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INTRODUCTION
Atrial fibrillation (AF) is the most common arrhythmia 
with clinical significance.1 The prevalence of AF in adults 
is between 2 and 4%.2 The European Society of Cardiology 
predicted that 18 million people in the European Union will 
suffer from AF by 2060.3 The clinical symptoms of patients 
with AF are often non-specific, such as fatigue and palpi-
tations. The diagnosis of AF requires rhythm documen-
tation based on electrocardiographic (ECG) tracing. But 
AF is usually asymptomatic, and paroxysmal AF occurs in 
20–30% of diagnosed AF cases.4 A single standard ECG test 
cannot rule it out.5 Because AF is often underestimated or 
missed, it increases the risk of stroke, systemic thromboem-
bolism, and heart failure.6

Epicardial adipose tissue (EAT) is located between the 
visceral pericardium and the myocardium, which secretes 
proinflammatory factors or cytokines.7 EAT promotes 
the occurrence and progression of AF through increased 
inflammation, adipose infiltration, autonomic nervous 
system dysfunction, fibrosis, and structural remodeling.8 
Al Chekakie et al demonstrated that patients with AF had 
more EAT compared with those with sinus rhythm, inde-
pendent of factors such as left atrial enlargement and body 
mass index (BMI).9

With its high-spatial resolution, CT provides a conve-
nient and reproducible way to quantify EAT.10 Militello 
et al proposed a semi-automatic method to segment and 
quantify epicardial fat volume on cardiac CT scans.11 
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Objective: The purpose is to establish and validate a 
machine-learning-derived radiomics approach to deter-
mine the existence of atrial fibrillation (AF) by analyzing 
epicardial adipose tissue (EAT) in CT images.
Methods: Patients with AF based on electrocardio-
graphic tracing who underwent contrast-enhanced 
(n = 200) or non-enhanced (n = 300) chest CT scans 
were analyzed retrospectively. After EAT segmentation 
and radiomics feature extraction, the segmented EAT 
yielded 1691 radiomics features. The most contributive 
features to AF were selected by the Boruta algorithm 
and machine-learning-based random forest algorithm, 
and combined to construct a radiomics signature (EAT-
score). Multivariate logistic regression was used to build 
clinical factor and nested models.
Results: In the test cohort of contrast-enhanced scan-
ning (n = 60/200), the AUC of EAT-score for identifying 
patients with AF was 0.92 (95%CI: 0.84–1.00), higher 

than 0.71 (0.58–0.85) of the clinical factor model (total 
cholesterol and body mass index) (DeLong’s p = 0.01), 
and higher than 0.73 (0.61–0.86) of the EAT volume 
model (p = 0.01). In the test cohort of non-enhanced 
scanning (n = 100/300), the AUC of EAT-score was 
0.85 (0.77–0.92), higher than that of the CT attenua-
tion model (p < 0.001). The two nested models (EAT-
score+volume and EAT-score+volume+clinical factors) 
for contrast-enhanced scan and one (EAT-score+CT 
attenuation) for non-enhanced scan showed similar 
AUCs with that of EAT-score (all p > 0.05).
Conclusion: EAT-score generated by machine-learning-
based radiomics achieved high performance in identi-
fying patients with AF.
Advances in knowledge: A radiomics analysis based on 
machine learning allows for the identification of AF on 
the EAT in contrast-enhanced and non-enhanced chest 
CT.
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According to the Centers for Medicare and Medicaid Services, 
the overall utilization of non-ECG-triggered chest CT scans has 
risen abruptly to 114 examinations per 1000 individuals per year, 
which is much higher than ECG-triggered cardiac CT.12,13 Taking 
advantage of the extensive availability of chest CT is conducive to 
screening research.

