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Abstract 
Background: 

Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic 
genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and 
establishing familial relationships via forensic genetic identification. However, there is a lack of software 
to accurately simulate different pedigree structures along with genomes corresponding to those 
individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. 

 
Results: 

We have developed a python command-line-based tool called py_ped_sim that facilitates the 
simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents 
pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and 
integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the 
simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution 
of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, 
which offers a way to simulate half-sibling relationships. We validated the accuracy of our software by 
simulating genomes onto diverse family pedigree structures, showing that the estimated kinship 
coefficients closely approximated expected values. 
 
 
Conclusions: 

py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and 
conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics 
researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within 
families.  
 
Keywords: Forward-Time Simulations, Pedigree, Genetics, Kinship, Family, Generation, Inheritance, 
Python.  
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Background 

Genetic pedigrees are essential for studying medical, evolutionary, and forensic genetic 
inheritance. Pedigrees have been instrumental in understanding disease prevalence within families and 
populations and guiding genetic counseling and management strategies. They have been used to unravel 
the genetic influence of psychiatric disorders and neurodegenerative diseases via family-based studies 
[1,2,3]. Additionally, pedigrees help give us insight into rare variants acting on disease [2,4,5,6]. Recent 
efforts have shown that sharing rare variants is related to individuals' demographic and familial history 
[7], emphasizing the need to understand how rare variations are transmitted through families. In 
evolutionary genetics, family pedigree studies provide insights into population dynamics [8,9,10], the 
heritability of traits [11, 12, 13], and natural selection [14, 15]. The emerging forensic practice of 
investigative genetic genealogy (IGG) relies heavily on pedigree analysis to connect genetic relatives [16, 
17, 18]. By constructing pedigrees and tracing familial relationships, investigators can identify potential 
suspects and narrow down a pool of individuals who may be related to unidentified remains and DNA 
evidence found at a crime scene [19, 20].  

Many pedigrees lack complementing genetic data; to overcome this, genetic simulations are 
leveraged to generate individual genomes based on available pedigree data. Current software exists for 
simulating genomes onto family pedigrees in various ways, such as sim1000G [21], RarePedSim [22], 
SimRVSequences [23], and Msprime [24]. Current software is restricted to simulating a constrained 
number of variants due to computational complexity or is limited to simulating exons for the medical use 
of acting causal variants from family-based studies. Furthermore, these tools overlook crucial elements of 
evolutionary theory within their simulation framework, such as considering recombination and mutation 
rates. They are often overlooked due to the added complexity for users to implement. Current 
evolutionary genetic simulation approaches use either a forward or coalescent model. Coalescent 
simulations, such as those Msprime utilizes to simulate genomic pedigrees through a fixed ancestry model 
[25], work backward, starting with present-day individuals and tracing their ancestral lineages to the most 
recent common ancestor (MRCA). This approach is practical when simulating genomes across larger time 
scales. 

On the other hand, forward simulations are individual-based and progress downwards from the 
top of the pedigree, simulating one generation at a time until reaching the end. SLiM is a popular forward 
evolutionary simulator that can simulate genomes based on fixed pedigrees [26, 27]. This approach can 
offer more customizable initialization of founders within the pedigree and initialize founders easily with 
empirical genomes. While SLiM has a feature to simulate genomes based on fixed family pedigrees, it 
requires prior knowledge of the family structure, such as the list of founders in the pedigree and the 
generation in which descendants are created. Having to identify this information manually causes a 
barrier to performing genomic simulations on large sets of family pedigrees in an automated manner. 
Automating the identification of this information alone by inputting a pedigree alone would create more 
accessibility to performing forward evolutionary simulations of the pedigree. 

