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Artificial intelligence (AI) may decrease 18F-FDG PET/CT–based gross
tumor volume (GTV) delineation variability and automate tumor-
volume–derived image biomarker extraction. Hence, we aimed to
identify and evaluate promising state-of-the-art deep learning meth-
ods for head and neck cancer (HNC) PET GTV delineation. Methods:
We trained and evaluated deep learning methods using retrospec-
tively included scans of HNC patients referred for radiotherapy
between January 2014 and December 2019 (ISRCTN16907234). We
used 3 test datasets: an internal set to compare methods, another
internal set to compare AI-to-expert variability and expert interobser-
ver variability (IOV), and an external set to compare internal and exter-
nal AI-to-expert variability. Expert PET GTVs were used as the
reference standard. Our benchmark IOV was measured using the PET
GTV of 6 experts. The primary outcome was the Dice similarity coeffi-
cient (DSC). ANOVA was used to compare methods, a paired t test
was used to compare AI-to-expert variability and expert IOV, an
unpaired t test was used to compare internal and external AI-to-
expert variability, and post hoc Bland–Altman analysis was used to
evaluate biomarker agreement. Results: In total, 1,220 18F-FDG
PET/CT scans of 1,190 patients (mean age6 SD, 636 10y; 858 men)
were included, and 5 deep learning methods were trained using 5-fold
cross-validation (n5 805). The nnU-Net method achieved the highest
similarity (DSC, 0.80 [95% CI, 0.77–0.86]; n 5 196). We found no evi-
dence of a difference between expert IOV and AI-to-expert variability
(DSC, 0.78 for AI vs. 0.82 for experts; mean difference of 0.04 [95%
CI, 20.01 to 0.09]; P 5 0.12; n 5 64). We found no evidence of a dif-
ference between the internal and external AI-to-expert variability
(DSC, 0.80 internally vs. 0.81 externally; mean difference of 0.004
[95% CI, 20.05 to 0.04]; P 5 0.87; n 5 125). PET GTV–derived bio-
markers of AI were in good agreement with experts. Conclusion:
Deep learning can be used to automate 18F-FDG PET/CT tumor-
volume–derived imaging biomarkers, and the deep-learning–based
volumes have the potential to assist clinical tumor volume delineation
in radiation oncology.
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PET/CT with 18F-FDG is integral to the oncologic evaluation
of nodal involvement, identification of distant metastases, radio-
therapy planning, response assessment, and patient follow-up
(1–4). This applies to several types of cancer, including head and
neck cancer (HNC). HNC was the seventh most common cancer
worldwide in 2018, with 890,000 new cases and 450,000 deaths
(5). Modern chemo-, immuno-, and high-precision radiotherapy
have increased survival; however, these treatments depend on
advanced image analysis, including tumor delineation by expert
specialists on functional and anatomic images (6).
Delineation of 18F-FDG PET/CT–based gross tumor volume

(GTV) to guide radiotherapy involves distinguishing healthy
from pathologic metabolic activity with high accuracy. This task is
complex in assessing nodal involvement and distinguishing healthy
metabolic activity in the proximity of malignant tissue. Furthermore,
the anatomic closeness between organs at risk, lymph nodes, and
malignant tissues can make HNC PET GTV delineation particularly
challenging. Here, a high-quality automated tumor delineation
method could lead to more consistent and repeatable image evalua-
tion. Additionally, treatment delay in radiotherapy leads to a
decreased chance of tumor control and an increased risk of metasta-
ses. In this context, the time savings made possible by automated
contouring in 18F-FDG PET/CT–guided radiotherapy planning
holds a potentially tangible clinical impact (7).
Artificial intelligence (AI) deep learning methods are currently the

state of the art for semantic segmentation on medical images (8).
Although lack of clinical evaluation has hampered AI implementation
in practice, there is good evidence that predefined deep learning meth-
ods can solve advanced, previously unseen problems (9–11). Consid-
ering the success of predefined deep learning methods with novel
problems, we hypothesized that these algorithms could delineate PET
GTV to a standard comparable to our current clinical methods.
In this study, we identified promising, reproducible, predefined