Given that AF is sometimes asymptomatic and paroxysmal, and 
sometimes its symptoms are atypical, it can be easily missed. The 
early detection and treatment of AF are vital to prevent its compli-
cations.3 The existing biological evidence strongly supports the 
hypothesis that the occurrence and progression of AF are closely 
associated with EAT. Data mining of EAT images may be a break-
through in identifying AF. We hypothesized that chest CT, while 
completing the radiological diagnostic task, would also discrim-
inate AF patients even if there was no AF attack at the time of 
examination. Once identified as AF based on CT image features, 
patients can visit a cardiologist for diagnosis to avoid complica-
tions caused by delayed diagnosis. This study aimed to establish 
and validate a machine-learning-derived radiomics approach to 
determine the existence of AF by analyzing EAT in CT images.

METHODS AND MATERIALS
Study population
The patients from January 2013 to September 2020 were retro-
spectively included. The inclusion criteria were: (1) patients 
underwent standard 12-lead ECG recording or single-lead ECG 
tracing for ≥30 s; (2) followed by contrast-enhanced or non-
enhanced chest CT scanning within 2 weeks; (3) two cardiologists 

with more than 10 years of experience diagnosed AF or normal 
sinus rhythm (NSR) according to the European Society of 
Cardiology guideline 2020.2 Figure  1 displays a flow diagram 
of patient selection and cohort details. This study complied 
with the Declaration of Helsinki. The local Institutional Review 
Board approved this retrospective study and waived the need for 
written informed consent.

Image data sets
We analyzed the data sets of contrast-enhanced and non-
enhanced CT, separately. The contrast-enhanced CT data set 
from Shanghai General Hospital (n = 200) was divided into the 
training cohort of 70% (from January 2013 to June 2019) and 
the test cohort of 30% (from July 2019 to September 2020). The 
non-enhanced CT dataset (n = 300) included the training cohort 
(n = 200) from Shanghai General Hospital and the external test 
cohort (n = 100) from the NELCIN-B3 trial (Netherlands–China 
Big-3 disease screening: lung cancer, coronary atherosclerosis, 
and chronic obstructive pulmonary disease).14

CT image acquisition
A total of four CT scanners were used in this study, namely 
SOMATOM Definition Flash (Siemens Healthineers, Erlangen, 
Germany), uCT760 (United-imaging, Shanghai, China), Revo-
lution CT (GE Healthcare, Milwaukee, US), and HD 750 (GE 
Healthcare, Milwaukee, US). All subjects underwent non-
ECG-triggered chest CT. Patients with enhanced scans were 
injected with 60–80 ml contrast media (Iopamiro 300, Bracco, 
Milan, Italy) at a rate of 3–4 ml s−1 through the antecubital 

Figure 1. Workflow diagram of patient selection and cohort composition. AF, atrial fibrillation; NELCIN-B3, Netherlands–China 
Big-3; NSR, normal sinus rhythm.

http://birpublications.org/bjr


3 of 12 birpublications.org/bjr Br J Radiol;95:20211274

BJRRadiomics identifies atrial fibrillation

vein. Supplementary Table 1 shows the details of the scanning 
protocol.

EAT segmentation and radiomics feature extraction
Figure 2 depicts the radiomics analysis approach and Figure 3 
demonstrates several representative EAT segmentation cases. The 
process of EAT segmentation and radiomics feature extraction 
was the same in contrast-enhanced and non-enhanced CT scans. 
The Supplementary Methods describe the detailed segmenta-
tion procedures. Dedicated analysis software (Radiomics 1.0.9a, 
Siemens Healthineers, Erlangen, Germany) extracts radiomics 
features based on the Pyradiomics library (Pyradiomics 3.0, 
https://pyradiomics.readthedocs.io/en/latest/) in conformance 
with the Image Biomarker Standardization Initiative.15 Finally, 
1691 features, including three major categories: 18 first-order 
features, 75 texture features, and 17 size and shape features, were 
extracted from each package-segmented EAT volume. Figure 1 
and Supplementary Table 3 to S9 list the composition and inter-
pretation of features.

