeutic modalities and may
lead to increased advanced-stage disease (2).

Quantitative measures of molecular tumor burden on 'F-FDG
and prostate-specific membrane antigen (PSMA) PET/CT are
prognostic biomarkers (3). However, manual tumor quantification
by radiologists is time-consuming, laborious, and subject to inter-
and intrareader variability (4). Generalizable approaches for auto-
mated PET/CT tumor quantification are an important clinical need
for early detection and treatment of cancer.

Radiomics performs high-throughput extraction of quantitative
engineered features of malignant tumors from radiologic data (4).
Deep learning methods automatically extract features from input
images to model medical endpoints directly and require large
training datasets with physician-defined annotations (4). Addition-
ally, manual tumor delineation is not easily scalable, especially for
patients with a high tumor burden. Manual delineation is further
impacted by interobserver variability because of differences in
levels of reader experience. Lastly, deep learning models for
PET/CT are often developed for specific radiotracers, limiting
their general applicability.

We developed a deep, semisupervised transfer learning
(DeepSSTL) approach for fully automated whole-body tumor seg-
mentation and prognosis on '8F-FDG and PSMA PET/CT scans
using limited annotations. Radiomics features and whole-body imag-
ing measures were extracted from predicted segmentations to build
prognostic models for risk stratification, overall survival analysis,
and prediction of response to therapy. Our approach demonstrated
robust performance across patients with melanoma; lymphoma; and
prostate, lung, head and neck, and breast cancers and may help alle-
viate physician workload for whole-body PET/CT tumor analysis.

MATERIALS AND METHODS

This retrospective study was approved by the Johns Hopkins institu-
tional review board with a waiver for obtaining informed consent.
Deidentified data were collected, in part, from The Cancer Imaging
Archive (5).
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Semisupervised Transfer Learning

A semisupervised transfer learning framework was developed to
learn the whole-body tumor segmentation task using limited manual
tumor annotations. The approach jointly optimized a nnU-net back-
bone, an automatically self-configuring deep learning framework (6),
across source and target domains of 'SF-FDG and PSMA PET/CT
images with complete and incomplete annotations comprising fully and
partially labeled manual segmentations, respectively. The DeepSSTL
approach performed domain adaptation on '|F-FDG and PSMA
PET/CT while iteratively improving segmentation performance.

Data

Data from 1,019 patients with cancer with PET/CT scans across 5
datasets and 6 cancer types were used. Patient demographics are pro-
vided in Table 1.

Datasets 1 and 2 included '®F-DCFPyL PSMA PET/CT scans of
prostate cancer patients. Dataset 1 had 270 patients with incomplete
manual segmentations (Fig. 1), with PSMA reporting and data system
(PSMA-RADS) scores of 1-5 being assigned to segmented lesions
and overall scans indicating the likelihood of prostate cancer (7). Data-
set 2 had Gleason scores, initial serum prostate-specific antigen (PSA)

TABLE 1
Patient Characteristics
Characteristic Data Characteristic Data
Dataset 1* Dataset 3"
Age (y) (mean = SD) 65.67 = 7.97 Age (y) (mean * SD) 60.11 = 16.51
Sex Sex
Men 270 Men 290
Women 0 Women 211
Overall PSMA-RADS score Dataset 4*
NA 12 Age (y) (mean = SD) 62.47 + 7.78
1 3 Sex
2 24 Men 62
3 63 Women 12
4 48 AJCC stage
5 120 | 14
Dataset 2* Il 5
Age (y) (mean + SD) 66.46 + 7.35 11l 13
Sex \Y 42
Men 138 Surgery
Women 0 No 70
Gleason score Yes 4
NA 2 Chemotherapy
=6 11 No 61
7 43 Yes 13
8 29 Radiotherapy time (d) 37 (31-47)
9 44 Dataset 5°
10 9 Age (y) (mean = SD) 48.69 + 10.33
Initial PSA level (ng/mL) 6.38 (0.02-5,000.00) Sex
Follow-up PSA level (ng/mL) 2.24 (0.00-7,270.00) Men 0
PSA doubling time (mo) 5.20 (0.23-81.70) Women 36
Post-PSMA PET therapy Pathologic response
NA 37 pCR 10
None 7 Non-pCR 26
Local 18
Systemic androgen-targeted 56
Systemic and cytotoxic 20

*Prostate cancer.