While the tools mentioned above can be used to simulate varying types of DNA profiles onto a 
set pedigree, there are still challenges in generating diverse and realistic pedigree structures. One way to 
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help bridge this gap is through simulating pedigree structures. It is important to consider complex and 
realistic pedigree structures to accurately represent genetic diversity and the evolutionary history of a 
family lineage, giving us more insight into an individual's genetic inheritance [28]. A limitation to 
simulating pedigree structures is the ability to simulate misattributed genetic paternity (MAP). A different 
parent mistakenly attributes the child’s biological paternity during this process. While it has been widely 
accepted that these MAP events can occur in 10% of our population [29], a meta-analysis suggested this 
number may be overestimated for most populations [30]. Modeling these events into the pedigree 
structure can help us understand inconsistency within family pedigrees and the impact that can have on 
the analysis of genetic kinship. Additionally, we must pay attention to how sibship size varies over 
generation and geography. It has long been acknowledged that sibship size has decreased in the recent 
century. Furthermore, the rate of that decrease changed dramatically across different countries [31], 
needing to explore how resulting family pedigree structures change across different geographical rates of 
sibship. Having the ability to use real-world data to simulate pedigree structures will allow open avenues 
to explore questions of how genetic variation develops across diverse demographic histories. However, no 
software exists to simulate realistic pedigrees that incorporate nonuniform rates of sibship across 
generations or generate non-paternity events introducing half-relationships. 

Having a tool that enables the simulation of genomes onto realistic pedigree structures would 
open up new avenues of genetics research. By incorporating realistic pedigree structures into genomic 
simulations, we can better reflect the complexities of human populations and improve our understanding 
of how demographic history impacts the genetic variation within kin. Here, we present py_ped_sim, a 
command line tool in Python designed to facilitate genetic pedigree analysis. Our software incorporates 
four key features (Figure 1a): (1) the simulation of varied genetic pedigree structures based on sibship 
sizes over time, (2) the simulation of misattributed paternity events within family pedigrees, (3) the 
simulation of genomes based on fixed family pedigree, and (4) the identification of pairwise relationships 
within a given family pedigree (Figure 1a). To enable efficient genetic simulations on complex or 
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incomplete pedigrees, we have developed a wrapper for SLiM that allows users to input varied pedigree 
data. We additionally demonstrate that py_ped_sim accurately generates genomes on family structures 
with expected genetic relationships.  
 
Figure 1: A) Visual abstract illustrating the primary features of the py_ped_sim software. Comparison of 
data structures used to represent family pedigrees. Our software utilises networks represented pedigrees. 

 
 

Implementation 

Definitions [Fig 2, Pedigree Schematic] (To Be Included as a Table):   
● DAG - Directed Acyclic Graph. Where individuals are nodes and edges are parent-child 

relationships.  
● Descendant - offspring; an individual that has at least one known parent.  
● Generation Tick - We define the generation of an individual the same way as we do in the SLiM 

simulation framework. Generations are a biological unit of time, having to do with things like the 
lifespan of an organism, the mean age at first reproduction, and so forth.  

● Root Founder - A node that is connected to all lower-level nodes. The root founder of the 
pedigree will have a generation time of one.  

● Explicit Founders - Individuals specified in the pedigree with no known ancestors.  
● Implicit founders - Individuals in the pedigree with only one known ancestor. The implicit 

founder is considered the missing parent inside the family pedigree. 
● Pedigree formats 

○ Traditional pedigree formal (.ped/.fam): This data representation of a family is 
traditionally used where the columns represented as [FID, IID, P1, P2, Sex, Phenotype]  

○ Networkx-based pedigree (.nx): Family pedigree based on a directed acyclic graph 
implemented in networkx. The files are two-column files where the first column is the 
parent and the second is a descendant.  

○ Slim-Readable pedigree ( _slim_pedigree.txt): Family pedigree file that is readable by 
SLiM. Similar to a .ped file but includes and orders the generation in which descendants 
are created [Gen, IID, P1, P2]. 
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Figure 2: Schematic Overview of the pedigree definition used in our software.  
 
 
 
Dependencies and Versions 
This software is developed in python (version 3.88), using SLiM (version 3.6), and bcftools (version 1.8). 
All user interaction with the software is through a Python front end. All software dependencies can be 
accessed via a conda virtual environment. 