Feature selection and EAT-score construction
The same methods analyzed the data sets of contrast-enhanced 
and non-enhanced scans. The selection for usable radiomics 
features depends on feature stability. The radiologist with 4 years 
of experience in thoracic imaging randomly selected 25 patients 
from the training cohort to perform EAT segmentation and 
feature extraction, and repeated them 4 weeks later. The radio-
mics features with an intraclass correlation coefficient >0.8 were 
selected as stable features.16

Subsequently, highly correlated features with AF were selected 
based on the Boruta algorithm, a wrapper around random forest 

algorithm,17 which iteratively removes the features and even-
tually selects all relevant features for AF recognition. Once the 
features were selected, hierarchical clustering will converge to 
similar features. In each cluster, according to the Boruta algo-
rithm, the feature with the highest average importance was the 
candidate feature. Finally, the random forest algorithm, a super-
vised machine-learning algorithm composed of a few decision 
tree classifiers,18 identified the features which contributed the 
most to identifying AF.

A radiomics signature was constructed by a random forest 
algorithm. To avoid overfitting, parameter estimation was 
performed by grid search with 10-fold cross-validation in the 
training cohort. Gini impurity decreases overall decision trees 
were calculated to evaluate the feature importance. Gini impu-
rity measures how often a randomly chosen element from the 
set would be mislabeled if it were randomly labeled according to 
the distribution of labels in the subset.19 Thereafter, a radiomics 
signature, namely EAT-score ranging from 0 to 1, was created to 
represent the probability of AF in each patient. With the increase 
of EAT-score, AF is more likely to occur.

Model establishment
For contrast-enhanced CT, six models were established to iden-
tify AF based on EAT-score, EAT volume, CT attenuation, clin-
ical factors, and two nested models (EAT-score+volume and 
EAT-score+volume + clinical factors). The volume model and 
the CT attenuation model were established via univariate logistic 
regression analysis and the model with a p < 0.05 could be used 
to build the nested models. CT attenuation refers to the average 
CT attenuation of EAT. In constructing the clinical factor model, 
the factors with a p < 0.05 of univariable logistic regression 

Figure 2. Process of establishing a machine-learning-derived radiomics approach. (A) Epicardial adipose tissue on chest CT 
images was semi-automatically segmented. (B) Automatic extraction of 1691 radiomics features, including size and shape fea-
tures, first-order features, and texture features. (C) Stability assessment, Boruta algorithm, and hierarchical clustering were used 
to select the contributive features to atrial fibrillation. Finally, the most contributive features were selected to create an EAT-score 
by random forest algorithm. (D) Random forest algorithm and multivariate logistic regression were used to identify patients with 
atrial fibrillation. EAT, Epicardial adipose tissue.
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Figure 3. Schematic diagram for EAT segmentation. (A) Two 3D volume rendering images (I and II) and an axial CT image (III) 
show the heart (red color) and EAT (yellow). (B, C) The manually delineated pericardial contours (yellow) (I). A dedicated radi-
omics analysis package overlays the pericardial contours into chest CT images to segment EAT volume, which is defined by a CT 
value range for fatty tissues within the pericardial contours (II-axial and III-sagittal). (B) The images of non-enhanced scan of a 
70-year-old female in the validation cohort. The radiomics model generated an EAT-score of 0.17 and considered her as normal 
sinus rhythm, that was finally conformed by 12-lead ECG tracing. (C) The images of contrast-enhanced chest CT of a 52-year-old 
male in the test cohort. The radiomics model generated an EAT-score of 0.97 and considered him as atrial fibrillation, that was 
finally proved by 12-lead ECG tracing. EAT, epicardial adipose tissue; ECG, electrocardiogram.
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analysis were included in multivariate logistic regression (MLR) 
to evaluate its discrimination ability. The independent factors 
that yielded a p < 0.05 in MLR were included to generate the 
clinical factor and nested models.

