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Abstract 
Gene expression is a multi-step transformation of biological information from its storage form 

(DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of 

this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the 

study of how genomic and transcriptomic variation creates this proteomic diversity, and is 

limited by the challenges of modeling the complexities of gene-expression. We therefore 

created moPepGen, a graph-based algorithm that comprehensively generates non-canonical 

peptides in linear time. moPepGen works with multiple technologies, in multiple species and 

on all types of genetic and transcriptomic data. In human cancer proteomes, it enumerates 

previously unobservable noncanonical peptides arising from germline and somatic genomic 

variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling 

efficient detection and quantitation of previously hidden proteins in both existing and new 

proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: 

https://github.com/uclahs-cds/package-moPepGen.  
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Main Text 
A single stretch of DNA can give rise to multiple protein products through genetic variation 

and through transcriptional, post-transcriptional and post-translational processes (e.g., RNA 

editing, alternative splicing and RNA circularization)1–4. The number of potential proteoforms 

rises combinatorically with the number of possibilities at each of these levels, so despite 

advances in proteomics technologies5,6, much of the proteome is undetected in high-

throughput studies7. 

The most common strategies to detect peptide sequences absent from canonical reference 

databases7–9 (i.e., non-canonical peptides) are de novo sequencing and open search. 

Despite continued algorithmic improvements, these strategies are computationally expensive, 

have elevated false-negative rates, and lead to variant identification issues and difficult data 

interpretation10,11. As a result, the vast majority of proteogenomic studies use non-canonical 

peptide databases that have incorporated DNA and RNA alterations7. These databases are 

often generated using DNA and RNA sequencing of the same sample, and this improves 

error rates relative to community-based databases (e.g., UniProt12, neXtProt13 and the 

Protein Mutant Database14) by focusing the search space7,15. 

This type of sample-specific proteogenomics relies on the ability to predict all potential protein 

products generated by the complexity of gene expression. Modeling transcription, translation 

and peptide cleavage to fully enumerate the combinatorial diversity of peptides is 

computationally demanding. To simplify the search-space, existing methods have focused on 

generating peptides caused by individual variants or variant types16–33, greatly increasing 

false negative rates and even potentially resulting in false positive detections if the correct 

peptide is absent from the database (Extended Data Table 1). To fill this gap, we created a 

graph-based algorithm for the exhaustive elucidation of protein sequence variations and 

subsequent in silico non-canonical peptide generation. This method is moPepGen (multi-

omics Peptide Generator; Figure 1a). 

moPepGen captures peptides that harbour any combination of small variants (e.g., single 

nucleotide polymorphisms [SNPs], small insertions and deletions [indels], RNA editing sites) 

occurring on canonical coding transcripts, as well as on non-canonical transcript backbones 

resulting from novel open reading frames (ORFs), transcript fusion, alternative splicing and 
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RNA circularization (Supplementary Figure 1). It performs variant integration, in silico 

translation and peptide cleavage in a series of three graphs for every transcript, enabling 

systematic traversal across every variant combination (Online Methods; Extended Data 

Figure 1a-d). All three reading frames are explicitly modeled for both canonical coding 

transcripts and non-canonical transcript backbones to efficiently capture frameshift variants 

and facilitate three-frame ORF search (Extended Data Figure 2a). Alternative splicing 

events (e.g., retained introns, etc.) and transcript fusions are modeled as subgraphs with 

additional small variants (Extended Data Figure 2b). Graphs are replicated four times to fully 

cover peptides of back-splicing junction read-through in circular RNAs (circRNAs; Extended 

Data Figure 2c-d). moPepGen outputs non-canonical peptides that cannot be produced by 

the chosen canonical proteome database. It documents all possible sources of each peptide 

to eliminate redundancy - for example where different combinations of genetic and 

transcriptomic events can produce the same peptide. 

We first validated moPepGen using 1,000,000 iterations of fuzz testing (Supplementary 

Figure 2). For each iteration, a transcript model, its nucleotide sequence, and a set of 

variants composed of all supported variant types were simulated. Then non-canonical 

peptides generated by moPepGen were compared to those from a ground-truth brute-force 

algorithm. moPepGen demonstrated perfect accuracy and linear runtime complexity (4.7 × 

10-3 seconds per variant) compared to exponential runtime complexity for the brute-force 

method (Figure 1b-c). A comprehensive non-canonical peptide database of human germline 

polymorphisms was generated with 15 GB of memory in 3.2 hours on a 16-core compute 

node; the brute-force method was unable to complete this task. 

Having established the accuracy of moPepGen, we next compared it to two popular custom 

database generators, customProDBJ18 and pyQUILTS22. We tested all three methods on five 

prostate tumours with extensive multi-omics characterization34–36. We first evaluated the 

simple case of germline and somatic point mutations and indels. Most peptides (84.0 ± 0.9% 

[median ± MAD {median absolute deviation}]) were predicted by all three methods, with 

moPepGen being modestly more sensitive (Extended Data Figure 3a). Next, we considered 

the biological complexity of alternative splicing, RNA editing, RNA circularization and 

transcript fusion. Only moPepGen was able to evaluate peptides generated by all four of 

these processes, and therefore 80.2 ± 2.1% (median ± MAD) of peptides were uniquely 
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predicted by moPepGen (Extended Data Figure 3b). By contrast only 3.2% of peptides were 

not predicted by moPepGen, and these corresponded to specific assumptions around the 

biology of transcription and translation made by other methods (Extended Data Figure 3c; 

Online Methods). By generating a more comprehensive database, moPepGen enabled the 

unique detection of 53.7 ± 12.2% (median ± MAD) of peptide hits from matched proteomic 

data (Extended Data Figure 3d). An example of a complex variant peptide identified only by 

moPepGen is the combination of a germline in-frame deletion followed by a substitution in 

SYNPO2 (Figure 1d). moPepGen’s clear variant annotation system also readily enables 

verification across the central dogma. For example, the somatic mutation D1249N in AHNAK 

was detected in about 30% of both DNA and RNA reads and was detected by mass 

spectrometry (MS; Figure 1e-i), confirmed by three search engines. Taken together, these 

benchmarking results demonstrate the robust and comprehensive nature of moPepGen. 