 
 

Data Structure of Family Pedigree 
 We represent family pedigrees as directed acyclic graphs (DAGs) using the networkx package in 
python 3.8 [32]. The DAG comprises of nodes and edges, where nodes represent individuals and directed 
edges indicate parent-to-child genetic transmission [Figure 1b, networkx pedigree schematic]. Because 
an individual cannot be their genetic ancestor in a sexual reproductive system, these graphs are acyclic, 
meaning the directed path of the edges never forms a loop. 
 
Pedigree Simulator 
 

py_ped_sim forward simulates pedigrees with the number of offspring per pair of genetic parents 
taken from user-provided data on sibship sizes. The novelty of our approach is the ability to vary the 
sibship distributions used across generations. We draw sibship sizes from normal distribution based on 
the user-provided generation, mean, and standard deviation. The user will include a csv file on each year's 
mean and standard deviation of sibship size. For convenience, we provide a default sibship distribution 
file with data from the United States Census obtained via IPUMs [33].  

We utilize a depth-first recursive approach to simulate children until the last generation is 
reached. Users specify the number of generations in the pedigree via the number of generation ID 
requested. The number of offspring is drawn from user-provided sibship sizes for each set of parents for 
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the generation number. Our software additionally simulates an individual's sex and keeps track of the 
generation time in which individuals are created. We define the sex of an individual by whether a fertile 
individual produces a sperm (XY) or an egg (XX). It is important to note that we don't simulate sex 
chromosomes in our simulation framework. We simulate the sex of an individual via drawing from a 
Bernoulli distribution to determine the sex of the first parent and set the sex of the second parent to the 
complement.  

The output of py_ped_sim is a pedigree in networkx format, in addition to a profile file that 
contains the sex and generation time of everyone simulated. py_ped_sim pedigree output as DAGs via 
networkx format files (.nx). 

Misattributed Paternity Simulator 

Modeling MAP events can offer another way to simulate more dynamic family pedigrees and 
investigate how MAP can impact downstream conclusions. We have incorporated a feature for simulating 
misattributed paternity events on existing family pedigrees. A complimentary benefit of introducing this 
to family pedigree simulations is adding genetic half relationships.   

Our simulations of MAP events involve a two-step process: identifying individuals with MAP, 
descendants where MAP events will happen, and identifying the correct genetic parent where the new 
individual will be generated. First, we must identify individuals with whom MAP will happen, we will 
iterate across all individuals with specified genetic parents in the pedigree and simulate a binary event via 
a Bernoulli distribution. When identifying an individual where a MAP event will occur, we determine if 
the new parent will come from within an existing father in family pedigree, or if we will create a new 
individual to be the father. If we choose to use an existing parent, we sample randomly from fathers of the 
same generation tick as the father being replaced. If no potential fathers can be used within the same 
generation tick, py_ped_sim will automatically generate a new father to perform the MAP.  

py_ped_sim, takes as input a networkx family pedigree file and a profiles file specifying sex and 
generational tick for individuals. Additionally, the user can input two parameters that specify the 
probability rate of a MAP event and whether the newly assigned genetic parent will be within the family, 
or to create a new individual. The output is the updated networkx family pedigree file and profile files, 
including newly created individuals. 

Genome Simulator 
We introduce a feature to use SLiM to simulate genomic variation onto family pedigrees. This 

feature is a wrapper script that extracts features of the family pedigrees that SLiM requires for genomic 
simulations. Both explicit and implicit founders are to be identified alongside generation numbers for all 
descendants created. py_ped_sim represents the pedigree as a DAG; in that format, we can extract 
information on descendants' generation time and founders of the pedigree. The output is a vcf file of the 
simulated genomes for everyone in the pedigree. The vcf does not include the genomes of implicit 
founders, that is, parents not specified in the original pedigree. 

