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Abstract 
The biological process of RNA transla�on is fundamental to cellular life and has wide-ranging implica�ons 
for human disease.  Yet, accurately delinea�ng the varia�on in RNA transla�on represents a significant 
challenge.  Here, we develop RiboTIE, a transformer model-based approach to map global RNA transla�on.  
We find that RiboTIE offers unparalleled precision and sensi�vity for ribosome profiling data.  Applica�on 
of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolu�on insights into 
disease regula�on of RNA transla�on. 
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Main 
RNA transla�on is an intricate process that involves the stepwise binding of the 40S and 60S ribosome 
subunits to RNA, along with mul�ple eukaryo�c ini�a�on factors and other cofactors.1 RNA transla�on is 
a major determinant of protein abundance and represents a core area of disease biology including cancer, 
where numerous gene�c and non-gene�c factors alter the composi�on of ribosomes, efficiency of 
transla�on, and fidelity of transla�on.2  
 

To gain global insights into ribosome ac�vity, ribosome profiling (Ribo-Seq) has become increasingly 
popular to determine the transla�onal efficiency of mRNAs and detect non-canonical open reading frames 
(ORFs) and alterna�ve proteoforms that have eluded standard analyses.3,4  The computa�onal analysis of 
Ribo-Seq data has therefore become a cornerstone of research fields that rely on accurate ORF 
iden�fica�on or RNA transla�on analyses, including de novo gene discovery, RNA regula�on, 
proteogenomics, microprotein biology, and disease-focused research on therapeu�c agents whose 
mechanism targets RNA transla�on. Yet, Ribo-Seq data analyses have been challenged by biases within 
the data that are caused by both biological (e.g., �ssue type, cell lines vs. �ssue samples) and technical 
(e.g., transla�on inhibitors, lab protocols) factors.3  Current computa�onal approaches to Ribo-Seq have 
been developed on a central sta�s�cal test using manually curated features, where significant 
disagreement among tools reveals a lack of a “gold standard”.5,6  
 

To address this problem, we have created RiboTIE, a transformer-based tool for the analysis of Ribo-Seq 
data.  Our approach is based on current machine learning advances and enables the detec�on of 
translated ORFs within individual datasets without a pre-processing step, taking advantage of automated 
feature extrac�on to capture dataset-dependent correla�ons (Fig. 1a). RiboTIE processes ribosome 
informa�on along the full transcript and can predict the presence of transla�on ini�a�on sites (TISs) for 
each codon in any given RNA molecule. By evalua�ng every posi�on as a candidate TIS, all possible ORFs 
on the transcriptome are scored. Importantly, RiboTIE only uses sequenced and mapped ribosome-
protected fragments (RPFs) placed along the transcript and has no access to DNA sequence informa�on 
(e.g., start codon) or ORF characteris�cs (e.g., length). Ribo-Seq data features reads of varying lengths, 
where the distribu�on of RPFs mapped on the reading frame of reference coding sequences (CDSs) versus 
out-of-frame is the default metric to assess data quality (Extended Data Fig. 1-2).7 Instead of adjus�ng or 
discarding any mapped reads based on this quality metric, RiboTIE processes all reads by posi�on and 
length, which we determined improves its performance (Extended Data Fig. 3). 
 
To assess the robustness of RiboTIE, we benchmarked our tool on eight Ribo-Seq experiments derived 
using varying treatment methods (Extended Data Table 1). Here, we compared RiboTIE against mul�ple 
common tools for translated ORF detec�on (ORFquant8, Rp-Bp9, Ribo-TISH10, Ribotricer11, and PRICE12), 
where scoring is performed on selec�on of ORFs evaluated by the other tools. We found RiboTIE to be 
more sensi�ve and precise on these ORF sets, as reflected by the Area Under the Receiver Opera�ng 
Characteris�cs (ROC AUC) and Precision Recall (PR AUC) curve (Fig. 1b; Extended Data Table 2).  
 