For non-enhanced CT, four models were established to iden-
tify AF based on EAT-score, EAT volume, CT attenuation, and 
a nested model (EAT-score+CT attenuation) in the same way 
as contrast-enhanced CT. Among the 300 patients with non-
enhanced scans, 109 (36.3%) were outpatients without clinical 
data, so the clinical factor model could not be established.

Statistical analysis
Continuous variables are expressed as median (interquar-
tile range) according to the data normality by the Kolmog-
orov–Smirnov test, and categorical variables are represented 
as frequencies (percentages). Categorical variables were tested 
with the χ2 or Fisher’s exact tests. The Wilcoxon rank-sum test 
compared continuous variables between cohorts. The receiver 
operating characteristic (ROC) curve, area under ROC curve 
(AUC), accuracy, sensitivity, and specificity reflected the discrim-
ination ability of the models. Youden’s index determined the 
optimal cut-off value of each model. The DeLong test compared 
the AUCs between models.

A two-sided p < 0.05 was considered statistically significant. 
Statistical analysis was performed using open-source packages 
(R v. 3.6.0, http://www.Rproject.org; Python v. 3.7 with Scikit-
survival library v. 0.13.2, https://scikit-survival.readthedocs.io/​
en/latest/). Supplementary Table 2 lists the details of software 

packages and functions. The Supplementary Materials provides 
the methods and results of calibration curves and decision curve 
analysis.

RESULTS
Patient characteristics
500 patients (292 men, median age: 67 years, interquartile range: 
59–74) were eligible for this retrospective study, including 250 
patients with AF. 200 (120 men, 65 years, 59–70) who under-
went contrast-enhanced chest CT were included. Another 
300 patients (172 men, 69 years, 59–76) who underwent non-
enhanced chest CT were enrolled, including 200 and 100 as the 
training and test cohorts, respectively. Table  1 summarizes the 
patient characteristics.

Radiomics feature selection
Among the features extracted in the contrast-enhanced and 
non-enhanced scans, 1186/1691 (70%) and 1280/1691 (76%) 
had good stability (intraclass correlation coefficient>0.8), respec-
tively, and thus were selected for further analysis. The Boruta 
algorithm identified 60 and 25 features related to the occurrence 
of AF (Figure 4), and hierarchical clustering yielded 10 and 16 
clusters, respectively (Figures 2 and 3). Based on the 10 and 16 
features, the random forest algorithm identified 8 and 14 that 
were closely associated with the presence of AF. These features 
were ranked according to their importance in generating an 
EAT-score (Figure 5). The swarm plots (Figures 4 and 5) illus-
trate the distribution of features between the AF and NSR groups 

Table 1. Characteristics of patients who underwent contrast-enhanced or non-enhanced chest CT scans

Patients with contrast-enhanced chest CT scan
 �  Training cohort (n = 140) Test cohort (n = 60) p-value