To initiate the genomic simulations, users specify the genetic pedigree structure, along with a 
genomic file (.vcf) for initializing the founders of the family. The user can specify the mutation and 
recombination rates for the simulations, default values have a mutation rate of 1e-8 and recomb at 1e-7. 
We provide two methods for initializing the founder genomes based on a user-provided vcf file. The first 
method randomly assigns each founder to an individual in the vcf file. Alternatively, users can provide an 
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additional text file that assigns specific founders to corresponding IDs in the vcf file, offering more 
control over the initialization process. The founder genome can be simulated as a supplementary feature, 
which is particularly useful if an appropriate genome dataset for founder initialization is unavailable. The 
simulation is a neutral burn in simulations where you can specify the size of the simulated populations 
and how many individuals you want to sample from the population.  

Identifying founders in simulations is crucial to supplying genomes for individuals without 
identified parents in the pedigree, establishing the genetic variation for individuals for all non-
descendants. We identify individuals with no predecessors (explicit founders) and one known predecessor 
(implicit founder events). We start by identifying the family's root founders and assigning them a 
generation time of one. The generation times of descendants are then assigned based on their shortest path 
to root founders. For individuals not directly descended from a root founder, we calculate the generational 
gap between the individual in question and a root founder’s descendant and use the difference to 
determine the generation number for the individual in question. In the event of consanguinity, when 
individuals have more than one path to the root founder, we ensure the child’s generation number is after 
their parent's.  

 
 
 
 

Pairwise Relationships Identifier  
 

 py_ped_sim provides a systemic and quantified representation of relationships for all pairs of 
individuals inside a pedigree structure. Our software can quantify genetic relationships between pairs of 
individuals in a pedigree, defined by three metrics: meiotic distance (MD), the generation depth 
difference (GDD), and the genetic relationship type (GRT) [Figure 3]. These three statistics help us to 
code pairwise genetic relationships into genetic relationship categories (siblings, half-first cousins, etc.). 

GRT describes if two individuals are full genetic relatives (two shared ancestors), half genetic 
relatives (one shared ancestor), direct genetic relatives (defined above), or not determinable (NA). Let's 
take the example of an avuncular relationship. If there are two common ancestors for a child and their 
uncle/aunt, the child’s grandparents and the parent of the avuncular relationship, then the relationship is 
classified as a full relationship [Fig 3a]. To determine GRT, we find all the shortest paths between two 
nodes. To determine direct and half relatives, we count the number of shortest paths two individuals are 
connected. If there is one path, they're half-genetic relatives; if there are two paths, they're full genetic 
relates.  

Finally, the GDD between two individuals is the number of generations separating them. Using 
the same examples of avuncular and half-sibling relationships, we see GDDs of 1 and 0, respectively [Fig 
3b]. GDD is the shortest path between the two nodes for individuals with a direct genetic connection. 
Otherwise, GDD equals the absolute value of the difference between the shortest path lengths from the 
two individuals to their shared ancestor. 

The meiotic distance between two individuals describes how much meiosis separates them. An 
avuncular (ex: aunt-nephew) relationship has an MC of three [Fig 3c].  Half siblings have an MC of two 
since they connect via one shared parent. If a direct genetic relationship exists, that is, a relationship 
where one individual is a direct descendant of the other (parent, grandparent, great-grandparent, etc.), the 
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MD is the length of the shortest path between the individuals. Otherwise, the MD is the sum of the 
distances between each individual and their most recent common ancestor.  

 
 

 
Figure 3. Visual representation of how each relationship metric in an avuncular relationship is 
determined. (A) Generation depth determines how many generations ticks separate two individuals; for an 
avuncular relationship, only one generation separates a child from their uncle. (B) Meiosis count is the 
shortest path for two relationships, building a path from their common ancestors. For an avuncular 
relationship, their common ancestor is the child's grandparent and avuncular parents, producing a meiosis 
count of 3. (C) Relationship type determines if the relationship is a direct common ancestor, full, or half 
relationship. For this avuncular relationship shown, they share two common ancestors, determining this a 
full relationship.  
 