TLung cancer, melanoma, and lymphoma.
*Head and neck cancer.

SBreast cancer.

NA = not applicable.

Qualitative data are number; continuous data are median and range, except for age.
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FIGURE 1. Incomplete manual tumor segmentations compared with
predicted segmentations on maximum-intensity projections of PSMA PET
scans of 6 patients with prostate cancer.

levels, follow-up PSA levels, PSA doubling times, and post-PSMA
PET/CT therapies for 138 patients with no tumor annotations.

Datasets 3—5 consisted of '*F-FDG PET/CT scans from The Cancer
Imaging Archive. Dataset 3 had complete manual tumor annotations
for 168, 188, and 145 patients with lung cancer, melanoma, and lym-
phoma, respectively (8). Dataset 4 had clinical information on overall
staging (by the cancer staging manual of the American Joint Commit-
tee on Cancer [AJCC], seventh edition), surgery, chemotherapy, radio-
therapy duration, and overall survival for 74 head and neck cancer
patients with no tumor annotations (9). Dataset 5 had longitudinal
scans of 36 breast cancer patients undergoing neoadjuvant chemother-
apy (10). Pre- and posttherapy scans were acquired for 36 and 25
patients, respectively, with no tumor annotations. Pathologic complete
response (pCR) was defined as the absence of invasive cancer in the
breast or lymph nodes at definitive surgery. Non-pCR was defined as
residual invasive cancer or disease progression.

Datasets 1 and 3 were used to cross-validate the segmentation task
via 5-fold cross-validation. Datasets 2, 4, and 5 were used for external
testing and prognostic model development.

Tumor Quantification

Tumor detection and segmentation were evaluated on a lesionwise
and voxelwise basis. True-positive rate, positive predictive value, Dice
similarity coefficient, false-discovery rate, true-negative rate, and neg-
ative predictive value were assessed. Tumor detection performance
was compared with that of models trained only on '*F-FDG or PSMA
PET/CT images. Imaging measures, including molecular tumor vol-
ume (MTV), total lesion activity (TLA), number of lesions, SUV can,
and SUV,,,.x, were quantified from predicted segmentations.

Radiomics Analysis

We used the Standardized Environment for Radiomics Analysis based
on the Image Biomarker Standardization Initiative (/7). First-order statis-
tical and higher-order textural features, including morphology, intensity,
intensity histogram, intensity volume histogram, cooccurrence matrix,
run length matrix, size zone matrix, distance zone matrix, and neighbor-
hood gray tone difference matrix, were extracted and redundant features
were removed. In total, 397 radiomics features were calculated from
PET/CT volumes of interest. Radiomics classifiers using random forest
detected true-positive volumes of interest via 10-fold cross-validation
(12). Overall accuracy and receiver-operating-characteristic analysis were
assessed.
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Risk Stratification

A risk model for prostate cancer was developed using the extracted
whole-body imaging measures. Initial PSA levels of less than
10ng/mL, 10-20ng/mL, or more than 20ng/mL were assigned to
low-, intermediate-, or high-risk groups, respectively (/3). The risk
model used random forest to classify low- to intermediate- versus
high-risk via 10-fold cross-validation. Risk predictions and Gleason
scores were combined; patients who were predicted as high-risk, with
Gleason scores of at least 8, were considered high-risk. Patients pre-
dicted as low-risk, with Gleason scores of 7, and patients with Gleason
scores of 6 or lower were considered low-risk. Other cases were
intermediate-risk. Overall accuracy, area under the receiver-operating-
characteristic (AUC) curve, follow-up PSA levels, and PSA doubling
times were assessed.