To illustrate the utility of moPepGen for proteogenomic studies, we first evaluated it across 

multiple proteases (Extended Data Figure 4a). Using independent conservative control of 

false discovery rate (FDR) across canonical and custom databases (Online Methods; 

Supplementary Figure 3)7,36, we focused on detection of novel ORFs (i.e., polypeptides 

from transcripts canonically annotated as noncoding) across seven proteases37 in a deeply 

fractionated human tonsil sample38 (Supplementary Table 1). moPepGen enabled the 

detection of peptides from 1,787 distinct ORFs previously thought to be noncoding, and these 

peptides were most easily detected with the Arg-C protease (Extended Data Figure 4b), 

suggesting alternative proteases may enhance noncoding ORF detection (Extended Data 

Figure 4c). In total 184 noncoding ORFs were detected by proteomics of four or more 

preparation methods in this single sample, demonstrating that moPepGen can identify novel 

proteins (Extended Data Figure 4d-e). 

We next sought to demonstrate that moPepGen can benefit analyses in different species by 

studying germline variation in the C57BL/6N mouse39,40. DNA sequencing of the related 

C57BL/6J strain was used to predict 5,481 non-canonical peptides arising from germline 

variants in protein-coding genes and 15,475 peptides from noncoding transcript novel ORFs 

(Extended Data Figure 5a). Across the proteomes of three bulk tissues (cerebellum, liver 

and uterus), we detected 18 non-canonical peptides in protein-coding genes and 343 from 

noncoding ORFs (Extended Data Figure 5b-d; Supplementary Table 2). Thus moPepGen 
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can support proteogenomics in non-human studies to identify variants of protein-coding 

genes and novel proteins. 

To evaluate the utility of moPepGen for somatic variation, we analyzed 375 human cancer 

cell line proteomes with matched somatic mutations and transcript fusions41,42 

(Supplementary Data). moPepGen processed each cell line in 2:58 minutes (median ± 1:20 

minutes, MAD), generating 2,683 ± 2,513 (median ± MAD) potential non-canonical variant 

peptides per cell line. The number of predicted variant peptides varied strongly with tissue of 

origin, ranging from 838 - 16,255 (Figure 2a) and was driven largely by somatic mutations in 

protein-coding genes and by fusion events in noncoding genes (Extended Data Figure 6a-c). 

Searching the cell line proteomes identified 39 ± 27 (median ± MAD) non-canonical peptides 

per cell line (Online Methods; Supplementary Figure 4). The majority of these were derived 

from noncoding transcript ORFs (Extended Data Figure 6d; Supplementary Table 3). 

Variant peptides from coding somatic mutations were more easily detected than those from 

transcript fusion events (Extended Data Figure 6e-f). 26 genes had variant peptides 

detected in cell lines from three or more tissues of origin, including the cancer driver genes 

TP53, KRAS and HRAS (Figure 2b). Peptide evidence was also found for fusion transcripts 

involving cancer driver genes like MET and STK11 (Extended Data Figure 6g-h). We 

validated non-canonical peptide-spectrum matches (PSMs) by predicting tandem mass (MS2) 

spectra using Prosit43 and verifying that variant peptide MS2 spectra correlated better with 

predictions based on the matched non-canonical peptide sequences than predictions based 

on their canonical peptide counterparts (Online Methods; Extended Data Figure 6i). Coding 

variant peptide PSMs also showed high cross-correlations with Prosit-predicted MS2 variant 

spectra, on par with those of canonical PSMs and their canonical spectra (Extended Data 

Figure 6j). Thus moPepGen can effectively and rapidly detect variant peptides arising from 

somatic variation. These variant peptides may prove to harbour functional consequences in 

future studies. Genes with non-canonical peptide hits, such as KRAS, trended towards 

greater essentiality for cell growth in multiple corresponding cell lines, and the effects may be 

independent of gene dosage (Extended Data Figure 7a-c). Across cell lines, detected 

variant peptides were also predicted to give rise to 416 putative neoantigens (3.0 ± 1.5 

[median ± MAD] per cell line; Extended Data Figure 7d; Supplementary Table 4), including 

recurrent neoantigens in KRAS, TP53 and FUPBP3 (Extended Data Figure 7e). 
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We next sought to demonstrate the utility of moPepGen in data-independent acquisition (DIA) 

MS using eight clear cell renal cell carcinoma tumours with matched whole-exome 

sequencing, RNA-sequencing and DIA proteomics44. In each tumour, moPepGen predicted 

157,016 ± 34,215 (median ± MAD) unique variant peptides from protein-coding genes 

(Extended Data Figure 8a). Using a Prosit-generated spectral library, we detected 307 ± 

112 (median ± MAD) variant peptides in each tumour using DIA-NN45 (Extended Data 

Figure 8b; Supplementary Table 5). Germline-SNP and alternative splicing were the most 

common sources of detected variant peptides (Extended Data Figure 8c-d). Non-canonical 

peptides derived from RNA editing events were detected in 21 genes (Extended Data Figure 

8e-i). Thus moPepGen can enable detection of variant peptides from DIA proteomics. 

Finally, to demonstrate the utility of moPepGen on the most complex gene-expression data, 

we analyzed five primary prostate cancer samples with matched DNA whole-genome 

sequencing, ultra-deep ribosomal-RNA-depleted RNA-sequencing and mass-spectrometry-

based proteomics34–36. moPepGen generated 1,382,666 ± 64,281 (median ± MAD) unique 

variant peptides per sample, spanning 115 variant combination categories (Figure 2c). 