As the benchmark evalua�on is poten�ally biased against RiboTIE due to the set of evaluated ORFs being 
curated by other tools, we compared the posi�ve predic�ons of each tool in more detail by analyzing six 
biological replicates of pancrea�c progenitor cells (Extended Data Fig. 4).13 We found that RiboTIE 
retrieved 64.9% more CDSs (31,431) as compared ORFquant (19,064), which obtains the second most calls 
for annotated CDSs (Fig. 1c). For smaller CDSs less than 300 bp in length, RiboTIE retrieves 300% more 
CDSs (4,043) as compared to ORFquant (1,001). RiboTIE reproducibly called 50% of annotated CDSs for 
each of the six datasets, where only an average of 4.2% of the calls are unique within a dataset (Fig. 1c). 
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We found that RiboTIE retrieved the largest quan�ty of annotated CDSs with non-canonical start sites 
across all six datasets (48; all CUG), where ORFquant (1; AUA) and PRICE (21; all CUG) are the only other 
tools to also feature non-canonical start codons. We also find notable differences between the number 
and types of non-canonical ORFs nominated by different tools (Fig. 1d).  Notably, RiboTIE has a 
substan�ally higher frac�on of upstream (overlapping) ORFs (u(o)ORFs) as compared to other tools. The 
frac�on of internal ORFs (intORFs) and downstream (overlapping) ORFs (d(o)ORFs) is low with RiboTIE, in 
contrast to Ribo-TISH and Ribotricer, as predic�on of these ORFs is known to be plagued by false-posi�ve 
calls.3,5 Addi�onally, RiboTIE calls considerably fewer lncRNA-ORFs compared to other high-performing 
tools such as ORFquant and Rp-Bp.  Nonetheless, for all three tools, the called lncRNA-ORFs follow similar 
distribu�ons: ~25% of called lncRNA-ORFs have TISs that overlap with protein-coding sequences, whereas 
~46% overlap with exons from protein-coding transcripts (Extended Data Fig. 5).  
 
We next sought to apply RiboTIE to human �ssue samples, where data quality may be more variable 
compared to cell line experiments. We evaluated 73 brain samples from both fetal (30) and adult (43) 
pa�ents14 along with 15 medulloblastoma pa�ent �ssues15 (Fig. 2a). Notably, data quality is poor for some 
of the samples, with total in-frame read occupancies below 60% in 32 samples and below 50% in 12 
samples (Fig. 2a). Across the 73 fetal and adult normal brain samples, RiboTIE made a total of 89,682 
unique ORF calls (Extended Data Fig. 4), of which 39,828 (44.4%) were annotated CDSs and 16,253 ncORFs 
(18.1%) (Fig. 2b). This represented a substan�al performance improvement rela�ve to a much larger 
number of called ORFs (158,855, of which 28.9% are annotated CDSs and 30.8% ncORFs) previously 
reported for the same dataset through the RibORF so�ware.16  
 
Across these data, RiboTIE calls 36 CDSs with a non-AUG start codon as compared to 9 such instances by 
RibORF.  For the ncORFs, the calls of RiboTIE were largely dominated by AUG start codons, whereas RibORF 
returns mostly non-canonical start codons (Fig. 2c).  Interes�ngly, for the 73 evaluated brain samples that 
have varying in-frame read occupancies between 36% and 75% (Fig. 2a), we find only a slight and non-
significant correla�on with RiboTIE’s performance (spearman 𝜌𝜌 = 0.178;𝑝𝑝 =  0.133) (Fig. 2d). As a 
strong correla�on (Spearman 𝜌𝜌 = 0.838;𝑝𝑝 =   2.5e− 20) does exist between the number of mapped 
reads within coding sequences and RiboTIE’s performance (Fig. 2e), our results indicate that reads that 
appear out-of-frame for technical and sample processing or quality reasons, are equally leveraged by 
RiboTIE to determine translated ORFs. In addi�on, there is an even stronger correla�on when only 
considering the number of reads around the TISs (+/- 30nt) and RiboTIE’s performance (Spearman 𝜌𝜌 =
0.947;𝑝𝑝 =  1.1e− 31). 
 