 
 

Results 

Validation of Simulated Pedigree Structures 
 Our software can simulate pedigrees based on user-specified sibship size distributions for each 
generation. We used our pedigree simulator to simulate 10,000 families across five generations to assess 
our ability to simulate non-uniform sibship sizes. We used sibship size estimates from IPUMs [33] to 
simulate our pedigrees, specifically for census years spanning from 1850 to 1970 (1850, 1880, 1910, 
1940, 1970) [Table 1]. We estimated the observed mean and standard deviation of sibship size for the 
10,000 simulated pedigrees across each generation. [Table 1]. The observed simulated sibship sizes are 
closely aligned with the sibship size means and standard deviations provided as parameters to the 
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simulation. These findings confirm our ability to simulate pedigrees, accommodating changing sibship 
sizes across successive generations. 
 
 

 Mean SD Num Sibships 
Simulated 

Observed 
Mean 

Observed SD 

Gen 1850 3.31 2.13 10,000 3.32 2.03 

Gen 1880 3.02 1.95 33,169 3.04 1.86 

Gen 1910 2.72 1.85 100,688 2.78 1.77 

Gen 1940 2.35 1.70 280,343 2.41 1.61 

Gen 1970 2.30 1.43 675,309 2.33 1.40 

 
 
Table 1: Validation Results of Our Pedigree Structure Simulator. We present the true distributions of 
sibship sizes inputted into our pedigree simulator alongside the estimated distributions generated by the 
simulator. 
 
 
 To demonstrate the impact differing sibship size models may have, we compared a two-child 
model and an empirical sibship size model. The former assumes each pair of parents has two children 
together, while the latter draws distributions of sibship sizes from the above-mentioned IPUMs census 
data. Four-generation pedigrees were simulated under both models, with 1,000 pedigrees simulated under 
the empirical sibship size model to provide a distribution of pedigrees created with our model. Fig 4a, 
illustrates the relative proportions of 11 relationship types across the two models. The empirical sibship 
size model exhibits a higher proportion in the number of cousins compared to the two-child model due to 
the creation of more siblings, particularly in earlier generations. Fig 4b compares the distribution of the 
number of cousins between the two models, showing many more cousins under the empirical sibship size 
model. The number of cousin relationships per individual varies substantially, particularly among more 
distant cousins. Overall, our pedigree simulator demonstrates the capacity to generate pedigrees with a 
more realistic representation of distant relationships by offering user-provided varying sibship sizes over 
generations. 
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Fig 4. Comparison of two simulated family pedigree models, a two-kid model, and an empirical model. 
The empirical model is colored in gold, while the 2 kid model is shown in black. A) The relative 
proportion of eleven relationships found across the two-family models. B) Individual-level variation in 
the degree of cousin’s relationships across the two models. 
 
Validation of Genetic Relationships via Estimated Kinship 
 To test the validity of our software’s SLiM wrapper to simulate genomes onto pedigrees, we 
compared the estimated kinship coefficient to their expectation for parent-child relationships in six 
pedigrees with simulated genomes [Table 2]. Using our pedigree simulator software, we simulated six 
families to simulate genomes and estimate their kinship. The six families simulated were made to increase 
in size for both the number of founders needed to initialize and the total size of the family. We used the 
kinship estimator Goudet et al. proposed due to its ability to provide stable estimates in small samples 
[34, 35]. Founders were initialized using empirical data from the 1000 genomes consortium using 
individuals from the African superpopulation group. 
 The parent-child relationships for all six families have a kinship estimate within the expectation 
of 0.25 [Fig 5]. While we notice a slight underestimation of kinship, it is noteworthy that the average 
kinship within each family increased gradually as the family size expanded. However, the observed 
increase remained relatively modest. One explanation for this downward bias we observe is relatedness 
within the founders used inside the 1000 genome consortia [36]. We estimated kinship for more distant 
genetic relationships using the largest family simulated (Family 6). The average kinship estimates for all 
seven relationships converged closely to their expected values in the pedigree.  [Figure 5b] [Table 3]. 
Finally, for the sixth family, we looked at the observed vs expected kinship within all genetic relatives 
inside the pedigree. We estimated the expected kinship with KinInbCoef. We found a strong correlation 
(R^2 = 0.89) between observed and expected kinship [Fig 5c]. These results demonstrate py_ped_sim’s 
capability to simulate genomes onto family pedigrees with expected levels of kinship across all 
relationships with expected genetic kinship. This validation also extends to the SLiM simulator, as our 
software successfully reconstructs pedigrees for SLiM's simulations. 
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 Number of Founders Total Family Size 

