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Data science and its future in large neuroscience collaborations 
 

Manuel Schottdorf1, Guoqiang Yu2 & Edgar Y. Walker3* 
 

The rise of large scientific collaborations in neuroscience requires systematic, scalable, and reliable data 
management. How this is best done in practice remains an open question. To address this, we 
conducted a data science survey among currently active U19 grants, funded through the NIH’s BRAIN 
Initiative. The survey was answered by both data science liaisons and Principal Investigators, speaking 
for ~500 researchers across 21 nation-wide collaborations. We describe the tools, technologies, and 
methods currently in use, and identify several shortcomings of current data science practice. Building 
on this survey, we develop plans and propose policies to improve data collection, use, publication, re-
use and training in the neuroscience community. 

 

Introduction 
New kinds of data are being collected at increasing rates, challenging established methods for data 
processing and interpretation. In light of these changes, biology is moving towards collaborative team 
science, often combining experimental work with tools and instruments from statistics, physics, 
mathematics, engineering, and computer science1,2. Data science can be the key catalyst for this 
transition3–6. A recent example of this are large collaborative U19 projects, funded through the NIH’s 
BRAIN Initiative which seek to understand circuits of the central nervous system4,7–10.  

From 2022 until early 2023 we conducted a survey across U19s to identify (1) tools, 
technologies, and methods currently in use across these collaborations, and (2) shared difficulties and 
challenges to data science that could best be addressed by a community-wide effort. In the first part 
of this article, we will summarize key insights from the survey, and in the second part present proposals 
to accelerate scientific progress by improving (1) data integration, (2) data and code sharing, and (3) 
training and best practices for workforce development. We hope that this work can improve scientific 
standards in our community, and the life sciences more broadly. 
 

Results 
An overview of active U19s is shown in Fig. 1A. Our survey was distributed among these 
collaborations, every one of which features a data science core to manage analysis, archiving and 
data sharing. The survey was answered by both data science liaisons managing these cores, and 
Principal Investigators (PIs). The survey contained six sections focused on (1) team composition, (2) 
analytical and software tools currently in use, (3) software engineering, standards, and data/code 
sharing, (4) Personnel and budget, (5) Challenges, and (6) Future Steps totaling 82 questions. From 
N=21 currently active U19s, n=15 U19s provided us with the data presented here, corresponding to 
an answer rate of 71%. The missing U19s were ignored in our analysis. We speculate, in the 
discussion section, on why no replies could be obtained. In the following paragraphs we present an 
overview and key insights from our survey, and actionable items to improve data science. The 
complete survey and analysis are provided in the supplemental material. 

While the U19 program funds nationwide research, it is highly concentrated on a small subset 
of universities. Using biographical information of n=176 PIs and data science leads across the N=21 
grants, we found that 26.2% were affiliated with either Harvard or Columbia University. Summing over 
the top six institutions (Stanford, Princeton, NYU and the University of Washington) accounted for 
more than half of all senior personnel (50.6%) (Fig. 1A). The largest contributing public university was 
the University of Washington at 5.1%. Centered around these locations, a typical U19 team has ~40 
scientists across ~7 labs (Fig. 1B) and is supported by 1–2 full time data scientists and many other 
members with diverse backgrounds / roles. In practice, we found that data science is often done by 
more senior researcher positions such as postdocs, faculty, or specific developers hired for the job 
(Fig. 1C). This suggests relatively advanced training requirements when compared to a typical 
research position. To test this hypothesis, we also surveyed the role of data science and job profiles. 
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Fig. 1: Overview of the Brain Initiative’s U19 program. A) Title and locations of N=21 currently active U19s across 
the nation (green boxes) and affiliation of individual projects as well as datacore investigators (blue boxes).  B) Team 
size of the U19s and number of participating laboratories. A typical U19 team has ~40 scientists across ~7 labs. This 
survey covers ~500 researchers. C) Composition and role of data science core personnel. Notice that most data 
science is done by postdocs, developers, or faculty suggesting advanced training requirements. 
 

This produced a formidable list of tasks: the development of (semi-) automatic data processing 
pipelines, maintenance of data infrastructure, general tech support and education for researchers, 
help for researchers when writing analyses Code (e.g. replication of published algorithms), support in 
scientific data analyses and IT resource usages, custom web GUI/frontend development, support in 
experimental setup and hardware interfacing, and support in integrating theory and experiment (see 
supplemental material for the full questionnaire). We discuss the implications of this diverse job profile 
further below, but it should be noted that in the private sector, most of these roles would be filled by 
specifically trained specialists. In academia, recruitment seems to occur on higher levels to find 
sufficiently well-trained individuals who can fill these very diverse roles (cf. Fig. 1C). While these roles 
place data science into an advantageous position to serve as a key catalyst to accelerate science, this 
diversity also suggests that management of such diverse roles is challenging, and data science can 
become prohibitively expensive. Funding is an important point that we will discuss below.  