Following this observa�on, we generated ribosome profiling data from medulloblastoma cell lines either 
treated with dimethyl sulfoxide (DMSO) or homoharringtonine (HHT).  HHT blocks transla�on and 
concentrates RPFs around TISs. Compared to DMSO, we find an increased number of CDSs retrieved for 
12 out of 15 pairs of HHT-treated cell lines (Fig. 2f). Including 15 medulloblastoma �ssue samples from a 
previous study,15 we find HHT-treated cells to improve performance when incorpora�ng the effect of read 
depth between samples (Fig. 2g). 
 
To illustrate the role of ncORFs in medulloblastoma, we processed a total of 24 medulloblastoma cell line 
samples u�lizing RiboTIE to evaluate differen�ally expressed ncORFs between samples with high (n=16) 
and low (n=8) MYC expression, which is used to classify dis�nct medulloblastoma subtypes.17  Across all 
datasets, a total of 3,638 ncORFs, of which 69.4% are upstream ORFs (uORFs), were selected for evalua�on. 
We found 190 ncORFs with substan�al altera�ons (|Fold Change| > 2;𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 < 0.05) in transla�onal 
expression (Fig. 2h; Extended Data Table 3). We further integrated results from TIS Transformer,18 a 
machine learning tool previously developed by us to predict translated ORFs by RNA sequence context 
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alone, to filter down candidate ncORFs by their sequence proper�es.  Combined RiboTIE and TIS 
Transformer analyses revealed 22 candidate ncORFs with differen�al transla�on between 
medulloblastoma subtypes (Fig. 2h, annotated with blue dots; Extended Data Fig. 6). In the context of 
cancer biology, we iden�fied that clustering of the ncORFs read counts correctly groups the 
medulloblastoma disease subtypes (Extended Data Fig. 7). However, predicted ncORFs are o�en 
posi�oned close to, or overlapping with, annotated CDSs, where the majority of ncORF-CDS pairs are 
posi�vely correlated (Fig. 2i). We observed 38 ncORF-CDSs pairs that show a nega�ve correla�on 
(Spearman 𝜌𝜌 <  −0.71;𝑝𝑝 < 0.05) for low MYC expression and 25 pairs for high MYC expression 
(Spearman 𝜌𝜌 <  −0.50;𝑝𝑝 < 0.05) (Extended Data Table 3). Interes�ngly, we find 13 ncORF-CDS pairs that 
are inversely correlated between cell lines with low and high MYC expression (all 𝑝𝑝 < 0.05), of which 3 are 
further selected by the TIS Transformer model (DEPDC5, ACAT1, MPHOSPH6). Further evalua�ng the 
SNAPC5 ncORF and CDS with all other CDSs of the genome highlights the difference in both distribu�ons 
for low and high MYC (Fig. 2j). 
 
In summary, we have developed RiboTIE as a best-in-class and highly versa�le analysis tool approach that 
u�lizes machine learning to process Ribo-Seq data.  We have widely applied RiboTIE across 166 datasets 
with varying sequencing depths (2.7E+5 – 2.5E+8 reads; Extended Data Table 1), demonstra�ng its unique 
ability to handle data with low in-frame read occupancy and refine biological insights for disease subtypes 
of childhood medulloblastoma. RiboTIE is available as a Python package (see Code Availability) with pre-
trained models that allow fast op�miza�on �mes on new data. RiboTIE offers a new avenue to spearhead 
studies on transla�on start site analysis, non-canonical ORF detec�on and expression profiling of 
translated ORFs using Ribo-Seq data.  
 