AI deep learning methods in a systematic literature review and
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trained them on a large clinical dataset. We investigated how the
methods compared with clinical PET GTVs. We evaluated AI on
internal and external test scans, using expert-delineated PET
GTVs as the reference. Finally, we investigated whether PET
GTV–derived metabolic biomarkers were reliable. We aimed to
identify, train, and evaluate promising state-of-the-art deep learn-
ing methods for HNC PET GTV delineation and PET GTV–
derived biomarker extraction.

MATERIALS AND METHODS

This retrospective clinical evaluation was approved by the Danish
Patient Safety Authority (approval 31-1521-340, reference no. SMMO)
and the Danish Data Protection Agency (approval P-2020-427).

Observer evaluations were conducted from January to October 2022,
the analysis was performed from October 2022 to March 2023, and the
statistical analysis plan was published in September 2022 before look-
ing at any data at the registry (www.isrctn.com/: ISRCTN16907234).
After internal results became available, the decision was made to test
deep learning on an external dataset.

A full version of the Materials and Methods section is available as
Supplemental Appendix A (12–15). Supplemental Appendix B and Sup-
plemental Table 1 list image acquisition and preprocessing details.

Hardware and software specifications are listed in Supplemental Table 2
(supplemental materials are available at http://jnm.snmjournals.org).

Study Design and Patient Population
Scans were included of patients with HNC referred for 18F-FDG

PET/CT–guided radiotherapy at our institution (internal) between
2014 and 2019 and an external institution between 2018 and 2019.
The reasons for exclusion were incomplete data or failure to pass
visual validation (Fig. 1). No patients were below 18 y of age. The
selected scans were divided into training, validation, and test subsets.
Three test sets, including an external one, were created with sample
sizes based on power considerations.

The institutional review boards at the involved hospitals approved
this retrospective study, and the requirement to obtain informed con-
sent was waived.

Clinical Evaluation and Reference Delineations
The clinical PET GTVs used for radiotherapy were applied for

model training and methods comparison. In our clinical routine, the
PET GTV delineated by nuclear medicine specialists is sent to a radia-
tion oncologist or radiologist, who uses the volume to guide the final
GTV delineation. Hence, for clinical evaluation, PET GTV was inde-
pendently delineated on the test sets for this study by 7 nuclear medi-
cine specialists: 6 internally and 1 externally (board-certified specialists

with 3.5 to .15 y of experience). The PET
GTV region was delineated on the PET image
with an optionally underlying CT image. A
visually adapted isocontour without a fixed
threshold was used to fit the steepest gradient
between the 18F-FDG–avid malignant region
and the surrounding tissue, excluding areas
with nonmalignant uptake.

Interobserver variability (IOV) was evalu-
ated by 2 randomly selected experts from a
group of 6 delineating the PET GTV on each
scan (Fig. 2). The randomization was blocked;
each expert therefore contributed equally.
Scans were uploaded to clinical systems twice
under different anonymous identities to ensure
that experts could not review previous PET
GTVs. To resemble clinical practice, where it
is random which of our experts delineate each
scan, 1 of the 2 experts was randomly selected
as the reference. The patients were anonymized
to mask the experts. Hence, the internal experts
could not look up contextual patient journal
information. Instead, they were provided with
a brief text containing the causes of the refer-
ral. The external expert had access to the same
information as in clinical routine, except for
the PET GTV used for treatment.

Statistical Analysis
We selected the Dice similarity coefficient

(DSC) expressing the degree of overlap (0, no
overlap; 1, complete overlap) between 2
volumes because it is the most widely used
metric in the deep learning literature, allowing
for comparison to other studies. The Hausdorff
distance, F1 score, PET GTV–derived tumor
volume (cm3), SUVmean, and SUVmax were
secondary outcomes. We used a significance
level of 0.05 in all statistical testing.