Survival Analysis

A risk score for head and neck cancer incorporated imaging mea-
sures and AJCC staging. Imaging measures in the lower quartile, within
the interquartile range, or in the upper quartile were assigned 0, 1, or 2
points, respectively. AJCC stages I, 11, or III-IV were assigned 0, 1, or
2 points, respectively. Points were summed to yield a risk score ranging
from 0 to 12. Patients with a risk score of 0, 1-9, and 10-12 were con-
sidered low-, intermediate-, and high-risk, respectively. Overall survival
was estimated by the Kaplan-Meier method, with groups being com-
pared by the log-rank test (/4). Univariable and multivariable Cox
regression models were assessed. The Harrell C-index was evaluated.

Treatment Response Prediction

Imaging measures were extracted and assessed for both pre- and
posttherapy scans of breast cancer patients undergoing neoadjuvant
chemotherapy. Decision tree classifiers predicted pCR via leave-one-
out cross-validation using pre- and posttherapy imaging measures.
Overall accuracy, AUC, area under the precision-recall curve, true-
positive rate, positive predictive value, true-negative rate, and negative
predictive value were assessed.

Statistical Assessment

Normality was assessed by the Shapiro—Wilk test. Statistical signifi-
cance was assessed using the Wilcoxon signed-rank test, Wilcoxon
rank-sum test, and McNemar test when comparing paired, unpaired,
and binary observations, respectively. A P value of less than 0.05 was
used to infer significant differences. The Benjamini—-Hochberg method
was used for multiple comparisons. Spearman rank correlation coeffi-
cients (p) were quantified. Receiver-operating-characteristic curves
with 95% Cls were computed with 1,000 bootstrap samples. Optimal
thresholds were determined by receiver-operating-characteristic analy-
sis using the Youden index. Analyses were conducted with MATLAB
(2023b) and Python (3.10.5). The approach was implemented with
PyTorch (1.12.0) using an NVIDIA A6000 GPU.

RESULTS

Tumor Quantification

Illustrative examples of predicted segmentations are shown in
Figures 1 and 2. Tumor detection and segmentation performances
are quantified in Figure 3. Our approach yielded median true-
positive rates of 0.75, 0.85, 0.87, and 0.75; median positive predic-
tive values of 0.92, 0.76, 0.87, and 0.76; median Dice similarity
coefficients of 0.81, 0.76, 0.83, and 0.73; and median false-
discovery rates of 0.08, 0.24, 0.13, and 0.24 for patients with lung
cancer, melanoma, lymphoma, and prostate cancer, respectively,
on voxelwise segmentation. The approach yielded median true-
negative rates and negative predictive values of 1.00 across all
patients.
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FIGURE 2. Predicted segmentations on maximume-intensity projections
of '®F-FDG PET scans of lung cancer, melanoma, lymphoma, head and
neck cancer (H & N), and breast cancer. Pre- and posttherapy scans of
breast cancer are shown (bottom row), with first 2 patients from left to
right having pCR and the others being nonresponders.

The DeepSSTL approach yielded a true-positive rate of 0.77 on
PSMA-RADS-4/5 lesions, with improved detection rates through-
out training (P < 0.001) (Fig. 3C). The approach had a higher
true-positive rate of 0.76 on prostate cancer lesions than did

baseline models trained on only '8F-FDG or PSMA PET/CT
images, with true-positive rates of 0.38 and 0.63, respectively
(P < 0.001) (Fig. 3D). Although a model trained on '¥F-FDG and
PSMA PET/CT images had a higher true-positive rate than baseline
models, the model trained on both sets of images had a higher false-
discovery rate of 0.33 than did the model trained only on PSMA
PET/CT images, which had a false-discovery rate of 0.28. Our
DeepSSTL approach maintained a high true-positive rate and had the
lowest false-discovery rate (0.25) of all models (P < 0.05).

The DeepSSTL approach yielded higher detection rates for
lesions with higher tumor volumes across all cancer types (Supple-
mental Fig. 1; supplemental materials are available at http://jnm.
snmjournals.org). Radiomics classifiers detected true-positive
volumes of interest with overall accuracies of 0.85, 0.81, 0.74, and
0.93 and AUCs of 0.87, 0.83, 0.79, and 0.87 for patients with lung
cancer, melanoma, lymphoma, and prostate cancer, respectively
(Supplemental Fig. 2; Fig. 4A).