 � Age, year 65 (58–71) 65.0 (60–70) 0.90

 � Sex (males, n [%]) 85 (60.7%) 35 (58.3%) 0.88

 � Total cholesterol, mmol/l 4.46 (3.80–5.22) 4.44 (3.94–4.87) 0.31

 � HDL, mmol/l 1.18 (0.99–1.41) 1.18 (1.01–1.25) 0.23

 � BMI, kg/m² 23.9 (21.8–26.0) 24.0 (21.7–26.2) 0.92

 � Hypertension therapy, n (%) 64 (45.7%) 22 (36.7%) 0.30

 � Diabetes, n (%) 27 (19.3%) 4 (6.67%) 0.04

 � Smoking, n (%) 21 (15.0%) 10 (16.7%) 0.93

 � Drinking, n (%) 10 (7.1%) 5 (8.3%) 0.77

 � Heart failure, n (%) 7 (5.0%) 3 (5.0%) >0.99

 � Hyperthyroidism, n (%) 1 (0.7%) 1 (1.7%) 0.51

 � OSAHS, n (%) 0 (0) 0 (0) N/A

 �
 �

Patients with non-enhanced chest CT scan

Training cohort (n = 200) Test cohort (n = 100) p-value

 � Age, year 71 (62–78) 65 (55–71) 0.01

 � Sex (males, n [%]) 129 (64.5%) 44 (44.0%) <0.001

BMI, body mass index; HDL, high density lipoprotein cholesterol; N/A, not available; OSAHS, obstructive sleep apnea hypopnea syndrome.
p-value refers to the significance between training and internal test cohorts. Continuous variables are expressed as median (interquartile range).

http://birpublications.org/bjr
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Figure 4. Importance ranking for feature selection using Boruta algorithm. (A) For the dataset of contrast-enhanced chest CT 
scans, 60 features were selected by Boruta algorithm; (B) For the data set of non-enhanced scans, 25 features were selected. 
GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray 
level size zone matrix.

http://birpublications.org/bjr
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Figure 5. Importance ranking of the most-contributive radiomics features to identify atrial fibrillation. (A) for contrast-enhanced 
chest CT scans and (B) for non-enhanced scans. The darker the color is, the higher the importance. The sum of the importance 
index of features is one. GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run 
length matrix; GLSZM, gray level size zone matrix.

http://birpublications.org/bjr


8 of 12 birpublications.org/bjr Br J Radiol;95:20211274

BJR  Zhang et al

in the training cohorts. The correlation between the selected 
features is shown in Supplementary Figure 6 and 7.

Model construction in contrast-enhanced CT scans
The EAT-scores for the AF (median: 0.69, interquartile range: 
0.61–0.97) and NSR groups (0.28, 0.17–0.36) were signifi-
cantly different in the training cohort (p < 0.001). The optimal 
threshold of EAT-score determined by ROC analysis was 0.57, 
so patients with an EAT-score>0.57 were considered to have 
AF. In the training cohort, the EAT-score achieved an excellent 
AUC of 0.92 [95% confidence interval (CI): 0.88–0.96], the high 
specificity of 97% (89–100%), and an accuracy of 87% (80–92%). 
The high specificity indicates a low false-positive rate, which 
may help avoid unnecessary delays when screening patients with 
NSR. The MLR analysis showed that total cholesterol [odds ratio: 
0.47 (95%CI: 0.31–0.69), p < 0.001] and BMI [1.36 (1.19–1.58), 
p < 0.001] were significantly associated with the presence of AF, 
so they were included in the clinical factor model. The CT atten-
uation model was not significantly associated with AF (p = 0.74), 
so CT attenuation was not incorporated into the nested model.

In the training cohort, the nested model (EAT-score+volume) 
performed excellently with an AUC of 0.93 (0.89–0.97). Mean-
while, the other nested model (EAT-score+volume + clinical 
factors) also achieved a high AUC of 0.94 (0.90–0.98). However, 
these two nested models did not significantly improve the AUCs 
compared with EAT-score (DeLong’s p = 0.25 and 0.46, respec-
tively). The AUC of the clinical factor model was 0.80 (0.72–
0.87), significantly lower than EAT-score (p = 0.01). The AUC of 
the volume model was 0.73 (0.64–0.81), also significantly lower 
than EAT-score (p < 0.001). Figure 6A and C demonstrate the 
ROCs. Table 2 lists the diagnostic performance metrics.