FIGURE 1. Summary of study. Causes of exclusion were data incompleteness and failure to
pass visual validation. No external scans were excluded to these criteria. Model training used 805
patients (835 scans). Each scan represented unique patient in steps 2, 3, and 4.
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The sample sizes were based on power calculations in R using a
power of 0.8, a significance level of 0.05, and an expected SD of 0.14,
based on measurements published by Gudi et al. (14). In the ANOVA,
we aimed to show a DSC difference of at least 0.025. The t test power
calculations used a 2-sided alternative hypothesis. We aimed to show a
DSC difference of at least 0.05. The intended sample sizes were 196 to
compare methods’ AI-to-expert variability using 1-way ANOVA, 64 to
compare AI-to-expert variability and expert IOV using a paired t test,
and 125 to compare internal to external AI-to-expert variability using
an unpaired t test (the latter comparing 2 different patient groups). A
significance level of 0.05 was used in all statistical evaluations. Post
hoc Bland–Altman analysis was used to evaluate biomarker agreement.

The tumor volumes were modeled as a sphere, of which we calculated
the radius to achieve interpretable yet normally distributed differences.
We selected and described cases in which AI or experts failed.

RESULTS

Patient Characteristics
We found 1,298 18F-FDG PET/CT scans for radiotherapy plan-

ning from servers at Rigshospitalet (the internal institution). Of
these, 83 were excluded because of incomplete data, and 120
failed to pass visual validation (Fig. 1). This left 1,095 scans from
1,065 patients. All 125 scans from the external institution (Herlev
Hospital) were included, leading to a total of 1,190 patients stud-
ied (mean age 6 SD, 63 6 10 y; 858 men; Table 1).
We allocated 4 patient cohorts for this study: 1 cohort for

training/validation (n 5 835) trained with 5-fold cross-validation
and 3 cohorts for testing (Table 2). Test 1 (n 5 196) was used for
model evaluation and selection of the optimal model. The model
achieving the highest performance was used in subsequent tests.
Test 2 (n 5 64) was used to compare this model with human
experts. All subjects in the test 2 cohort were scanned at a later date
than the training and test 1 cohort (Table 2) to ensure no model
selection bias based on subjects. Finally, in test 3 (n 5 125), an
external evaluation was performed with externally acquired data.

Description of Included Methods
Of 860 unique results, 767 were excluded because of lack of direct

relevance to this study (metaanalyses, task not segmentation, method
not deep learning, superior method included, or method not well val-
idated). Of the remaining 93 titles, 88 were excluded because of
lack of open-source, documentation, and implementability (further
details and search key words in Supplemental Appendix A and Fig. 1).

FIGURE 2. Study design comparing expert IOV and AI-to-expert vari-
ability. Delineations are exemplified on random patient’s axial 18F-FDG
PET/CT intravenous contrast scan slice.

TABLE 1
Summary of Patient Demographics and Key Clinical Characteristics in Each Dataset

Characteristic
Training and
validation

Method
comparison

Internal clinical
evaluation

External clinical
evaluation

Number of patients 805 196 64 125

Age (y) 62.66 10.5 62.86 9.3 65.6610.0 64.26 8.6

Weight (kg) 75.06 18.1 76.36 18.7 71.8616.9 74.86 18.6

Dose (MBq) 300.46 72.1 306.86 72.9 283.16 67.6 289.16 61.5

Injection-to-scan time (h) 1.162 1.163 1.161 1.161

Sex 584 (73%) men 141 (72%) men 42 (66%) men 90 (72%) men

Oropharynx 301/805 (37%) 78/196 (40%) 23/64 (40%) 76/125 (61%)

Larynx 123/805 (15%) 30/196 (15%) 9/64 (15%) 7/125 (6%)

Cavum oris 87/805 (11%) 22/196 (11%) 7/64 (11%) 8/125 (6%)