One of the specific contributions of data science is to prepare and facilitate data sharing both 
within collaborations and across the community. How is data shared? In practice, most data is copied 
through local networks or exchanged via eMail or Slack. Little data is shared with data management 
tools (Fig. 2A). When asked about such specific tools, like Neurodata without Borders (NWB), a data 
format based on hdf5 that is becoming a standard for neurophysiological data11, we discovered that 
these are well known and used in a majority of collaborations. However, only a small fraction of data 
is maintained in these formats (Fig. 2B). Insofar as data pipelines exist, their underlying code is 
generally shared. This is different for data. Even after publication, current U19s share only a small 
fraction of data underlying their publications. It should be noted that the distribution is bimodal, with 
few collaborations sharing all their data (Fig. 2C), while the majority of U19s only share a small fraction, 
if any. Even though U19 collaborations develop and publish pipelines for electrophysiology12 or 
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Fig. 2: Key results of current data sharing practices. A) The main mechanisms by which data are exchanged are 
Slack/eMails and Network transfer. Not much is standardized. B) Most U19s are aware of, and use tools like 
Neurodata without Borders (NWB). But only in a limited capacity. C) Much code is shared, but data sharing is 
bimodal. D) Data is being published at all stages of processing without clear structure. E) A significant fraction of 
code has never been reviewed.  

 

Ca2+ imaging13 no visible standards have emerged as to what data to share. The split is almost equal 
between publishing raw data itself (such as tiff-stacks, or e-Phys voltage traces), Intermediate data 
such as Ca2+ transients or spike times and analyzed data such as peri-stimulus time histograms, or 
dimension reduced data (Fig. 2D). Among the individually developed software, at most ~50% of critical 
infrastructure code has gone through review or pull requests (Fig. 2E). We will discuss the implications 
of these findings below. 

Is limited training a key factor for the limited adoption of better data science practices? We 
found that theory and experimental researchers are similarly interested and engaged in data science 
training. However, only around 50% of experimental researchers have the necessary coding skills to 
implement a simple algorithm (Fig. 3A). Theory researchers tend to be more experienced regarding 
coding and data science but are further away from experimental data collection and processing 
pipelines. While many U19s provide training for their researchers, it is limited in scope and often 
restricted to onboarding documents (Fig. 3B). Only ~50% of collaborations enforce standards for data 
science practices. The rest leaves data science practices up to the best (but limited) abilities of the 
respective researcher (Fig. 3C). The limited training and lack of standards in most U19 collaborations 
likely contributes to the limited adoption of better data science practices. 

 

Actions and policies to improve data science 
We believe the current state of the field, documented above, necessitates improvements. To aid this 
process we presented our results to the U19 data science consortium in January 2023, conducted a 
workshop at the 2023 Brain initiative meeting in Washington D.C. in June, and spoke at a SfN 
Symposium in November 2023. In the following paragraphs, we summarize strategies and proposals 
discussed at these events. 
  
Integration: Neuroscientists are seeking increasingly close collaborations with experts in 
computation, statistics, and theory to mine and understand their data. These interactions and 
associated analysis methods, many of which did not exist 10 years ago, force us to reconceive what 
it means to be an experimental neuroscientist today. We believe that this scientist of the future has 
deep knowledge in  one  discipline  and  requires  basic  fluency  in  several  others,  including  data  
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Fig. 3: Key results of researcher qualifications, training, and management. A) Fraction of theory and 
experimental researchers that can implement a simple algorithm. Theory researchers are typically more competent, 
but only around ~50% of experimental researchers have basic coding experience. The precise question was “What 
fraction of your U19's experimental researchers has reasonable coding experience? (e.g. can implement a simple 
algorithm like bubble sort in python, or use the slurm engine on a cluster.)“ Dots indicate means and C.I. B) Current 
training is done, but limited in scope. C) Most U19s do not enforce standards. The ones who do enforce standards do 
so on a superficial level. 
 

science14. We consider improvements in workforce training below. Here, we list policies that can aid 
this integration directly through three complementary strategies: First, new funding schemes could 
incentivize better coding and data sharing practices. For example, expertise could be recruited from 
other scientific fields into Neuroscience via career transition grants, or grants to maintain software 
beyond the lifetime of an individual U19. While the former exists in some private foundations, the NIH 
has supported the latter through a NOSI in 202215. These efforts should be scaled up. Second, data 
scientists should be included early during data collection to foster a spirit of collaboration rather than 
perceived competition between data collection and processing2. They should also be present in lab 
meetings to become a normal part of any laboratory involved with collecting large neurophysiological 
data. Without this collaborative spirit, and clear roles, experimentalists might feel devalued to a 
technical role limited to data collection, and do not see the advantages of outsourcing coding to an 
expert. Third, a specific idea to better integrate U19s is the generation of virtual or online data core 
facilities that are open to researchers across the nation. This distributed core facility would be 
particularly suited to define and enforce standards in the field. 
 