Searching this database resulted in the detection of 206 ± 56 (median ± MAD) non-canonical 

peptides per sample. The distribution of intensities and Comet expectation scores of non-

canonical target peptide hits closely resembles that of canonical target peptides and is 

distinct from all decoy hits (Supplementary Figure 5), lending confidence in our non-

canonical peptide detection. 138 ± 28 (median ± MAD) detected non-canonical peptides were 

derived from protein-coding genes (Extended Data Figure 9a; Supplementary Table 6). All 

samples harboured proteins containing multiple variant peptides (9 ± 1.5 [median ± MAD] 

proteins per tumour; range of 2-6 variant peptides per protein; Figure 2d). Some detected 

peptides harboured multiple variants, including two from prostate-specific antigen (PSA from 

the KLK3 gene; Extended Data Figure 9b). Germline SNPs were the major common cause 

of variant peptides on coding transcripts and alternative splicing events were the most 

common cause on noncoding transcripts (Extended Data Figure 9c-e). Nine genes showed 

recurrent detection of peptides caused by circRNA back-splicing (Extended Data Figure 9f-

g), with 36/78 circRNA PSMs validated by de novo sequencing (Supplementary Table 7)46. 

These recurrent circRNA-derived peptides were verified in five additional prostate tumours 

(Supplementary Figure 6). We also detected four peptides from noncoding transcripts with 
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the recently reported tryptophan-to-phenylalanine substitutants47. Thus moPepGen can 

identify peptides resulting from highly complex layers of gene-expression regulation. 

moPepGen is a computationally efficient algorithm that enumerates transcriptome and 

proteome diversity across arbitrary variant types. It enables the detection of variant and novel 

ORF peptides across species, proteases and technologies. moPepGen integrates into 

existing proteomic analysis workflows, and can broadly enhance proteogenomic analyses for 

many applications. 
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Online Methods 

Transcript Variant Graph 

A transcript variant graph (TVG) is instantiated for each transcript, incorporating all 

associated variants. In a TVG, nodes are transcript fragments with reference or alternative 

nucleotide sequences, while edges are the opening or closing of variant nodes connecting 

them to the reference sequence, or simply the elongation of reference sequences. The TVG 

starts with three linear nodes of the entire transcript sequence representing the three reading 

frames, with x number of nucleotides removed from the transcript N-terminus, where x equals 

0, 1, or 2. A variant is incorporated into the graph by cutting nodes in the graph at the 

variant’s start and end positions and attaching a new node with the alternative sequence to 

the new upstream and downstream nodes. An in-frame variant is represented as a node that 

has incoming and outgoing nodes in the same reading frame subgraph, while frameshifting 

variants have incoming nodes and outgoing nodes in different subgraphs representing 

different reading frames. The outgoing reading frame index equals to ����� � ����� ��� 3 , 

where ���� is the length of the reference sequence and ���� is the length of the alternative 

sequence. For transcripts with an annotated known canonical open reading frame (ORF), 

variants are only incorporated into the subgraph with the appropriate reading frame index 

(Extended Data Figure 2a). If frameshifting variants are present, variants are also 

incorporated into the subgraphs with the reading frame indices of the outgoing frameshift 

nodes. For transcripts without an annotated ORF, all variants are incorporated into all three 

subgraphs (Extended Data Figure 2a). Large insertions and substitutions as the result of 

alternative splicing events (e.g., retained introns, alternative 3’/5’ splicing, etc.) are 

represented as subgraphs that can carry additional variants (Extended Data Figure 2b). 

Variant Bubbles and Peptide Variant Graph 

After the TVG has been populated with all variants, nodes that overlap with each other in 

transcriptional coordinates are aligned to create variant bubbles within which all nodes point 

to the same upstream and downstream nodes (Extended Data Figure 1b). This is done by 

first finding connection nodes in the TVG. A connection node is a reference node without any 

variants in its transcriptional coordinates that connects two variant bubbles after they are 

aligned. The root node is the first connection node, and the next connection node is found by 
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looking for the first commonly connected downstream node with length of five or more 

nucleotides that is outbound to more than one node (Supplementary Note 1; 

Supplementary Figure 7). Nodes between the two connection nodes are then aligned and a 

variant bubble is formed by generating all combinations of merged nodes so that they all 

point to the same upstream and downstream nodes (Extended Data Figure 1b). 

Overlapping variants in the variant bubble are eliminated because they are disjoint. The 

sequence lengths of nodes in the variant bubble are also adjusted by taking nucleotides from 

the commonly connected upstream and downstream nodes to ensure that they are multiples 

of three. A peptide variant graph (PVG) is then instantiated by translating the nucleotide 

sequence of each TVG node into amino acid sequences. 

Peptide Cleavage Graph 

The peptide variant graph is converted into the peptide cleavage graph (PCG), where each 

edge represents an enzymatic cleavage site (Extended Data Figure 1c). For connection 

nodes, all enzymatic cleavage sites are first identified, and the node is cleaved at each 

cleavage site. Because enzymatic cleavage sites can span over multiple nodes (for example, 

the trypsin exception of not cutting given K/P but cutting given WK/P), connection nodes are 

also merged with all downstream and/or upstream nodes and cut at additional cleavage sites 

if found. To optimize run time, different merge-and-cleave operations are used depending on 

the number of incoming and outgoing nodes, and the number of cleavage sites in a node 

(Supplementary Figure 8). Hypermutated regions where variant bubbles contain many 

variants and/or the lack of cleavage sites in connection nodes can result in an exponential 

increase in the number of nodes in the aligned variant bubble. To deal with this, we used a 

pop-and-collapse strategy, such that when merge-and-cleave is applied to a connection node, 

x number of amino acids are popped from the end of each node in the variant bubble. The 

popped nodes are collapsed if they share the same sequence. The pop-and-collapse 

operation is only applied when the number of nodes in a variant bubble exceed a user-

defined cutoff. 