Hypopharynx 84/805 (10%) 21/196 (11%) 5/64 (8%) 22/125 (18%)

Rhinopharynx 50/805 (6%) 12/196 (6%) 6/64 (9%) 5/125 (4%)

Vestibulum nasi or sinus paranasalis 33/805 (4%) 6/196 (3%) 3/64 (2%) 1/125 (1%)

Unknown primary with lymph nodes 18/805 (2%) 3/196 (2%) 0/64 (0%) 6/125 (5%)

Salivary gland tumor 10/805 (1%) 0/196 (0%) 0/64 (0%) 0/125 (0%)

Unspecified 99/805 (12%) 24/196 (12%) 12/64 (19%) 0/125 (0%)

Qualitative data are number and percentage; continuous data are mean and SD (total n 5 1,190). There was no difference in age
between men and women in any of 4 datasets (all P . 0.05). Mean age was higher in internal clinical evaluation test set than in training
data (P 5 0.01). At same time, there was no evidence of age differences from training data in 2 other test sets (P 5 0.74 for method
comparison test set and P 5 0.10 for external test set).
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All methods were trained with a 2-channel PET and CT input against
PET GTV as the output.
Five methods met our inclusion criteria (Fig. 1): nnU-Net,

DeepMedic, InnerEye, Swin-UNETR, and Tureckova. nnU-Net
(version 1) (16) is based on the U-Net (17), characterized by a
U-shaped architecture consisting of convolutional and pooling
layers mirrored to form the output. nnU-Net is designed to deal
with dataset diversity by fully standardizing and automating the
pre- and postprocessing design decisions based on training data
features. DeepMedic (18) uses a dual pathway of convolutional
layers that simultaneously process the image at normal and low
resolution to incorporate local and contextual information. Subse-
quently, it uses a 3-dimensional fully connected conditional ran-
dom field model to remove false positives. InnerEye (19) features a
HeadAndNeckBase class used in a previous publication about HNC
tumor segmentation. This was used in our implementation. The
method uses a 3-dimensional U-Net with strided convolutions instead
of max-pooling operations, nonlinear activation of upsampled ten-
sors, residual connections, and dilated convolution kernels in the
encoder to preserve more contextual information. Swin-UNETR (20)
attempts to solve the challenge of modeling long-range information
using shifting window transformers that compute self-attention in an
efficient shifted window partitioning scheme. It utilizes the U-shaped
architecture with a shifting window transformer as the encoder and
connects it to a convolutional neural network–based decoder at differ-
ent resolutions via skip connections. Finally, Tureckova (21) is an
extension to nnU-Net featuring a V-Net architecture with attention
gates designed to help the network focus on a desired scan area by
learning to focus on a subset of target structures.

Comparison of AI Methods
nnU-Net achieved the highest mean DSC (Fig. 3A, clinical

example in Fig. 4). The DSCs of DeepMedic, InnerEye, and Swin-
UNETR were lower (all P # 0.05, exact values in Fig. 3), whereas
we found no evidence of a difference from Tureckova (P 5 0.19).
Complete delineation disagreement (DSC, 0) between clinical and
AI-based delineations occurred in 4 of 196 patients (2%) for Deep-
Medic; 6 of 196 patients (3%) for nnU-Net, Swin-UNETR, and Tur-
eckova; and 35 of 196 patients (18%) for InnerEye. nnU-Net
achieved a higher F1 score than Tureckova. Hence, nnU-Net, hereaf-
ter referred to as AI in this Results section, was further evaluated.