Sharing: We found that across U19s, there is a shared interest to improve sharing and standardization 
of data formats, analysis, processing code, data pipelines and data infrastructures, but with limited 
success. Here we present four suggestions to ameliorate our standards: First, laboratories should use 
well-established code whenever possible. We are hopeful that with better training on new methods, 
and improved communication (see below) much of this can be addressed easily, precisely because 
there is a shared sense of urgency and usefulness. Making the reuse of code easier is the best 
motivation for researchers to not develop from scratch and to not reinvent what already exists. Second, 
we have to establish common guidelines for code and data sharing combined with documentation. 
This requires that we agree on how data should be shared, and much work has already been 
accomplished in solving this issue16–18. It also requires that we agree on what data should be shared. 
We advocate for sharing of both: (1) raw data to aid future discoveries, and (2) pre-processed data 
and associated code to aid reproducibility efforts and quality of science. This is particularly important 
if custom pre-processing pipelines are in use. We should hold people accountable if this data is not 
provided. This could be enforced by the NIH itself, for example by providing Institutional Certifications 
for minimum institutional standards or by making the most recent NOT-OD-21-013 even stronger. It 
can also be enforced by us as a community. Third, as a community, also on an international scale5, 
we can decide that all papers reviewed by us need to publish code and data. The authors of this article 
have adopted this stance as reviewers. Along these lines, and to advertise for a growing body of 
published datasets, we wish to highlight datasets across scales that have already been published to 
the highest standards. Key examples are work published by the Allen Institute18,19 and IBL20,21. Fourth, 
we propose to generate public infrastructure outside of the Amazon/Microsoft/Google ecosystem. In 
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other fields of science, this has been an enormous success, considering databases like GenBank, or 
pubmed itself. A public repository will have the benefits of (1) being cheaper on the taxpayer as not 
ultimately operating for profit and (2) access as a .gov domain will make data-publications citable in 
NIH grants. 
 
Training: We need to better train researchers. This point came up several times in the paragraphs 
above. First, we propose that training grants, like the NIH’s T32 mechanism, have to contain at least 
one introductory coding class, and one course on computational methods. We wish to stress that any 
study program that allows students to graduate without mandatory and formal training to code is doing 
these students a grave disservice for their individual careers and the progress of science. It should 
also be noted that these are among the skills that are directly transferable to an industry setting. 
Acknowledging that not all students and postdocs will obtain faculty positions, we should do our 
students this service. There was also a remarkable consensus in our workshop that it is easier to train 
a computer scientist to perform rodent survival surgeries than to train a biologist to set up a relational 
database with a simple interface. Classwork can address this. Second, we should provide training 
opportunities for using tools and adopting best practices for existing staff, possibly combined with 
grants that allow us to recruit such expertise, which is readily available in math, physics, computer 
science, and engineering. This could happen across levels, using a F99/K00 mechanism to recruit 
postdocs, or K99/R00 to recruit junior faculty specifically with degrees in these underrepresented 
scientific fields. If a lab is already bad at data science, training within this lab is pointless. Only 
recruiting external expertise ameliorates this. Once recruited, we propose to pair up postdocs and 
students into mentor/mentee teams in which knowledge transfer can happen effectively and informally. 
Researchers experienced in data science can be enormously beneficial for guiding students or 
beginning postdocs. Researchers with expertise in mouse behavior and neurophysiology could ideally 
be teamed up with someone experienced in modeling or population level analysis so that the overall 
quality of the project improves, as well as an improved training experience can be provided for the 
individual researchers. Third, while it would be more effective to train students in earlier career stages, 
we are faced with the reality of limited computational abilities, in particular by postdoctoral researchers. 
To address this practically, and on short time scales, we should establish shared/common training 
material across our U19s and set up regular seminars or webinars covering common interests across 
U19. This could complement modern large scale online resources like the Neuromatch Academy22, or 
stand on its own. 
 

Discussion 
With increasingly powerful techniques come new data sets of massive size and complexity. These big 
data sets can radically accelerate the BRAIN Initiative4 and are accumulating at an unprecedented 
rate. This will accelerate as the BRAIN Initiative gathers further momentum. The primary tools to 
address these data are robust data infrastructure and good data science. To survey the current state 
of data science, we conducted a comprehensive survey across BRAIN initiative funded U19 projects. 
We then identified ways how data science can be improved. 