Risk Stratification

A prognostic risk model stratified prostate cancer patients by low-
to intermediate- versus high-risk with an overall accuracy of
0.83 and an AUC of 0.86 (Fig. 4B). Risk scores derived from the
model had positive correlations with overall PSMA-RADS scores
(p = 044, P < 0.001) and post-PSMA PET therapies (p = 0.37,
P < 0.001) (Figs. 4C and 4D). Risk stratifications by imaging mea-
sures, initial PSA levels, Gleason scores, risk model predictions, and
the risk model predictions combined with Gleason scores were eval-
uated (Supplemental Fig. 3). Optimal thresholds for MTV, TLA,
lesion number, SUV nean, SUVmax, and Gleason score were 22.00 cm’,
174.56 SUV~cm3, 10, 9.38, 38.87, and 8, respectively.

High-risk patients classified by MTV, TLA, the risk model, and
the risk model combined with Gleason scores had higher follow-
up PSA levels than low- to intermediate-risk patients (P < 0.05).
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FIGURE 3.

(A and B) Lesionwise (A) and voxelwise (B) analysis of tumor

detection and segmentation. (C and D) Prostate cancer detection rates by
DeepSSTL approach throughout different stages of training progression (C)
and compared with baseline models (D). DSC = Dice similarity coefficient;
FDR = false-discovery rate; NPV = negative predictive value; PPV = posi-
tive predictive value; TNR = true-negative rate; TPR = true-positive rate.
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FIGURE 5. Predicted segmentations on maximum-intensity projections
of PSMA PET scans of prostate cancer from datasets 1 (top row) and 2
(bottom row). MTV, PSA doubling times (DT), and follow-up PSA levels
were measured in cubic centimeters, months, and ng/mL, respectively.

High-risk patients classified by Gleason scores and the risk model
with Gleason scores had shorter PSA doubling times than low- to
intermediate-risk patients (P < 0.05). Low-, intermediate-, and
high-risk patients classified by the risk model combined with Glea-
son scores had mean follow-up PSA levels of 9.18, 26.92, and
727.46 ng/mL and mean PSA doubling times of 8.67, 8.18, and
4.81 mo, respectively. [llustrative examples are shown in Figure 5.

Survival Analysis

Imaging measures were extracted from ®F-FDG PET/CT scans
of head and neck cancer patients. MTV (measured in em®), TLA,
SUV hean, and SUV,,.« were used as continuous variables in the
survival analysis. MTV, TLA, lesion number, SUV pean, SUVay,

age, AJCC stage, and the risk score were significantly associated
with overall survival by univariable Cox regression analysis
(Fig. 6A). Age and risk score were independent prognosticators of
overall survival by multivariable Cox regression analysis. The risk
score yielded a C-index value of 0.71, indicating concordance
between overall survival and the predicted risk scores. Hazard
ratios with 95% CI and C-index values are reported in Table 2.

Stratification of patients was based on median values for all
imaging measures and plotted using Kaplan—Meier estimators
(Supplemental Fig. 4). For MTV, TLA, and SUV,,,,, patients in
the upper half had a significantly shorter median overall survival
(P < 0.05). Stratification of patients was based on the risk score
and plotted using Kaplan—Meier estimators (Fig. 6B). High-risk
patients had a shorter median overall survival than low- or
intermediate-risk patients (1.64 y vs. median not reached, P < 0.001).
Intermediate-risk patients had a shorter median overall survival than
low-risk patients (P < 0.05).

Treatment Response Prediction

Imaging measures were extracted from pre- and posttherapy '3F-
FDG PET/CT scans of breast cancer patients (Fig. 6C). Posttherapy
measures were all lower for pCR than for non-pCR, indicating a
higher posttherapy tumor burden for nonresponders (P << 0.05).
Optimal thresholds of pretherapy measures for MTV, TLA, lesion
number, SUV e, and SUV .. were 188.96 cm®, 96.46 SUV-cm’,
2, 1.85, and 7.84, respectively. Accuracy metrics for predicting pCR
using pretherapy measures are reported in Table 3. Classifiers trained
to predict pCR using only pretherapy measures (decision tree 1) and
both pre- and posttherapy measures (decision tree 2) had overall
accuracies of 0.72 and 0.84, AUCs of 0.72 and 0.76, and areas under
the precision-recall curve of 0.51 and 0.67, respectively.