Internal Clinical Evaluation
The internal clinical evaluation showed no evidence of differ-

ences between AI-to-expert variability (DSC, 0.78) and expert IOV
(DSC, 0.82, a mean difference of 0.04 [95% CI, 20.01 to 0.09];

P 5 0.12; Fig. 3B). In 1 patient, AI included no volume, whereas
the experts did. The reference expert included no volume in 2 cases,
whereas the other expert and AI did.
AI and expert PET GTV–based biomarker agreement was accept-

able (Figs. 5A and 5B). The 3 scans with no PET GTV detected

TABLE 2
Summary of Datasets for Model Training, Validation, and Independent Testing

Set Start End Source n Purpose

Training by cross-validation

Training folds (80%) 2014 January 2019 June Internal 668 Train model

Validation fold (20%) 2014 January 2019 June Internal 167 Validate model

Test

1 2014 January 2019 June Internal 196 Compare models performance

2 2019 July 2019 December Internal 64 Compare models with experts’ IOV

3 2018 January 2019 December External 125 Compare internal with external
model performance

FIGURE 3. (A) Comparison of 5 implemented methods trained on 196
patient scans based on DSC. Values above boxes are mean followed by
95% CI in parentheses, with P values below. nnU-Net achieved highest
DSC and was further analyzed (denoted AI). (B) Paired comparison of AI-
to-expert variability and expert IOV on 64 independent internal test scans.
(C) Comparison of AI-to-expert variability on 196 internal (same as nnU-
Net in A) and 125 external patients. All 3 comparisons used expert-
delineated tumor volumes as reference. Values above boxes in B and C
are mean difference followed by 95% CI in parentheses, with P values
below. Rhombus shape indicates mean value, and central line represents
median. Boxes enclose interquartile range. Whiskers extend to most sig-
nificant measurement no further than 1.53 interquartile range from hinge.
Data beyond whiskers are plotted individually. Notch roughly represents
95% CI around median. (D) DSC, F1 score (F1), and Hausdorff distance
(HD) summary statistics in mean 6 SD. Hausdorff distance is undefined
when expert or AI includes no volume. Hence, numbers marked with *, **,
***, and **** were based on n5 195, 186, 61, and 63, respectively.
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were excluded, leaving 61 patients for anal-
ysis. For SUVmean, AI showed narrower
limits of agreement (LoAs) than experts
compared (lower to upper, 21.1 to 2.1 for
AI and 22.1 to 2.0 for experts). We found
no evidence of bias between experts (P 5

0.83), whereas AI overestimated values by
0.5 (95% CI, 0.2–0.7) (P # 0.001). Tumor
radius LoAs of AI were broader than
experts’ (lower to upper, 20.5 to 0.5 cm for
AI and 20.4 to 0.4 cm for experts), and we
observed no evidence of biases (0.004 cm
[95% CI, 20.05 to 0.05 cm; P 5 0.88] for
the experts and 0.02 cm [95% CI, 20.08 to
0.04 cm; P 5 0.51] for AI). SUVmax was
not analyzed statistically because of viola-
tion of the normality assumption; however,
AI and experts found the same value in all
except 3 patients (Supplemental Fig. 2),
whereas experts found the same value in all
but 2 patients.

External Clinical Evaluation
The external clinical evaluation showed

no evidence of a difference between internal
and external AI-to-expert variability (mean
DSC difference of 0.004 [95% CI, 20.05 to
0.04; P 5 0.86], Fig. 3C). Both the expert
and AI identified PET GTV in all patients.

External biomarker agreement between AI and experts was
acceptable (Fig. 5C). For SUVmean, the LoA was narrower exter-
nally than that of internal experts (lower to upper, 21.7 to 2.0
externally and 22.1 to 2.0 internally), whereas no bias was
detected (0.1 [95% CI, 20.1 to 0.3]; P 5 0.18). For the tumor vol-
ume radius, Lower and upper LoAs for the PET GTV were 20.4
to 0.5 cm externally and 20.5 to 0.5 cm internally, and there was
no evidence of bias (0.03 cm [95% CI, 20.007 to 0.07 cm];
P 5 0.10). Because of violation of the normality assumption,
SUVmax was not analyzed statistically; however, experts and AI
found the same value in 116 of 125 patients.