Word Count: 1,533 
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Figure 1: Machine learning to delineate RNA transla�on from Ribo-Seq data with RiboTIE. a, Schema�c 
that outlines the flexibility and func�on of RiboTIE as a machine learning model (transformers) for 
ribosome profiling data. b, Benchmarking analyses featuring eight datasets. RiboTIE is compared with five 
other tools for translated ORF delinea�on from ribosome profiling. Precision recall (PR) or Receiver 
Operator Characteris�c (ROC) Area Under the Curve (AUC) scores are compared on ORF libraries that are 
unique to each tool. c, A stacked barplot that reflects the number of called annotated CDSs (le�, all; right, 
<300nt) by each tool for six replicate samples of pancrea�c progenitor cells, the frac�on of CDSs that are 
found in a certain number of replicates is represented as well.  d, The total number of non-canonical ORFs 
(ncORFs) and each type of ncORFs called by each tool combining all predic�ons on the six replicate samples 
of pancrea�c progenitor cells. The inner frac�ons represent ncORFs present in >4 datasets. 
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Figure 2: Applica�on of RiboTIE to human normal �ssues and brain cancer for improved analysis of RNA 
transla�on. a, Box plot showing the in-frame read occupancy (reads mapped to reading-frame vs. total 
reads within CDSs) for all data applied in this study (MBL: medulloblastoma). b, Bar plot displaying the 
combined number of unique calls for annotated CDSs and ncORFs on 73 adult/fetal brain samples as 
reported by the original paper14 (RibORF) and RiboTIE. c, A pie chart on the start codon distribu�on of all 
called ncORFs.  d, Scater plot displaying the PR AUC performance of RiboTIE on adult/fetal brain samples 
as a func�on of mapped reads on the transcriptome and e, in-frame read occupancy. f, Number of CDSs 
called by RiboTIE outlined by both a scater plot and box plot for medulloblastoma cell lines treated with 
DMSO control or homoharringtonine (HHT). Iden�cal cell lines are linked. g, Scater and fited linear 
regression plot on 30 DMSO (blue) and 15 HHT (orange) medulloblastoma samples. h, Volcano plot 
showing differen�al expression of called ncORFs of low MYC (n=8) as compared to high MYC (n=15) 
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expressing medulloblastoma cell lines. Threshold lines denote p = 0.05 (y-axis) and |fold change| > 2 (x-
axis). Blue dots accompanied by listed gene names are ncORFs confirmed by TIS Transformer. i, Histogram 
showing correla�on existent between ncORFs and their matching CDSs for both low MYC (blue) and high 
MYC (red) cell lines. Threshold lines denote p = 0.05. j, Scater plots of Spearman rank correla�ons between 
the ncORF or downstream CDS and all other CDSs on the genome for both low and high MYC expression 
(SNAPC5/ACAT1). 
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Methods 
Medulloblastoma cell culture 
All parental cell lines were obtained from the American Type Culture Collec�on (ATCC, Manassas, VA) or 
the Bandopadhayay lab (MB002, D425, D458).  Cell lines were rou�nely verified via STR genotyping and 
tested for mycoplasma contamina�on using the Lonza MycoAlert assay (Lonza)  CHLA-01-MEDR, Med2112 
(expressing mCherry and luciferase), Med411 (expressing GFP and luciferase), and MB002 cells were 
maintained in Tumor Stem Media comprised of DMEM/F12 (1:1) with Neurobasal-A medium (Invitrogen) 
and supplemented with HEPES (1M, 0.1% final concentra�on), sodium pyruvate (1mM final 
concentra�on), MEM non-essen�al amino acids (0.1mM final concentra�on), GlutaMax (1x final 
concentra�on), B27 supplement (1x final concentra�on), human EGF (20ng/mL), human FGF-basic-152 
(20ng/mL), and heparin solu�on (2ug/mL final concentra�on).  D283, D341, D384, D425, D458, DAOY, 
R262, UW228 and CHLA-259 cells were maintained in DMEM supplemented with 10% FBS and 1% 
penicillin-streptomycin in a 5% CO2 cell culture incubator.  ONS76 cells were maintained in RPMI 1640 
supplemented with 10% FBS and 1% penicillin-streptomycin in a 5% C02 cell culture incubator. 