Fam 1 98 726 

Fam 2 180 1287 

Fam 3 320 2277 

Fam 4 454 3392 

Fam 5 542 3555 

Fam 6 608 4021 

 
Table 2: Six simulated families used to simulate genomes using our software. To initialize founders with 
the African Super Population from the 1000 genomes consortium, we had to ensure the families simulated 
have under 662 founders. Families simulated an increase in size.  
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Figure 5: Estimated kinship for six census simulated families using py_ped_sim. (A) We plot the 
distributions of observed kinship for all parent-child relationships for the six families simulated. (B) For 
Family 6, the largest family, we observed the estimated kinships for seven relationships found in our 
family. (C) Scatter plot of observed vs expected kinship for all relationships found in the family pedigree. 
The solid black line is a regression between estimated and expected kinship. The red dashed line 
represents the expected kinship across each relationship.  
 

Relationship Expected Kinship  Mean Observed Kinship 

Parent-Child 0.25 0.246 

Sibling  0.25 0.247 

Grandparent 0.125 0.122 

Avuncular  0.125 0.123 

1st Cousin 0.063 0.057 

Great Grandparent 0.063 0.063 

2nd Cousin 0.016 0.010 

 
Table 3: Mean observed kinship of the simulated genomes for Family Six across seven different 
relationship statistics. Each relationship is provided with the expected kinship.  
 
 
Kinship Estimations across Various Assumptions of Pedigree Structure.  
 

Next, we want to consider how expected vs observed kinship will change across various pedigree 
structures. We simulate genomes onto five pedigree structures, comparing five different structures of 
pedigrees. We analyzed five pedigrees: an empirical family obtained from Familinx, a simulated 2-child 
model, a census-based simulated family, and two simulated families with varying levels of misattributed 
paternity (MAP=0.01, 0.05) [Table 4]. For the simulated 2-kid model, we simulated a pedigree where 
each set of parents has two kids, not varying the sibship rates across generations. For the five pedigree 
structures considered, we kept the size of the family (2200-2600 individuals) and number of founders 
initalized (608-632) the same [Table 4]. The only exception to this is the 2-kid simulated family, having a 
pedigree of 1,542 individuals and a founder size of 512 individuals. This is due to the growth in the 
deterministic family pedigree model when adding another generation, creating more founders than can be 
initialized by the African superpopulation.   

 
Expected and observed kinship are strongly correlated for all the pedigree structures [Figure 6]. 

However, the empirical family had incomplete data, including offspring with only one known parent, thus 
including implicit founders. While our simulation framework allows the ability to simulate genomes for 
missing parents, the resulting VCF output does not contain the genomic profile of the implicit founder. 
This will introduce bias into the kinship estimate by not accounting for the absent parent's genetic 
contribution, which is a property of the kinship estimator itself [34, 35]. Repeating the simulation by 
making all the founders in the pedigree explicit, the best line of fit improved in the empirical family, 
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increasing the r2 value from 0.96 to 0.99 [Fig 6e]. Overall, our results underscore the ability of our 
software to simulate pedigrees with kinship estimates that align with expectations across various pedigree 
structures. 