Calling Variant Peptides 

Variant peptides with the permitted number of miscleavages are called by traversing through 

the peptide cleavage graph. A node in a PCG can be in a different ORF when arriving at the 

node by traversing from a different incoming node. Thus, we use a stage-and-call approach 
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that first visits all incoming nodes to determine the valid ORFs of a peptide node 

(Supplementary Note 2). Stage-and-call also allows cleavage-gain mutations and upstream 

frameshift mutations to be carried over to the downstream peptide nodes. Peptide nodes are 

then extended by merging with downstream nodes to call variant peptides with miscleavages 

(Supplementary Note 3). For noncoding transcripts, novel ORF start sites, including those 

caused by start-gain mutations, are found by looking for any methionine (M) in all three 

subgraphs. 

Fusion and Circular Transcripts 

Most fusion transcript callers detect the fusion events between genes, thus causing ambiguity 

as to which transcripts of the genes are involved in a particular fusion event. We took the 

most comprehensive approach and endeavored to capture all possible variant peptides by 

assuming that the fusion event could happen between any transcript of the donor and 

accepter genes. Fusion transcripts are considered as novel backbones in graph instantiation, 

with an individual graph instantiated for each donor and acceptor transcript pair. Single 

nucleotide variants (SNV) and small insertion/deletions (indels) of both donor and acceptor 

transcripts are incorporated into the TVG. The translated and cleaved PCG is then traversed 

to call variant peptides, identical to a canonical transcript backbone. If the fusion breakpoint is 

in an intronic region, the intronic nucleotide sequence leading up to or following the 

breakpoint is retained as unspliced, and any SNVs or indels that it carries are also 

incorporated into the graph. The ORF start site of the donor transcript, if exists, is used when 

calling variant peptides. The fusion transcript is treated as a noncoding transcript if the donor 

transcript is annotated as noncoding. 

Similar to fusion transcripts, circular RNAs (circRNAs) are treated as novel backbones, with 

an individual graph instantiated for each circRNA (Extended Data Figure 2c). A circular 

variant graph (CVG, a counterpart to TVG) is instantiated by connecting the linear sequence 

of the circRNA onto itself at the back-splice junction and incorporating SNVs and indels. 

Novel peptides can theoretically be translated from circRNAs if a start codon is present, by 

ribosome readthrough across the back-splicing junction site. If the circRNA length is not a 

multiple of three nucleotides, translation across the back-splicing site induces a frameshift. 

Without a stop codon, the ribosome may traverse the circRNA up to three times before the 

amino acid sequence repeats. Therefore, moPepGen extends the circular graph linearly by 
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appending three copies of each reading frame as a subgraph to account for frameshifts. The 

extended graph is then translated to a PVG and converted to a PCG. Variant peptides are 

called by treating every circRNA as a noncoding transcript and exploring all novel start 

codons in all three reading frames. 

Biological Assumptions for Edge Cases 

moPepGen applies various assumptions to selectively include or exclude certain variant 

events or peptides (Extended Data Figure 3c). Start-codon-altering variants are excluded 

due to the uncertainty around whether and where translation will still occur. Similarly, splice-

site-altering variants are omitted due to the complexity of splicing determinants, which can 

result in skipping to the next canonical or non-canonical splice site. We terminate translation 

at the last complete peptide when stop codons are unknown, as incomplete transcript 

annotations create ambiguity in downstream sequences, obscuring enzymatic cleavage sites. 

Stop-codon-altering variants do not extend translation beyond the transcript, as the 

downstream genomic region is not assumed to be part of the RNA transcript. 

GVF File Format and Parsers 

Genomic (single nucleotide polymorphisms [SNP], SNV, indel) and transcriptomic variants 

(fusion transcripts, RNA editing sites, alternative splicing transcripts, circRNAs) are first 

converted into gene-centric entries for each transcript that they impact. We defined the GVF 

(genetic variant format) file format, derived from the VCF (variant calling format) file format, to 

store all relevant information for each variant. The location of each variant is represented by 

gene ID along with offset from the start of the gene. Parsers have been implemented as part 

of moPepGen to parse the outputs of a variety of variant calling tools and convert them into 

the GVF file format. VCF files containing SNPs, SNVs and indels require annotation via 

Variant Effect Predictor (VEP) for compatibility with the parseVEP module. Native output files 

for fusion transcripts, alternative splicing events, RNA editing sites and circRNAs are directly 

processed by their respective moPepGen parsers. moPepGen was implemented in Python 

and supports easy extension and addition of new parsers. The corresponding Nextflow 

pipeline, available at https://github.com/uclahs-cds/pipeline-call-NonCanonicalPeptide, 

orchestrates the input data processing, non-canonical peptide prediction, database 

stratification into tiers, and other ancillary functions, including filtering based on transcript 

abundance48,49. Additionally, our DNA data processing pipeline, designed for calling germline 
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and somatic SNVs and indels from whole-genome sequencing (WGS) and whole-exome 

sequencing (WXS) data with recalibration and adjustment, is accessible at 

https://github.com/uclahs-cds/metapipeline-DNA50. 

Fuzz Testing and Brute Force Algorithm 

A simulation-based fuzz testing framework is used to ensure the validity of moPepGen. In 

every fuzz test case, a transcript is simulated with a transcript model of various parameters 

(e.g., coding or noncoding, positive or negative strand, selenoprotein or not, unknown start or 

stop codon position) and artificial sequence. Variant records associated with the transcript 

are then simulated, covering all supported variant types, including SNV, indel, fusion, 

alternative splicing, RNA editing and circRNA. Variant peptides produced by moPepGen are 

then compared to the output of the brute force algorithm, which iterates through all possible 

variant combinations to identify non-canonical peptides. The brute force algorithm also 

performs three-frame translation for noncoding transcripts. Software encoding this algorithm 

is available in the same repository as moPepGen. 