DISCUSSION

Molecular imaging modalities provide important molecular
insights into the pathophysiologic processes underlying disease
and are powerful tools for the detection

and localization of cancer and metastases
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The approach performed domain adapta-
tion, with source domain '*F-FDG PET/CT
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TABLE 2
Cox Regression Analysis and Respective C-Index Values

Univariable Cox regression

Multivariable Cox regression

Parameter Hazard ratio 95% CI P Hazard ratio 95% CI P C index
MTV 1.01 1.01-1.02 <0.001 0.99 0.97-1.02 0.57 0.68
TLA 1.00 1.00-1.00 <0.001 1.00 1.00-1.00 0.27 0.69
Lesion no. 1.38 1.13-1.69 0.002 0.84 0.53-1.34 0.47 0.69
SUVnean 1.11 1.04-1.18 0.002 0.74 0.53-1.03 0.07 0.65
SUVnax 1.04 1.02-1.06 <0.001 1.06 0.96-1.17 0.27 0.65
Age 1.06 1.01-1.10 0.02 1.08 1.02-1.14 0.01 0.61
Sex 1.27 0.49-3.28 0.62 1.56 0.52-4.67 0.43 0.47
Surgery 1.48 0.45-4.83 0.52 0.71 0.18-2.76 0.62 0.50
Chemotherapy 0.57 0.20-1.61 0.29 0.67 0.12-3.95 0.66 0.47
Radiotherapy time 0.95 0.88-1.03 0.23 0.94 0.82-1.08 0.38 0.46
AJCC stage 1.62 1.12-2.34 0.01 1.05 0.57-1.92 0.88 0.61
Risk score 1.27 1.11-1.45 <0.001 1.69 1.07-2.66 0.02 0.71

images of patients with lung cancer, melanoma, and lymphoma with
complete manual annotations being used for training and cross-
validation (Figs. 1 and 2). DeepSSTL was applied and enabled tumor
segmentation on target domain PSMA PET/CT images of prostate
cancer patients with incomplete annotations. Despite limited annota-
tions, the approach yielded accurate tumor segmentation on PSMA
PET/CT and achieved a high detection rate of PSMA-RADS-4/5
lesions, for which prostate cancer was highly likely, while limiting
false discoveries by leveraging radiomics analysis (Fig. 3). The
approach generalized across '®F-FDG- and PSMA-targeted radiotra-
cers and performed well on external test datasets with out-of-
distribution cancers not seen during training or cross-validation,
including head and neck and breast cancers.

A risk model for prostate cancer using PSMA PET/CT imaging
measures achieved an accuracy of 0.83 in classifying low- to inter-
mediate- versus high-risk. Higher-risk scores were predicted for
patients who received higher PSMA-RADS scores and systemic ther-
apies, corroborating the risk model against 2 separate indications
(Fig. 4). Although SUV measures and initial PSA levels were indi-
vidually poor predictors of risk based on follow-up PSA levels and
PSA doubling times, respectively, the risk model yielded improved
performance by incorporating all molecular imaging measures,

including MTV, TLA, number of lesions, SUV ean, and SUV .«
(Fig. 5). Risk model predictions combined with Gleason scores were
validated against follow-up PSA levels and PSA doubling times and
yielded significant differences between risk groups.

A risk score for head and neck cancer incorporated '®F-FDG
PET/CT imaging measures and overall AJCC staging based on
tumor—node—metastasis classification. The risk score and all imag-
ing measures were significant prognosticators of overall survival
by univariable Cox regression. The risk score was a negative prog-
nosticator of overall survival with a hazard ratio of 1.69 by multi-
variable Cox regression, with patients who had higher risk levels
having a shorter median overall survival by Kaplan—Meier analy-
sis (Fig. 6). Risk stratification and survival estimation were
improved when imaging measures were combined with Gleason
scores and AJCC staging for patients with prostate cancer and
head and neck cancer, respectively, indicating synergy between
molecular imaging measures and clinical, pathologic, and ana-
tomic factors.