We ran our study over several months via google surveys. This allowed us to continuously 
track submissions, and easily send reminders. Despite our best efforts and multiple reminders, ~25% 
of U19s did not fill in our survey. While we have no specific insight as to why these respective data 
science liaisons and PIs chose to ignore multiple requests to contribute to this work, personal 
communication in two instances revealed that one researcher was a new postdoc who felt not familiar 
enough with the scope and program of their U19s to answer the survey. A second researcher was on 
parental leave, and their position was vacant in the meantime. While both examples were somewhat 
concerning for their respective U19s, this suggests that leaving out these U19 has not produced 
systematic distortions of what was represented here, as reasons were individual and not related to 
data science itself. 

In the vast majority of U19s, coding practices and data management were limited and 
significantly lagged behind scientific standards in other fields (e.g.23), and industry and also open-
source project (e.g.24). Even highly popular tools across U19s, like kilosort and spikeGLX, were written 
by single individuals without code review. This is surprising as many U19 researchers are in fact 
involved in other open-source projects and are aware of best practices. For example, we ourselves 
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have been involved in21,25,26. Bringing this knowledge into our respective U19s is often challenging 
because of the complexity and reality of data science in collaborations where most workers have 
limited computational abilities. Consistent with this, we found that at present google documents and 
Slack play a much larger role to distribute and organize data than any established tool in either the 
scientific or private sector. We hope that this article can raise awareness that this is concerning and 
will need to change in the future. 

Data science funding might be a critical bottleneck. We discovered that the required job profile 
of a typical U19 data scientist is highly diverse. This diversity will require experienced workers, 
necessarily at a higher pay scale than traditional postdocs. While we can possibly retain workers with 
a pay-cut of ~50% relative to an industry position, the current split exceeds 300%. We believe this is 
not sustainable. To this end we have proposed alternative means of addressing this in the Actions 
section, for example by recruiting young early-career researchers with data science experience into 
the life sciences with specific funding programs. 

We are not the first community to walk this path. Data repositories for curating and providing 
access to scientific data, combined with preserving analysis workflows in many domains became a 
driving force for progress in both industry and academia. First, considerable work was done on 
standardization in the industry, for example through norms DIN3164427 and ISO1636328. Our 
colleagues from economics have also estimated the cost and benefits of digitization with the advent 
of digital computers in the 1970s and 1980s. Empirically, for the first ~15 years, the use of digital 
computers slowed growth in productivity, a phenomenon known as the productivity paradox, before 
harnessing the enormous long-term benefits of digitization. This phenomenon arose because 
businesses had to invest in technology and learn how to use this technology before integrating them 
into core processes and business models29,30. It is conceivable that similar effects will play out in our 
communities, even though our hope is to make this transition significantly faster. Second, in science, 
desiderata for data repositories were already articulated via FAIR (Findable, Accessible, Interoperable 
and Reusable)31 and more recently the TRUST principles (Transparency, Responsibility, User focus, 
Sustainability, Technology) for digital repositories32. Data repositories will also allow to measure data 
impact33,34, for example by tracking download and citation counts35 and further the use and utility 
data36,37. In specific scientific fields this progress is happening rapidly. This is exemplified in cognitive 
science38,39 which was driven by both a stick (the replication crisis), and the carrot. For example, new 
fMRI processing pipelines have only few exposed parameters, and are sufficiently well documented 
for setup by University IT, and not an individual researcher.40 Raw data is easy to store on 
OpenNeuro41, and these pipelines make use of (1) established deployment instruments like docker 
and singularity, (2) established unit-tests to maintain functionality, and (3) code reviews to catch bugs. 
This ease of adoption significantly lowers initial costs of adoption. 

Across life sciences, an ongoing effort over the last 50 years made data and methods more 
reproducible and easier to access. This reflects both enormous successes as well as failures. While a 
failure was mentioned above, key fields that have benefitted from good data science are structural 
biology42 and genomics43. GenBank, for example, contains nucleotide sequences and protein 
translations publicly maintained by the National Center for Biotechnology Information (NCBI; part of 
NIH)44. The systematic collection and publication of protein sequences and structures over half a 
century lead to scientific breakthroughs with methods that were unthinkable when the first data began 
to be collected, such as AlphaFold45. We are optimistic that similar work in neuroscience will transform 
the field in ways that are impossible to predict now. To this end, the establishment of public, integrated 
repositories for datasets and data analysis tools, with an emphasis on ready accessibility and effective 
central maintenance, will have immense value for the science of the future33,46,47. 
 

Conclusions 
Good data science can accelerate the progress of science in predictable, and sometimes 
unpredictable ways. Our survey of the current state across large U19-funded neuroscience 
collaborations revealed substantial challenges to data science that concern us all. Only as a 
community can we address these challenges. Let’s get to it. 
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