Failure Analysis
We identified 11 patients for whom either AI or experts failed

(Supplemental Fig. 1). The main causes of delineation failure for
AI and experts were postsurgical inflammation (4 patients) and
lymph node inclusion disagreements (4 patients). In addition, rare
situations not represented in the training scans could have led AI
to fail (2 patients): one in which physicians included a tonsil with
borderline activity and one in which the patient was lying in a
nonstandard position in the scanner. Finally, for a single patient,
the reference physician incorrectly included a region in the
patient’s orbita. Six of the 11 test scans were postsurgical (55%).
The test set featured 10 of 64 postsurgical patients (16%). In post-
surgical patients, expert DSC dropped from 0.82 to 0.58. AI DSC
dropped from 0.78 to 0.46. Excluding postsurgical patients and
repeating the paired t test to compare AI-to-expert variability and
expert IOV, the lack of a significant difference between the AI-to-
expert variability and expert IOV remained (DSC, 0.87 for AI-to-
expert vs. 0.84 for expert IOV, a difference of 0.03 [95% CI,
20.02 to 0.07]; P 5 0.24).

FIGURE 4. Clinical scan delineated by expert (reference) and by AI, along with AI-to-expert agree-
ment (DSC, 0.92). Shown are axial images of 50-y-old man with HNC of rhinopharynx. 18F-FDG
PET/CT with intravenous contrast agent showed greatly increased activity corresponding to large
tumor process in right rhinopharynx, crossing midline and growing frontally into cavum nasi on right,
intracranially on right, medially in fossa media, and along dura laterally. In addition, multiple lymph
nodes in neck had greatly increased activity bilaterally. AI correctly avoided including physiologically
active areas such as saliva, metal artifact–induced activity, nose tip, brain, and optic nerve. HU 5

Hounsfield units.

FIGURE 5. Tumor-volume–derived biomarkers based on AI delineation
in good agreement with experts. Shown are Bland–Altman plots for agree-
ment between AI and expert PET GTV–derived biomarkers. Shaded
regions and dashed lines represent LoA and mean bias, respectively. Lim-
its of agreement for SUVmax were not included because of violation of
normality assumption. To improve visualization, single outlier with extreme
SUVmax of 151 in B was excluded from plot.
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DISCUSSION

This study was conducted to identify and evaluate state-of-the-
art deep learning for delineating PET GTV in HNC and for PET
GTV–derived biomarker extraction. We demonstrated that deep
learning could delineate volumes similar to clinical quality (AI-to-
expert DSC, 0.78, and IOV of 6 experts’ DSC, 0.82; P 5 0.12)
and that resulting PET GTV–derived biomarkers were reliable
(tumor volume radius upper and lower limits of agreement, 20.5
to 0.5 cm for AI and 20.4 to 0.4 cm for experts). We suspect most
clinics will find these limits of agreement acceptable for clinical
use. Further, our results warrant further investigation into how
deep learning could reduce clinical tumor delineation variability.
During our survey of deep learning methods, we encountered

93 promising titles. Of these, 88 lacked shared code, proper docu-
mentation, or accessible implementability. nnU-net achieved the
highest level of similarity to our experts. This method has had a
significant impact in recent years, winning challenges such as the
Brain Tumor Image Segmentation Benchmark and the Medical
Segmentation Decathlon (11,22). Notably, since 2022, the leading
method of the latter challenge has been the Swin-UNETR method,
which we expected would be superior to nnU-Net. However, this
was not the case. This difference may imply that nnU-Net is the
more robust method when pretraining data are unavailable; how-
ever, the results may be specific to our setting. Compared with
other models, nnU-Net has the benefit of flexibility enabled by
integrated self-configuring pre- and postprocessing, enabling reli-
able results for various tasks. Conversely, the main weakness of
nnU-Net is its computational demand. Like other deep learning
models, nnU-Net lacks inherent interpretability and depends on
high data quality. Although the Head and Neck Tumor Segmenta-
tion Challenge (HECKTOR) is not directly comparable because of
segmentation task differences, it resembles our work. Here, the
nnU-Net achieved a similarity in our study as observed in the lat-
est results of HECKTOR (DSC, 0.8). Finally, although we have
not explicitly tested model performance using CT or PET alone, it
has previously been shown that a multimodal PET/CT input is
superior to either modality used alone (23).
If a method has limited precision, even a perfect new method will