Medulloblastoma ribosome profiling data  
Published medulloblastoma cell line (DMSO treated) and �ssue data were obtained from the Short Read 
Archive (PRJNA957428, for cell lines) or dbGAP (phs003446, for �ssues).  Matched homoharringtonine 
ribosome profiling data was generated for D283, DAOY, ONS76, R262, UW228, D384, D458, D425, Med411, 
SUMB002, Med2112, CHLA-01-MEDR, and D341.  Ribosome profiling was performed as detailed 
previously.15 In brief, cells were grown to 60-70% confluence.  Cells were then pre-treated with 5ug/mL 
homoharringtonine for 10 minutes.  Cells were then harvested, washed once in 1x cold PBS, and collected 
by centrifuga�on.  Cells were lysed in a buffer of 20mM Tris HCl, 150mM NaCl, 5mM MgCl2, 1mM 
dithiotrietol, 0.05% NP-40 and 25U/mL Turbo-DNase I (Invitrogen).  2ug/mL of cyclohexamide was 
addi�onally added to the lysis buffer.  Cleared lysates were quan�fied and 2.5U/ug of RNAse I was added 
for 45 minutes at room temperature for diges�on.  The reac�on was quenched with an equal volume of 
1U/uL Superase RNase Inhibitor (Ambion).  Ribosome protected fragments (RPFs) were isolated using 
ultracentrifuga�on at 55,000RPM at 4C for 2 hours.  RPF RNA was purified with a Zymo Direct-Zol kit 
(Zymo) and rRNA was depleted using the siTOOLS human riboPOOL kit (siTOOLS Biotech, Germany).  
Denatured RPFs were resolved on a 15% TBE-Urea gel (200V, 65 minutes) and the RPF band at 26-32 nt 
was excised and RNA extracted.  A�er RNA precipita�on, RNA was end-repaired with T4 PNK at 37C for 1 
hour, cleaned up with RNA Clean and Concentrator kit (Zymo).  The 3’ linker adapter was ligated (22C, 
3hrs) using T4 RNA ligase I and R4 RNA ligase 2 dele�on mutant.  Linker reac�ons were removed with Rec 
J exonuclease (Lucigen) and 5’ deadenylase (NEB).  cDNA was synthesized with EpiScript RT enzyme 
(Lucigen, 50C for 30 minutes).  A�er clean-up with Exonuclease I and RNAse I and hybridase (Lucigen), 
cDNA was resolved on a 10% TBE-Urea gel (175V for 1 hour), and 75nt bands were excised and DNA was 
precipitated.  Precipitated cDNA was circularized with CircLigase (Lucigen, 60C for 3hrs).  Circular cDNA 
was amplified using 2x Phusion HiFi master mix (NEB) in a 11-14 cycle PCR reac�on depending on cDNA 
yield.  PCR products were precipitated with ethanol and 5M NaCl, and resolved on a 8% TBE gel (100V, 90 
minutes).  The 150nt band was excised, purified, quan�fied for DNA abundance using a DNA Qubit, and 
analyzed for library size using an Agilent TapeSta�on (Agilent).  Libraries were then sequenced on an 
Illumina NovaSeq. 
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Ribosome profiling pre-processing 
All generated and publicly available (hESC cells: GSE144682; Medulloblastoma DMSO samples: 
PRJNA957428; Medulloblastoma HHT samples: PRJNA1077309) data were mapped and processed using 
the same pipeline. Ensembl assembly GRCh38 version 110 was used as the reference transcriptome. 
Trimming was performed using cutadapt version 4.4 filtering out reads smaller than 14nt (-m 14).19 Next, 
STAR version 2.7.11a20 was used to filter contaminant RNA and DNA using the special arguments 
“SeedSearchStartLmaxOverLread .5”, “outFilterMul�mapNmax 1000”,  “outFilterMismatchNmax 2”, and 
“outReadsUnmapped Fastx”, and to map the le� out reads to the transcriptome using the flags 
“quantMode TranscriptomeSAM”, “outFilterMul�mapNmax 10”, “outMul�mapperOrder Random”, 
“outFilterMismatchNmax 2”, and “seedSearchStartLmaxOverLread 0.5”, and “alignEndsType EndToEnd”.21  

For further processing with RiboTIE, the aligned read files are read where the number of mapped reads 
per read length and posi�on on the transcripts is used to create the vector embeddings for the model 
(Supplementary Fig. 1; Extended Data Fig. 3). For ORFQuant, Rp-Bp, Ribo-TISH, Ribotricer and PRICE, the 
recommended default se�ngs are applied (Supplementary Methods). 