A classifier for breast cancer using '*F-FDG PET/CT imaging
measures from pre- and posttherapy scans predicted pCR with an
accuracy of 0.84. Although the classifier achieved a positive pre-
dictive value of 1.00, true-negative rate of 1.00, and negative

TABLE 3
Predicting pCR

Area under Positive Negative
Model and precision- True-positive predictive True-negative predictive
parameter Accuracy AUC recall curve rate value rate value
MTV 0.42 0.55 0.28 1.00 0.32 0.19 1.00
TLA 0.67 0.58 0.30 0.50 0.42 0.73 0.79
Lesion no. 0.47 0.67 0.39 0.80 0.32 0.35 0.82
SUVnean 0.72 0.44 0.28 0.30 0.50 0.88 0.77
SUVmax 0.64 0.44 0.27 0.40 0.36 0.73 0.76
Decision tree 1 0.72 0.72 0.51 0.50 0.50 0.81 0.81
Decision tree 2 0.84 0.76 0.67 0.43 1.00 1.00 0.82
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predictive value of 0.82, the classifier had a true-positive rate of 0.43.
Interestingly, predicting pCR with an optimized MTV threshold
yielded a perfect true-positive rate and negative predictive value of
1.00 with an accuracy of 0.42, highlighting the trade-off between
prediction strategies. A classifier using only pretherapy measures pre-
dicted pCR with an accuracy of 0.72, demonstrating the feasibility of
predicting pCR to inform treatment management before neoadjuvant
therapy and surgery using a small cohort of 36 patients. Larger pro-
spective studies will be required to validate the approach.

8F_.FDG PET/CT has broad utility in oncologic imaging by tar-
geting glycolytic metabolism present in most malignancies. Many
prostate cancers are not 'SF-FDG-avid, and alternative imaging
agents have been developed to target metabolic pathways, includ-
ing '"8F-fluciclovine and ''C-choline, and specific cell-surface
receptors, such as PSMA (/5). PSMA-targeted agents, including
BE_.DCFPyL and °®Ga-PSMA-11, have demonstrated prostate can-
cer detection rates superior to those of conventional imaging (/5).

Given the wide array of available radiotracers, artificial intelli-
gence approaches must generalize across molecular imaging
agents to support automated analysis. Indeed, our approach per-
formed whole-body tumor quantification on '®F-FDG and PSMA
PET/CT images of multiple cancers despite the differences in bio-
distribution between '|F-FDG and PSMA-targeted uptake pat-
terns. A prospective study by Buteau et al. found that an SUV ;ca,
of 10 or higher on PSMA PET and an MTV lower than 200 cm®
on "®F-FDG PET were predictive biomarkers for a higher PSA
response to !7’Lu-PSMA therapy in metastatic castration-resistant
prostate cancer (3). Interestingly, our retrospective analysis found
that an SUV jean 0f 9.38 on PSMA PET was the optimal cutoff for
prostate cancer risk stratification. That agreement, combined with
the generalizability of our approach, highlights the potential utility
of the proposed approach for selection of patients for PSMA-
targeted radioligand therapy.