not agree with it (24). Hence, the AI-to-expert similarity can exceed
the expert IOV only by random effect, making IOV measurements
important to understand the level of similarity to experts that AI can
theoretically achieve. Although some authors provide IOV and find
similar results to this work (25), such data are often unavailable.
With a DSC of 0.82, our experts achieved a higher similarity than
other groups (DSC, 0.61–0.69) (14,26). Notably, we used the delin-
eation of a random expert as the reference for each patient, which we
consider a considerable strength because the resulting variability
represents what patients are exposed to in practice (for instance, con-
sensus delineations are not used in clinical practice).
We do not know of others evaluating deep learning–based bio-

marker extraction from PET/CT scans of HNC. However, there is
evidence that PET/CT biomarkers can be extracted for 68Ga-
PSMA PET/CT scans of prostate cancer (total lesion volume and
uptake) and 18F-FDG PET/CT scans of lymphoma (total metabolic
tumor volume) (27,28). These results support the indication of this
work that AI can safely be used for PET/CT biomarker extraction.
Our failure analysis showed that expert IOV and AI-to-expert

variability increased in postsurgical scans. In addition, AI tended
to include more lymph nodes than physicians did. Concerning
postsurgical patient scans, our observation is consistent with the

literature (29). Furthermore, the observation matches our clinical
experience: scans taken after surgery complicate the classification of
18F-FDG–avid regions. Concerning lymph nodes, the clinical deci-
sion of inclusion relies on the optimal balance between including too
much or too little tissue. Hence, the final delineation result depends
on a clinical risk assessment of contextual information. Considering
this information in a deep learning model requires methodologic
developments before being tested in a clinical context.
Our study had limitations. We confined the inclusion of meth-

ods to those reproducible in our context, which could lead to the
exclusion of leading methods. For example, the 2022 HECKTOR
winner did not meet our method selection criteria (30). Further-
more, because of masking, the internal experts did not have access
to routine contextual information, a necessary precaution to avoid
the potential bias from seeing tumor-volume delineations of other
experts. Finally, although several scanners were represented, scans
were performed mostly on the same model (Siemens Biograph
64), which could limit generalization.
Our findings indicate that AI-based PET GTV delineations are

on a par with human delineations, bearing significant implications
for clinical practice. First, it could reduce delineation time for
nuclear medicine physicians, radiologists, and radiation oncologists.
Second, AI’s consistency could reduce physician IOV. Conse-
quently, this points to potential improvements in the speed and con-
sistency of treatment planning and increased biomarker stability.

CONCLUSION

Deep learning can be used for automated PET GTV–derived
biomarker extraction and large imaging biomarker studies. Fur-
thermore, deep learning can delineate PET GTVs similar to clini-
cal volumes, holding potential for radiotherapy planning.
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KEY POINTS

QUESTION: Can AI deep learning automate 18F-FDG PET/CT
HNC tumor volume delineation and image biomarker extraction?

PERTINENT FINDINGS: We retrospectively developed 5 deep
learning models using 5-fold cross-validation and compared them
using the DSC as the primary outcome. The AI-to-expert similarity
(DSC, 0.78) was not significantly different from expert-to-expert
similarity (DSC, 0.82), and when evaluated in Bland–Altman
analysis, the AI imaging biomarker limits of agreement were in the
same range as the uncertainty between experts.

IMPLICATIONS FOR PATIENT CARE: Deep learning can
automate 18F-FDG PET/CT biomarker extraction in HNC. It can
potentially assist tumor delineation in radiotherapy planning.
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