Vector embeddings from mapped reads 
RiboTIE processes mapped RPF counts along the full transcript in parallel. No pre-processing of other types 
of data, such as start codon or ORF informa�on, are used to curate features or build a candidate ORF 
library. Instead, only the mapped posi�on (5’-end) and length of mapped ribosome protected fragments 
is u�lized (Supplementary Fig. 2-4). To allow computa�on with a transformer-based architecture, vector 
representa�ons are calculated that represent this informa�on for each posi�on on the transcriptome. For 
a given posi�on, the vector embedding ec is obtained from the read count c and a set of feed-forward 
layers 𝜙𝜙. Exis�ng tools use a similar methodology but apply various approaches to offset mapped reads 
as a func�on of their read length (Supplementary Table 1-2). Read counts are normalized across the 
transcript for numerical stability. 

𝑒𝑒𝑐𝑐 = 𝑒𝑒 ⊙  tanh�ϕ(𝑐𝑐)� 

With 𝑐𝑐 ∈ [0,1], ϕ:𝑅𝑅𝟙𝟙  → 𝑅𝑅ℎ, and 𝑒𝑒 ∈ 𝑅𝑅ℎ. h is a hyperparameter of the model indica�ng the input 
dimension. In this paper, we explore the inclusion of ribosome read length informa�on as part of the 
informa�on applied to determine TIS loca�ons. For a given transcript posi�on, 𝑒𝑒𝑙𝑙 is calculated using the 
read length frac�ons 𝑙𝑙 between 20 and 41 following the equa�on: 

𝑒𝑒𝑙𝑙 = �𝐸𝐸𝑖𝑖

21

𝑖𝑖=0

∗ 𝑙𝑙𝑖𝑖, 

with 𝑬𝑬 ∈ 𝑅𝑅21×ℎ and 𝐥𝐥 ∈ [0,1]21, where ∑ 𝐥𝐥 = 1. The matrix 𝐸𝐸 incorporates vector embeddings for read 
lengths 20–40 and is op�mized as part of the training process. Note that ribosome data by read length is 
sparse and the majority of values in l are 0. A�er evalua�on of different input embeddings 
(Supplementary Table 3-4), we find the op�mal vector embedding for the model at each posi�on to be 
𝒆𝒆𝒄𝒄  +  𝒆𝒆𝒍𝒍. 

Model architecture and op�miza�on 
RiboTIE is created to map the translatome at single nucleo�de resolu�on of samples using ribosome 
profiling data. To simplify the experimental learning objec�ve of detec�ng translated ORF regions, we train 
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a model to detect ac�ve transla�on ini�a�on sites (TISs), deno�ng a binary classifica�on problem. Open 
reading frames are a�erwards derived using a greedy selec�on of the first in-frame stop codon. 

Con�nuing upon our previous work on detec�ng TISs using transcript sequence informa�on,18 we u�lize 
an iden�cal transformer framework for RiboTIE. RiboTIE makes use of the Performer architecture22 in 
order to allow calcula�on of the aten�on matrix spanning full transcript sequences. Evalua�ng various 
hyperparameters and training strategies, we obtained an op�mal architecture featuring 212K weights 
(Supplementary Methods, Supplementary Table 5-6, Supplementary Figure 5-8).  The model is op�mized 
using a binary cross-entropy loss. To cover the full transcriptome without overfi�ng the machine learning 
model on the target labels, two models are trained on non-overlapping folds of the transcriptome. The 
training, valida�on and test sets are constructed from transcripts grouped per chromosome to ensure all 
transcript isoforms are present within the same set. Models are trained on the training set (chromosomes 
[3, 5, 7, 11, 13, 15, 19, 21, X], [2, 6, 8, 10, 14, 16, 18, 22, Y]) un�l a minimum loss on the valida�on ([1, 9, 
17], [4, 12, 20] set is reached, where results are acquired from the test set ([2, 4, 6, 8, 10, 12, 14, 16, 18, 
20, 22, Y, …], [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, X]). This approach, in which two models are op�mized 
with the test sets covering the full transcriptome through non-overlapping folds is followed for all datasets. 
The outputs of both models are simply combined to atain predic�ons on all transcriptome posi�ons. 
 

Data selec�on and result evalua�on 
A myriad of human ribosome profiling datasets were used covering a variety of �ssues and treatment 
methods. Ensemble GRCh38 features a transcriptome totaling ~250k transcripts and ~431M transcript 
nucleo�de posi�ons, where annotated TISs (“start codon”) posi�ons are u�lized as the posi�ve set when 
op�mizing and evalua�ng the model. 
 