We and others have developed convolutional neural networks for
tasks on PSMA PET, including classification according to the
PSMA-RADS and PROMISE (Prostate Cancer Molecular Imaging
Standardized Evaluation) frameworks and segmentation of intrapro-
static gross tumor volume and metastases (7,22—24). Jemaa et al.
proposed cascaded 2- and 3-dimensional convolutional neural net-
works with a U-net architecture for region-specific tumor segmenta-
tion on '8F-FDG PET/CT (25). Unlike approaches focusing on
specific volumes of interest or cross-sectional slices, our approach
provides fully automated whole-body PET/CT tumor quantification
and lesionwise radiomics analysis to support more precise staging,
disease tracking, and therapeutic monitoring. We used the state-of-
the-art nnU-net architecture (6) as a backbone for our approach and
achieved robust tumor quantification. nnU-net was among the top
performers in the autoPET challenge for automated tumor segmen-
tation on '3F-FDG PET/CT, with a common feature of the top algo-
rithms being the use of a U-net backbone (26). Comparison of the
performance of the proposed DeepSSTL approach to publicly avail-
able benchmarks, such as the autoPET challenge, is an important
area of investigation. Another approach used nnU-net for normal-
organ segmentation on '*F-FDG PET/CT (27). Our DeepSSTL
approach may also incorporate multiorgan segmentation for sys-
temic analysis and radiation dosimetry applications.

Deep learning models require training data with extensive expert
annotations. That limitation is partially ameliorated by our DeepSSTL
approach that learns the segmentation task on the target domain using
incomplete annotations. However, our approach remains reliant on
manual annotations for performance assessment, which may be

AuToMATED PET/CT TuMOR QUANTIFICATION ~ *

confounded by inaccurate or inconsistent annotations. Consensus
readings or histopathologic validation may be warranted in such sce-
narios. Alternatively, realistic simulated images with known ground
truth may be used to assess task-based performance (/7). Our
approach may incorporate physician-in-the-loop continuous feedback
and assist physicians by flagging potential foci of disease as a second
reader.

A limitation of this study was that prostate cancer detection was
evaluated on advanced PSMA-RADS-4/5 lesions and that testing
on lower PSMA-RADS scores was lacking. Evaluation of indeter-
minant findings, such as PSMA-RADS-3, may provide further
insights into the true positivity of such lesions (28). Another limi-
tation was that the available retrospective imaging and clinical
datasets were heterogeneous, dependent on cancer type. However,
such heterogeneity reflects real-world clinical settings where infor-
mation is often incomplete across patient cohorts. Although evalu-
ation on independent test data is ideal, the performance of the
proposed approach was evaluated via cross-validation because of
the limited availability of heterogeneous datasets. All aspects of
model training and hyperparameter optimization took place only
on the training folds, with the hold-out test folds being used only
during evaluation to provide accurate estimates of model perfor-
mance. Additionally, performance estimates of predicting pCR for
patients with breast cancer may be impacted by the limited data
and the class imbalance between patients with pCR versus non-
pCR (Table 3). Precision-recall curve metrics were reported in
addition to overall accuracy and AUC to evaluate classifier perfor-
mance more thoroughly in the context of such class imbalances.

CONCLUSION

The DeepSSTL approach performed fully automated, whole-
body tumor segmentation on PET/CT images using limited tumor
annotations and generalized across patients with 6 different cancer
types imaged with '8F-FDG and PSMA-targeted radiotracers.
Molecular imaging measures were automatically quantified and
demonstrated prognostic value for risk stratification, survival esti-
mation, and treatment response prediction.

KEY POINTS

QUESTION: How can we develop generalizable approaches for
automated whole-body tumor quantification on PET/CT with
limited manual annotations?

PERTINENT FINDINGS: Our DeepSSTL approach performed
accurate tumor segmentation on the '®F-FDG and PSMA PET/CT
images of 1,019 patients with 6 different cancers using incomplete
annotations. The approach incorporated radiomics analysis and
achieved a high tumor detection rate while minimizing false
discoveries. Molecular imaging measures were automatically
quantified and were predictive of risk stratification, overall survival,
and treatment response.

IMPLICATIONS FOR PATIENT CARE: The developed approach
reduces physician workload by providing generalizable tumor
segmentation on PET/CT and automatic quantification of
prognostic molecular parameters.
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Errata
In the article “MRI or 18F-FDG PET for Brain Age Gap Estimation: Links to Cognition, Pathology, and Alzheimer Disease
Progression,” by Doering et al. (J Nucl Med. 2024;65:147-155), the footnote of Table 1 mistakenly reads, “*Significantly different
from ADNI CD.”; however, the footnote should read, “*Significantly different from ADNI CN.” The error has been corrected in
the online article. We regret the error.
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