Model validation in contrast-enhanced CT scans
In the test cohort, the EAT-scores of the AF (median: 0.66, inter-
quartile range: 0.55–0.78) and NSR groups (0.32, 0.19–0.47) were 
significantly different (p < 0.001). The EAT-score reached an 
AUC of 0.92 (95%CI: 0.84–1.00), a specificity of 97% (89–100%), 
and an accuracy of 80% (68–89%). In the test cohort, the nested 
models performed as well as EAT-score. The two nested models 
yielded AUCs of 0.91 (0.83–0.99, DeLong’s p = 0.46 compared 
with EAT-score) and 0.91 (0.84–0.98, p = 0.90), respectively. 
Similar to the training cohort, the AUC of the volume model was 
0.73 (0.61–0.86), significantly lower than that of EAT-score (p = 
0.01). The AUC of the clinical factor model was 0.71 (0.58–0.85), 
also significantly lower than that of EAT-score (p = 0.01). Table 2 
provides the results of model performance.

Model construction in non-enhanced CT scans
The EAT-score of the AF (median: 0.69, interquartile range: 
0.47–0.86) and NSR groups (0.29, 0.18–0.42) were significantly 
different in the training cohort (p < 0.001). The ROC analysis 
showed that the patients with an EAT-score>0.40 had AF. In the 
training cohort, the AUC of EAT-score was 0.85 (0.80–0.90), 
higher than 0.63 (0.55–0.71) of the CT attenuation model 
(DeLong’s p < 0.001). The EAT volume cannot be included to 
build a nested model, based on univariable logistic regression 
analysis (p > 0.05). The AUC of the nested model (EAT-score+CT 

attenuation) was 0.86 (0.77–0.92), which was not significantly 
better than that of only EAT-score (p = 0.41). Table 3 lists diag-
nostic performance metrics.

Validation of models in non-enhanced CT scans
In the test cohort, the EAT-scores for the AF (median: 0.50, inter-
quartile range: 0.34–0.65) and NSR groups (0.21, 0.12–0.32) were 
significantly different (p < 0.001). The EAT-score proved excellent 
performance in identifying AF. The EAT-score reached an AUC 
of 0.85 (95%CI: 0.77–0.92) and a specificity of 84% (70–92%). 
The AUC of the nested model was 0.83 (0.74–0.91), which was 
not significantly different from that of EAT-score (DeLong’s p 
= 0.100). Both the EAT-score and nested models outperformed 
the CT attenuation model (p < 0.001), whose AUC was only 0.63 
(0.52–0.74). Figure  6B and D demonstrate the ROCs. Table  3 
provides the results of model performance.

DISCUSSION
Regardless of whether the patients were subjected to contrast-
enhanced or non-enhanced scans, the radiomics model, or called 
EAT-score, can distinguish the patients with AF from those with 
NSR. The EAT-score yielded an excellent diagnostic perfor-
mance of identifying AF with a high AUC of 0.92 and 0.85 in 
the test cohorts of contrast-enhanced and non-enhanced scans, 
respectively. The nested models showed diagnostic values similar 
to those of the EAT-scores. The EAT-score and nested model 
exhibited higher performance than that of the traditional predic-
tors, such as clinical factors (total cholesterol and BMI, AUC: 
0.71), EAT volume (0.73), and CT attenuation (0.63).

CT attenuation is often used to evaluate adipose tissue, but 
in this study, the CT attenuation model of contrast-enhanced 
CT was insignificant to determine AF. It might be due to the 
influence of contrast-media enhancement of EAT, which inter-
feres with the CT values between AF and NSR groups. For 
EAT volume, the volume model was significant to determine 
AF. The EAT volume of patients with AF was higher than those 
with NSR in contrast-enhanced CT (96 vs 86 ml), and in non-
enhanced scans (133 vs 90 ml). These findings are consistent 
with the meta-analysis of studies that reported higher EAT 
volume in patients with AF.20 The morphological changes of 
EAT in patients with AF suggest that the extraction of high-
throughput EAT image features may be more effective and reli-
able to identify patients with AF.