When comparing RiboTIE with exis�ng tools, performances are derived from all ORFs/TIS posi�ons 
included by the ORF libraries constructed by such tools. This allows a one-on-one comparison as ORF 
libraries are unique to each tool. Otherwise, ROC/PR AUC values are obtained on all transcriptome 
posi�ons (~430M). As not all annotated TISs are expressed in each of the datasets, the maximum 
theore�cal performance is affected. 
 
The posi�ve set of called ORFs is obtained from the full set of RiboTIE predic�ons by taking predic�ons 
above the threshold score of 0.15 and exclusion of ORFs with a start codon not equal to *TG (typically 
featuring ca. 10% of the complete set). For Ribotricer and RiboTISH, which feature large ORF libraries, the 
set of called translated ORFs is filtered down to be similar to the number of predic�ons made by RiboTIE. 
For Rp-Bp, the “--write-unfiltered” flag is used for benchmark results, to compare the output of the sta�s�cal 
method itself, whereas the filtered results are used for comparison of the posi�ve sets on the human pancrea�c 
cells. For the medulloblastoma data, ncORFs without in-frame stop codons were excluded from the set of 
ncORFs. For the results on the 73 adult/fetal brain samples, the set of called translated ORFs is filtered 
down to only include ORFs that have been called in more than one dataset to mirror the approach outlined 
by Duffy et al.15 with which a set of ORFs was derived using RibORF.  
 
“lncRNA-ORFs” are defined for ORFs on transcripts with no annotated CDSs that furthermore do not share 
their genomic start or stop site with any annotated CDSs. ORFs existent on transcripts that share their 
genomic start or stop site with an annotated CDS are classified as “CDS variant”. 
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Mapping differen�al expression and correla�ons between ncORF-CDS pairs 
From a total of 26,437 ncORFs predicted by RiboTIE on all 24 medulloblastoma datasets, including 
u(o)ORFs, d(o)ORFs, intORFs and lncRNA-ORFs, a subset of 5,436 ORFs is obtained by selec�ng predic�ons 
that are present in at least 5 experiments. Combining this set with all canonical CDSs, differen�al 
expression is performed using the default workflow offered by PyDESeq2 0.4.4, where the number of 
mapped reads between samples that feature low (8) and high (15) expression of the MYC gene are 
compared. Differen�ally translated ncORFs were selected considering significance (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 < 0.05) and the 
degree of change (|Fold Change| > 2). A further filtered down list of ncORFs is given by applying the 
predic�ons from TIS transformer as an addi�onal condi�on (model output > 0.01).  

Correla�ons were calculated on the set of 5,436 ncORFs and their CDS counterparts.  Here, the Spearman 
ρ coefficients and p-values are calculated from mapped ribosome reads using the Transcripts Per Million 
(TPM) normaliza�on method.  A further filtered down list of an�-correlated ncORFs-CDS pairs is derived 
using TIS transformer (model output > 0.01). 

Data availability 
The datasets generated during the current study are available in the Gene Expression Omnibus repository 
under accessions PRJNA1077309 (Medulloblastoma HHT/DMSO samples). Other analyzed datasets involve 
those on the Gene Expression Omnibus under accession PRJNA604580 (pancrea�c progenitor cells) and 
on dbGAP under accession phs003446 (Medulloblastoma tissue samples) and phs002489 (adult/fetal 
brain samples).  

Code availability 
RiboTIE (DOI: 10.5281/zenodo.10689717) is implemented in Python and is available through GitHub 
(htps://github.com/jdcla/RIBO_former; future loca�on htps://github.com/jdcla/RiboTIE) and PyPI 
(htps://pypi.org/project/transcript-transformer/). 
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Extended Data Tables 
 

Extended Data Table 1: Datasets used in this study 

 

Extended Data Table 2: Compara�ve performances of RiboTIE with different tools 

 

Extended Data Table 3: Differen�ally expressed ncORFs between medulloblastoma cell lines with high 
and low MYC expression. 