 
 

Figure 6: Scatter plots of estimated vs expected kinship across six different pedigree structures. The solid 
black line is a regression between estimated and expected kinship. The six different pedigrees generated 
represent A) empirical pedigree from Familinx not including implicit founders, B) simulated family using 
a 2-kid model, C) simulated family using census data for sibship distributions, D-E) census simulated 
family with simulated misattributed paternity (MAP = 0.01, 0.05), and F) empirical family from Familinx 
with implicit founders included. The red dashed line represents the expected kinship across each 
relationship.  
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 Pedigree Structure Type Number of Founders Total Family Size 

Fam 1 Empirical 608 2198 

Fam 2 2-Kid Simulated 512 1534 

Fam 3 Census Simulated (CS)  616 2523 

Fam 4 CS + MAP (0.01) 621 2528 

Fam 5 CS + MAP (0.01) 632 2539 

 
Table 4: Five families used to simulate genomes using our genome simulator software. CS stands for 
census family pedigrees simulated by our software, with MAP being additional simulations of non-
paternity events.  
 
 

 
Discussion 

py_ped_sim offers open-source tools for complex pedigree simulations and facilitates genome 
simulation onto pedigree structures using SLiM. We present a pedigree simulator that specifies 
distribution parameters for sibship size across generations, allowing for generational shifts in sibship 
rates. Additionally, by incorporating genetic half relationships into the simulation of family pedigrees, we 
further allow the modeling of realistic pedigrees. We offer the ability to simulate genomes based on user-
provided pedigree structures. SLiM requires users to include the generation number for each individual 
and identify which individuals are founders, making it cumbersome for users. Users can create the 
starting genomes to use for founders, allowing the ability to simulate pedigrees from diverse populations 
and demographic histories. Finally, we also present a feature to identify genetic relationships between 
individuals within a family pedigree using three generalizable relationship metrics.  

Our validation efforts demonstrate the software's proficiency in simulating genetic relationships 
with expected kinship levels and confirming its ability to simulate sibships according to the provided 
sibship size distributions. This involved assessing the correlation between observed and expected kinship 
values in simulated pedigrees across various empirical and simulated pedigree structures. We additionally 
provide validation scenarios for our misattributed paternity and pedigree simulator features. We can 
simulate the distribution of misattributed paternity events and number of sibships simulated based on 
user-provided parameters.  
 Despite these advancements, our software does have limitations. Forward simulations can be 
computationally demanding, particularly when initializing founders with large genomes. By incorporating 
tree sequences into genomic simulations in SLiM, run time could be reduced, as they can speed up 
simulations under feed-forward approaches [37]. An important limitation of our pedigree simulator is the 
ability to simulate different rates of sibship for pairs of parents in the same generation if the user wants to 
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use different sets of sibship distributions across different parts of the pedigree. Another significant 
limitation is the lack of known half-sib relationships in our simulations. While our approach simulates 
half-genetic relationships by accounting for misattributed paternity, it does not simulate other scenarios 
involving half-genetic relationships. 
 

Overall, py_ped_sim will help facilitate genomic analyses based on pedigrees across medical, 
evolutionary, and forensic sciences. While our primary focus on pedigree simulations centers on human 
kinship, this approach is adaptable to non-human organisms. This tool will allow simulations of large-
scale ecological and evolutionary pedigrees, offering insight into inheritance patterns and understanding 
the evolutionary dynamics of populations. In forensics, py_ped_sim can be used to explore the 
performance of Investigative Genetic Genology over pedigree structures and genomic variation. We 
additionally offer a feature to generalize relationships into multiple metric relationships. Generalizing 
relationships between pairs of individuals within a family pedigree facilitates identifying connections 
across extensive family networks and streamlines the process of recognizing relationships across multiple 
pedigrees.  

 
In conclusion, py_ped_sim provides an accessible solution for accurate pedigree and genome 

simulations. Forward simulations create genetic relationships across diverse family pedigree structures 
with varying sibship sizes across generations. This software establishes a basis for future research and 
paves the way for advancements in genomic studies involving pedigrees. 
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