Datasets 

Cancer Cell Line Encyclopedia proteome 

Proteomics characterization of 375 cell lines from the Cancer Cell Line Encyclopedia (CCLE) 

was obtained from Nusinow et al., 202042. Fractionated raw mass spectrometry (MS) data 

were downloaded from MassIVE (project ID: MSV000085836). Somatic SNVs and indels, 

and fusion transcript calls from the CCLE project were downloaded from the DepMap portal 

(https://depmap.org/portal, 22Q1). Somatic mutations were converted to GRCh38 

coordinates from hg19 using CrossMap (v0.5.2)51. Gene and transcript IDs were assigned to 

each SNV/indel using the Variant Effect Predictor (VEP)52 (v104) with genomic annotation 

GTF downloaded from GENCODE (v34)53. Fusion results were aligned to the GENCODE v34 

reference by first lifting over the fusion coordinates to GRCh38 using CrossMap (v0.5.2). 

After lift-over, the records were removed if the donor or acceptor breakpoint location was no 

longer associated with the gene, if either breakpoint dinucleotides did not match with the 

reference, or if either gene ID was not present in GENCODE (v34). 
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Mouse proteome 

Mass spectrometry-based characterization of the proteome of mouse strain C57BL/6N was 

obtained from Giansanti et al., 202240. Fractionated raw mass spectrometry data of the liver, 

uterus and cerebellum proteomes was downloaded from the PRIDE repository (project ID: 

PXD030983). Germline single nucleotide polymorphisms (SNPs) and indels were obtained 

from the Mouse Genomes Project39 with GRCm38 VCFs downloaded from the European 

Variation Archive (accession: PRJEB43298). Germline SNPs and indels were mapped using 

VEP (v102) to Ensembl GRCm38 GTF (v102)54. 

Alternative protease and fragmentation proteome 

A human tonsil tissue processed using ten different combinations of proteases and peptide 

fragmentation methods (ArgC_HCD, AspN_HCD, Chymotrypsin_CID, Chymotrypsin_HCD, 

GluC_HCD, LysC_HCD, LysN_HCD, Trypsin_CID, Trypsin_ETD, Trypsin_HCD) was 

obtained from Wang et al., 201938. Fractionated raw mass spectrometry data were 

downloaded from the PRIDE repository (project ID: PXD010154). 

DIA Proteome 

Data-independent acquisition (DIA) proteomic data from eight clear cell renal cell carcinoma 

samples were obtained from Li et al., 202344. Raw mass spectrometry data were retrieved 

from the Proteomic Data Commons (PDC) under accession number PDC000411. WXS and 

RNA-seq BAM files were obtained from Genomic Data Commons (GDC, Project: CPTAC-3, 

Primary Site: Kidney). WXS data was processed using a standardized pipeline to identify 

germline SNPs, somatic SNVs and indels50. BAM files were first reverted to FASTQ format 

using Picard toolkit (v2.27.4) and SAMtools (v1.15.1)55 and subsequently re-aligned to the 

human reference genome GRCh38 using BWA-MEM2 (v2.2.1)56. The re-aligned BAM files 

were then calibrated using BQSR and IndelRealignment from GATK (v4.2.4.1)57. Germline 

SNPs and indels were called following GATK (v4.2.4.1) best practices57,58, while somatic 

SNVs and indels were called using Mutect2 (from GATK v4.5.0.0). Gene and transcript IDs 

from GENCODE (v34) were assigned to variants by VEP (v104)59. Similarly, RNA-seq BAM 

files were converted back to FASTQ format using Picard toolkit (v2.27.4) and SAMtools 

(v1.15.1) and re-aligned to human genome GRCh38.p13 with GENCODE v34 GTF using 

STAR (2.7.10b)60. Transcript fusion events were called using STAR-Fusion (v1.9.1)61, 
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alternative splicing events were called using rMATS (v4.1.1)62, and RNA editing sites were 

called using REDItools2 (v1.0.0)63 using paired RNA and DNA BAMs. 

Prostate cancer proteome 

The proteomics characterization of five prostate cancer tissues were obtained from Sinha et 

al., 201936. Raw mass spectrometry data were downloaded from MassIVE (project ID: 

MSV000081552). Germline SNPs and indels, as well as somatic SNVs and indels were 

obtained from the ICGC Data Portal (Project code: PRAD-CA). Variants were indexed using 

VCFtools (v0.1.16)64 and lifted over to GRCh38 using Picard toolkit (v2.19.0), followed by 

chromosome name mapping from the Ensembl to the GENCODE system using BCFtools 

(v1.9-1)65. Gene and transcript IDs were mapped by VEP (v104)59 to the GENCODE (v34) 

GTF. Raw mRNA sequencing data were obtained from Gene Expression Omnibus 

(accession: GSE84043). Transcriptome alignment was performed using STAR (v2.7.2) to 

reference genome GRCh38.p13 with GENCODE (v34) GTF and junctions were identified by 

setting the parameter --chimSegmentMin 1066. CIRCexplorer2 (v.2.3.8) was used to parse 

and annotate junctions for circular RNA detection67. Fusion transcripts were called using 

STAR-Fusion (v1.9.1)61. RNA editing sites were called using REDItools2 using paired RNA 

and DNA BAMs (v1.0.0)63. Alternative splicing transcripts were called using rMATS (v4.1.1)62. 

Terminology 

Non-canonical Peptides 

Non-canonical peptides are absent from the canonical reference protein sequence database. 

They can arise from genomic variants (e.g., germline SNPs, somatic SNVs, indels), 

transcriptomic events (e.g., alternative splicing, transcript fusion, RNA editing, circRNAs), and 

sequence modifications during translation (e.g., selenocysteine terminations, tryptophan-to-

phenylalanine [W>F] substitutants) in protein-coding transcripts. Peptides translated from 

novel ORFs in transcripts annotated as noncoding (e.g., lncRNAs, pseudogenes) are also 

classified as non-canonical peptides when derived from valid biological processes, with 

possible further additions of genomic or transcriptomic variants. 