 

Extended Data Table 4: Read counts for CDSs across medulloblastoma cell lines 
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Extended Data Figures 
 

 
 

Extended Data Figure 1: Benchmark datasets characteris�cs. a, Read length distribu�ons for the 
benchmark datasets for reads mapped to the genome. The most abundant read length is generally around 
29 nucleo�des. b, 2D histogram of transcript-based coverage (y-axis) and reads mapped (x-axis) . The 
number of mapped reads are normalized by transcript length (reads/nucleo�de). The coverage is 
calculated based on the percentage of the transcript posi�ons that have at least one read mapped by their 
5’ posi�on. The color map follows a logarithmic scale and is iden�cal for all datasets. For each of the 
benchmark datasets, the percentage of transcripts in the transcriptome with no reads mapped is given 
(top-right corner). 
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Extended Data Figure 2: Read length counts binned by reading frame offset for all benchmark datasets. 
Reads are mapped by their 5’ posi�ons. The figure highlights the skewed abundance of reads as influenced 
by the reading frame of the neighboring transla�on ini�a�on site. Similar plots have been used to filter or 
offset the mapping posi�on of reads in rela�on to their length. Read counts are taken by only evalua�ng 
transla�on ini�a�on sites of coding sequences within the consensus coding sequence (CCDS) library. A 
window of 20 nucleo�des upstream and 40 nucleo�des downstream is taken to calculate the total read 
counts. 
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Extended Data Figure 3: RiboTIE performances for different input token strategies and datasets. a, 
Illustra�on of two different strategies for construc�ng the RiboTIE input vector. Strategy A: the normalized 
read count is fed into short feed-forward neural network, where the output is used for an element-wise 
mul�plica�on with a single vector embedding. Strategy B: vector embeddings are op�mized for each read 
length. For a given input, read length embeddings are mul�plied by the frac�onal representa�on of that 
read length at that posi�on. Strategy B takes the sum of input vectors derived from the read count and 
read lengths. (b, c, d), Scores are calculated on the test set a�er selec�on of the model with the minimum 
valida�on loss. For each dataset and strategy, the cross-entropy loss, area under the receiver opera�ng 
characteris�c curve (ROC AUC), and area under the precision-recall curve (PR AUC) are given. Results 
indicate the relevance of read length informa�on for the predic�on of transla�on ini�a�on sites using 
ribosome profiling data, especially for datasets featuring a higher read depth. All strategies are evaluated 
using the same model architecture and training/valida�on data. Strategy A has been evaluated for reads 
mapped by their 5'-end and reads offset based on read length informa�on u�lizing two different tools 
(Plas�d, RiboWaltz).  
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Extended Data Figure 4: Stacked bar plot deno�ng the number of ORFs for each type within the posi�ve 
set of various tools on the pancrea�c progenitor cells and adult/fetal brain samples. Tools tagged with “*” 
(ribotricer/Ribo-TISH) give output predic�ons on all ORFs within their ORF libraries. As such, a posi�ve set 
with an iden�cal size to that of RiboTIE was selected for comparison by taking the top scoring predic�ons.  
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Extended Data Figure 5: Characteris�cs of nominated lncRNA-ORFs by RiboTIE, ORFquant, and Rp-Bp on 
pancrea�c progenitor cells. Overlap with protein coding exons and CDSs is evaluated using the TISs of 
nominated lncRNA-ORF.  

s 

Extended Data Figure 6: Example ncORFs with differen�al expression between medulloblastoma cell lines 
with high and low MYC expression.  Given are the model outputs (y-axis) for posi�ons of the transcript (x-
axis) where the output of the model (RiboTIE: le�; TIS Transformer: right) is larger than 0.04. The area of 
highly predicted ORFs is shown in orange (ncORF) and gray (annotated CDS). Ribo-Seq data, summed for 
all experiments in each group (low/high MYC), are displayed as orange bar plots (logarithmic scale, right 
y-axis).  
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Extended Data Figure 7: Clustering of Medulloblastoma cell line samples on non-canonical ORFs as called 
by RiboTIE. Clustering is performed on the normalized number of mapped reads (Transcripts Per Million 
(TPM)) using both PCA and T-SNE (Extended Data Table 4). 
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