Radiomics is a thriving field that can mine useful quantitative 
information from various imaging modalities. The potential of 
radiomics in cardiac imaging has gradually been recognized. 
Recently, researchers developed several models for differential 
diagnosis of cardiac diseases, such as myocardial infarction and 
vulnerable coronary plaques.21,22 Kolossváry et al proved that 
radiomics features outperformed conventional CT signs (AUC 
of 0.72 vs 0.59), i.e. positive remodeling, spotty calcification, and 
napkin-ring, to identify vulnerable plaques in coronary CTA.21 
Our study proposed using the radiomics-based EAT-score to 
determine patients with AF, which is an innovative research 
direction in cardiac imaging.

http://birpublications.org/bjr
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In this study, contrast- and non-enhanced CT scans differed 
in the imaging feature types that contributed to establishing 
the EAT score. For contrast-enhanced CT scans, 88% (7/8) 
of the most relevant features were texture features. For non-
enhanced scans, 50% (7/14) were size and shape features. 
Towards the difference of the selected features, we considered 
that contrast-enhanced scanning can capture the histological 
changes induced by inflammation (such as fibrosis and neoan-
giogenesis), which is one main mechanism of AF.23,24 Texture 

features depict the spatial relationship and voxel distribution, 
represent the heterogeneity of voxels,25 and reflect the pheno-
type of histological changes in adipose tissue. Oikonomou et al 
found that radiomics texture features can reflect the histolog-
ical heterogeneity of perivascular fat (affected by fibrosis and 
microvascular remodeling).26 Thereafter, the radiomics features 
in contrast-enhanced CT of adipose tissue may help elucidate 
the basis of EAT-induced AF from the computing perspective 
of inflammation.

Figure 6. ROC curves of all models for the datasets of contrast-enhanced and non-enhanced CT scans. (A, C) are ROC curves in 
the training and test cohorts for the dataset of contrast-enhanced scans. (B, D) are ROC curves in the training and test cohorts 
for the dataset of non-enhanced scans. AUC, area under the ROC curve; Cmodel, clinical factor model; ROC, receiver operating 
characteristic; Rmodel, radiomics model.
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At present, there are multiple methods available to detect AF. 
Insertable cardiac monitors are helpful to screen AF, but they are 
invasive and expensive. Smartphone apps and wearable activity 
monitors have rapidly evolved to discriminate between AF and 
sinus rhythm.27 These devices still formulate diagnoses based 
on ECGs converted from the information acquired by sensors 
that cannot avoid the problems of potentially undetectable AF in 
the absence of an attack. The application of deep learning to the 
analysis of ECG signals can compensate for some disadvantages 
of ECG. Attia et al created an artificial intelligence ECG with an 
AUC of 0.90 with convolutional neural networks to identify AF 
even when the ECG exhibited NSR.28

This study has limitations. First, this is a retrospective analysis 
of a non-ethnically diverse population. The conclusions of this 
study can be expanded and generalized if conducting a prospec-
tive study in another region. Second, in the NSR subjects, there 
may be false-negative patients on a single ECG if they did not 
have a history of AF. However, our results should not be signifi-
cantly influenced by this limitation as paroxysmal AF generally 
involves only a few NSR subjects. The prevalence of AF in adults 
was estimated to be 2–4%,2 of which paroxysmal AF accounted 
for 20–30%.4 Third, this study focused on identifying patients 
with AF and NSR based on the image feature analysis of EAT. 
It is essential to investigate whether machine-learning-derived 
analysis of EAT can identify other types of arrhythmias.

CONCLUSION
This proof-of-concept study established diagnostic models 
based on machine-learning-derived radiomics to identify 
patients with AF using EAT images in contrast-enhanced and 
non-enhanced chest CT. These models exhibited high diag-
nostic performance in identifying AF. As a new biological 
insight on AF from a computational perspective, machine-
learning provides an innovative research direction for diag-
nosing patients with AF. Considering the high prevalence of AF 
and the extensive use of chest CT, the machine-learning-derived 
radiomics model is feasible to screen patients with AF who are 
asymptomatic, paroxysmal, or with atypical symptoms, but have 
not been diagnosed before.
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