Variant Peptides 

Variant peptides are a subset of non-canonical peptides harbouring genomic and/or 

transcriptomic variants translated from protein-coding transcripts. 
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Proteoform 

A proteoform is a specific molecular form of a protein with a unique amino acid sequence 

resulting from genetic variations (e.g., germline SNPs, somatic SNVs, indels), transcriptional 

processes (e.g., alternative splicing, transcript fusion, RNA editing), translation-level 

sequence modifications (e.g., selenocysteine terminations, W>F substitutants) or post-

translational/co-translational modifications generated by enzymatic (e.g., phosphorylation, 

acetylation, N/O-glycosylation) or non-enzymatic (e.g., glycation, oxidation, etc.) attachment 

of specific chemical moieties to the side chains of specific amino acids. 

Canonical Database 

A canonical database is a reference protein database containing sequences derived 

exclusively from well-annotated, protein-coding genes and transcripts without variants, 

modifications, or alternative splicing events. It represents the standard, widely accepted 

protein sequences in a given organism, excluding non-canonical or variant sequences that 

arise from genomic or transcriptomic alterations. 

Non-canonical Database 

A non-canonical database is a protein database that contains only sequences absent from 

the canonical database. It includes peptides or proteins derived from genomic or 

transcriptomic variants, alternative splicing events, or previously unannotated and 

misannotated regions, ensuring no overlap with standard, well-annotated protein sequences. 

This database enables the detection of unique, rare, or condition-specific peptides that 

cannot be identified using canonical databases alone. 

Canonical Database Search 

All mass spectrometry raw files (.raw) were converted to the open format mzML using 

ProteoWizard (3.0.21258)68. The human GRCh38 canonical proteome database was 

obtained from GENCODE (v34), concatenated with common contaminants69, and appended 

with reversed sequences to enable target-decoy false discovery rate (FDR) control. Mouse 

GRCm38 canonical proteome database was obtained from Ensembl (v102) and similarly 

processed. Database search was performed using Comet (v2019.01r5)70. All searches were 

performed with static modifications of cysteine carbamidomethylation, and up to three 

variable modifications of methionine oxidation, protein N-terminus acetylation and peptide N-
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terminus pyroglutamate formation. All searches were performed with fully specific digestion 

on both peptide ends for peptide lengths of 7-35 amino acids. Except for the tonsil samples 

processed with alternative enzymes, searches were performed with trypsin digestion and up 

to two miscleavages. For CCLE, static modification of tandem mass tag (TMT; 10plex) on the 

peptide N-terminus and lysine residues and variable modification of TMT on serine residues 

were additionally included, in accordance with the original study. For CCLE, searches were 

set to low resolution with 20 ppm precursor mass tolerance, 0.5025 Da fragment mass 

tolerance, and clear m/z range corresponding to TMT10plex, in accordance with the original 

publication. All other searches were of high-resolution label-free quantification (LFQ), with 

precursor mass tolerance of 20 ppm, 10 ppm, 30 ppm for the mouse proteome, tonsil 

proteome and prostate cancer proteome, respectively, and fragment mass tolerances of 

0.025 Da for the tonsil proteome and 0.01 Da otherwise, in accordance with original 

publications. Tonsil proteomes were searched with the appropriate protease used in sample 

preparation, with maximum two miscleavages for Lys-C and Arg-C, three miscleavages for 

Glu-C and Asp-N and four miscleavages for chymotrypsin, as in the original publication38. 

Peptide level target-decoy FDR calculation was performed using the FalseDiscoveryRate 

module from OpenMS (v3.0.0-1f903c0)71 using the formula (D+1)/(T+D), where D is the 

number of decoy peptide-spectrum matches (PSMs) and T is the number of target PSMs. 

Peptides were filtered at 1% FDR, and all PSMs were removed from the corresponding 

mzML for subsequent non-canonical database search. Post-hoc cohort level FDR was 

calculated to verify an FDR cutoff smaller than 1%. Peptide quantification was performed 

using FeatureFinderIdentification as part of OpenMS (v3.0.0-1f903c0)72, using the “internal 

IDs only” strategy and with adjusted precursor mass tolerances as above, and otherwise 

default parameters for LFQ proteomics. The IsobaricAnalyzer module from OpenMS (v3.0.0-

1f903c0) was used for the quantification of channel intensities for TMT proteomics, with no 

isotope correction due to the lack of correction matrix. 

Non-canonical Database Generation 

Human GRCh38 proteome reference files were obtained from GENCODE (v34) while mouse 

GRCm38 proteome reference files were obtained from Ensembl (v102). All non-canonical 

peptide databases were generated with trypsin digestion of up to two miscleavages and 

peptide lengths 7-25, except for databases used for alternative protease samples. Peptides 
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from alternative translation were generated using callAltTranslation, including those with 

selenocysteine termination73 or W>F substitutants47. Peptides from noncoding ORFs were 

generated using callNovelORF with ORF order as min and with or without alternative 

translation. Noncoding ORF peptide databases were also generated for each alternative 

protease used in processing of the tonsil proteome, with appropriate number of maximum 

miscleavages as outlined above. 

Non-canonical peptide databases were generated for 376 cell lines from CCLE, 375 of which 

have non-reference channel proteomics characterization. This included all 10 cell lines in the 

bridge line and 366 non-reference cell lines with mutation data. Of the 378 non-reference 

channels across 42 plexes, three cell lines were duplicated, seven were in the bridge line, 

two didn’t have mutation or fusion information and additional eight didn’t have fusion 

information. Variant databases from all cell lines in a TMT plex, including the ten cell lines in 

the reference channel, were merged along with noncoding ORF peptides to generate plex-

level databases. Plex-level databases were split into “Coding” (coding point mutations and 

transcript fusions), “Noncoding” (noncoding transcript novel ORFs) and “Noncoding Variant” 

(point mutations and transcript fusions on noncoding transcript ORFs) databases for tiered 

database search. 

Non-canonical peptide databases for the proteome of mouse strain C57BL/6N was generated 

by calling variant peptides based on germline SNPs and indels, followed by merging with the 

noncoding ORF peptides database, and splitting into the three databases. The “Germline” 

database contained coding germline variations, “Noncoding” the novel ORFs, and 

“Noncoding-Germline” the peptides from germline variations on noncoding transcript ORFs. 

Genomic and transcriptomic variants (i.e., germline SNPs, germline indels, somatic SNVs, 

somatic indels, RNA editing sites, transcript fusions, alternative splicing and circRNA) from 

five prostate tumour samples were similarly used to call variant peptides, which were merged 

with the noncoding ORF peptide database and alternative translation peptide database and 

split into five databases. The “Variant” database included non-canonical peptides from coding 

transcripts with SNVs, indels, RNA editing, alternative splicing or transcript fusions. The 

“Noncoding” database included all peptides from noncoding transcript novel ORFs and 

noncoding peptides with any variants were in the “Noncoding Variant” database. The 

“Circular RNA” database included all peptides representing circRNA open reading frames 
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(ORFs) with or without other sequence changes. The “Alt Translation” database included any 

peptides with selenocysteine insertion or W>F substitutants47. 

Non-canonical Database Search 

Non-canonical database searches were performed in nearly identical fashion as canonical 

proteome searches for each dataset, as described in detail above. Custom databases of 

peptide sequences were concatenated with the reverse sequence for FDR control. Non-

canonical peptide searches with Comet (v2019.01r5) were set to “no cleavage” and did not 

permit protein N-terminus modifications or clipping of N-terminus methionine. Peptide-level 

FDR was set to 1% independently for each tier of non-canonical database, and PSMs of 

peptides that passed FDR were removed from the mzML for subsequent searches. Post-hoc 

cohort level FDR was calculated to verify an FDR cutoff smaller than 1%. Each tier of 

database thus had independent FDR control using database-specific decoy peptides, and a 

spectra is excluded from subsequent searches after finding its most probable match. This 

strategy has been shown to both alleviate the detection of false-positive non-canonical 

peptides due to joint FDR calculation with canonical peptides and to enable a highly 

conservative approach to non-canonical peptide detection7,74. For CCLE specifically, peptide 

detection and quantification were only considered for a cell line when the non-canonical 

peptide exists in the sample-specific database. For prostate tumors, additional searches were 

conducted with the same non-canonical databases using MSFragger (v3.3)75 and X!Tandem 

(v2015.12.15)76 with equivalent parameters for verification. For all datasets, quantified 

peptides were distinguished by charge and variable modifications, and detected but not 

quantified peptides were excluded from subsequent analysis. 

DIA Non-canonical Spectral Library Search 

Raw files were converted to .mzML files using ProteoWizard (3.0.21258)68. Sample-specific 

variant peptide FASTA databases were generated using the aforementioned non-canonical 

database generation pipeline, with individual spectral libraries .msp files generated by Prosit77. 

Prosit was configured with the instrument type of LUMAS, collision energy of 34, and 

fragmentation method of HCD, with all other parameters set to default. Each sample was 

searched against the sample-specific predicted variant peptide spectral library using DIA-NN 

(v.1.8.1)45. Spectral library searches were performed using the sample-specific spectral 
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library, with protein inference disabled. All searches were performed with q-value cutoff of 

0.01 and quantified using the “high precision” mode. 

Neoantigen Prediction 

Neoantigens were predicted from non-canonical peptide hits detected in the CCLE 

proteomes. First, cell line-specific HLA genotype was predicted using OptiType (v1.3.5)78 

from whole-genome or whole-exome sequencing data. Non-canonical peptide hits in the 

“Coding” database tier were converted to FASTA format using a custom script. Neoantigen 

predictions were subsequently performed MHCflurry (v2.0.6)79, with default parameters and 

cell line-specific HLA genotypes. 

Statistical Analysis and Data Visualization 

All statistical analysis and data visualization were performed in the R statistical environment 

(v4.0.3), with visualization using BoutrosLab.plotting.general (v6.0.2)80. All boxplots show all 

data points, the median (center line), upper and lower quartiles (box limits), and whiskers 

extend to the minimum and maximum values within 1.5 times the interquartile range. 

Schematics were created in Inkscape (v1.0) and Adobe Illustrator (27.8.1), and figures were 

assembled using Inkscape (v1.0). 

Gene Dependency Association Analysis 

Gene dependency data from the CRISPR screens in the CCLE project were downloaded 

from the DepMap data portal (https://depmap.org/portal, 24Q2). Twelve cell lines with non-

canonical peptide detections in proteomic data from at least ten genes were selected. The 

CERES scores81 of genes with non-canonical peptide hits were compared to those without, 

using the Mann-Whitney U-test. Additionally, pooled CERES scores across all genes and cell 

lines were compared between the two groups using the same test. For KRAS, CERES scores 

and RNA abundance in cell lines with non-canonical peptide detections in proteomic data 

were compared to those without using the Mann-Whitney U-test. 

Spectrum Visualization and Validation 

Target PSM experimental spectra were extracted from mzML files using custom scripts 

based on pyOpenMS82 and visualized in R. Theoretical spectra were generated from the 

target peptide sequences using the TheoreticalSpectrumGenerator module of OpenMS, and 

hyperscores between the experimental and theoretical spectra were calculated using the 
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HyperScore module with the same parameters (e.g., fragment mass tolerance) used during 

database search. Fragment ion matching between the experimental and theoretical spectra 

was performed using a similar approach to IPSA83. Theoretical spectra with predicted 

fragment peak intensities were generated using Prosit through the Oktoberfest84 Python 

package using parameters (e.g., fragmentation method and energy) in accordance with the 

original publication43. Similarities between the experimental spectra and the Prosit predicted 

spectra were estimated using cross-correlation85, using the same parameters (e.g., 

fragment_bin_offset) during database search with Comet. To assess the distribution of cross-

correlation values for variant peptide PSMs, we randomly selected 1,000 PSMs from the 

canonical database search of each of the 42 TMT-plexes as control. Spectra matched to 

peptides derived from circRNA events were validated using the Novor algorithm through 

app.novor.cloud, using parameters (e.g., fragmentation method, MS2 analyzer, enzyme, 

precursor and fragment mass tolerance) consistent with database searches46. 

Cohort Level FDR 

A post-hoc approach was employed to estimate the FDR threshold at the cohort level for 

each database tier. Within each sample and database tier, we first identified the target hit 

with the highest FDR value under the 1% threshold, denoted as FDRi. 
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The number of decoy and target hits with FDR values less than FDRi for each sample were 

tallied. The equivalent cohort-level FDR threshold was then calculated by dividing the total 
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Figure Legends 

Figure 1: moPepGen is a graph-based algorithm that uncovers non-

canonical peptides with variant combinations 

a) moPepGen algorithm schematic. moPepGen is a graph-based algorithm that generates 

databases of non-canonical peptides that harbour genomic and transcriptomic variants (e.g., 

single nucleotide variants [SNVs], small insertions and deletions [indels], RNA editing, 

alternative splicing, gene fusion and circular RNAs [circRNAs]) from coding transcripts, as 

well as from novel open reading frames of noncoding transcripts. b) and c) moPepGen 

achieves linear runtime complexity when fuzz testing with SNVs only (b) and with SNVs and 

indels (c). d) A variant peptide from SYNPO2 that harbours a small deletion and an SNV. 

Fragment ion mass spectrum from peptide-spectrum match (PSM) of the non-canonical 

peptide harbouring two variants (top, both) is compared against the canonical peptide 

theoretical spectra (left, theoretical spectra at the bottom) and against the variant peptide 

theoretical spectra (right, bottom). Fragment ion matches are colored, with b-ions in blue and 

y-ions in red. e-g) A somatic SNV D1249N in AHNAK was detected in DNA sequencing at 

chr11:62530672 (e), in RNA-sequencing (f) and as the non-canonical peptide 

MDIDAPDVEVQGPNWHLK (g). h-i): Fragment ion mass spectrum from PSM of the 

canonical peptide MDIDAPDVEVQGPDWHLK (h) and the non-canonical peptide (i). 

Figure 2: moPepGen generates comprehensive non-canonical databases 

that support for proteogenomic analysis 

a) Sizes of variant peptide databases generated by moPepGen using somatic single 

nucleotide variants, small insertions and deletions and transcript fusions for 376 cell lines 

from the Cancer Cell Line Encyclopedia project. Color indicates cell line tissue of origin. b) 

Genes with variant peptides detected in cell lines across three or more tissues of origin 

(bottom covariate). The barplot shows number of recurrences across tissues and color of 

heatmap indicates number of cell lines. c) Number of non-canonical peptides from different 

variant combinations (bottom heatmap) generated using genomic and transcriptomic data 

from five primary prostate tumours, shown across four tiers of custom databases and 

grouped by the number of variant sources in combination. Alternative translation (Alt 

Translation) sources with ≥ 10 peptides are visualized. d) Five variant peptides detected in 
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one prostate tumour (CPCG0183) from the protein plectin (PLEC). Fragment ion matches are 

colored, with b-ions in blue and y-ions in red. 
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Extended Data Figure Legends 

Extended Data Figure 1: Core graph algorithm of moPepGen 

The graph algorithm of moPepGen implements the following key steps: a) A transcript variant 

graph (TVG) is generated from the transcript sequence with all variants associated. All three 

reading frames are explicitly generated to efficiently handle frameshift variants. b) Variant 

bubbles of the TVG are aligned and expanded to ensure the sequence length of each node is 

a multiple of three. c) Peptide variant graph (PVG) is generated by translating the sequence 

of each node of the TVG. d) Peptide cleavage graph is generated from the PVG in such a 

way that each node is an enzymatically cleaved peptide. 

Extended Data Figure 2: Differential handling of noncoding transcripts, 

subgraphs and circular RNAs 

a) For coding transcripts, variants are only incorporated into the effective reading frames. For 

transcripts that are canonically annotated as noncoding, variants are added to all three 

reading frames to perform comprehensive three-frame translation. b) Subgraphs are created 

for variant types that involve the insertion of large segments of the genome, which can carry 

additional variants. c) The graph of a circular RNA is extended four times to capture all 

possible peptides that span the back-splicing junction site in all three reading frames. In the 

bottom panel, the nodes in rose-red harbour the variant 130-A/T and the nodes in yellow 

harbour 165-A/AC. d) Illustration of a circRNA molecule with a novel open reading frame. 

Each translation across the back-splicing site may shift the reading frame. If no stop codon is 

encountered, the original reading frame is restored after the fourth crossing. 

Extended Data Figure 3: moPepGen demonstrates comprehensive results 

and deliberate biological assumptions 

a) and b) Non-canonical peptide generation results from benchmarking of moPepGen, 

pyQUILTS and customProDBJ using only point mutations and small insertions and deletions 

(indels; a), and with inputs from point mutations, indels, RNA editing, transcript fusion, 

alternative splicing and circular RNAs (b). Top boxplot shows the number of peptides in each 

set intersection and right barplot shows the total number of non-canonical peptides generated 

by each algorithm in five primary prostate tumour samples. c) Assumptions made by 

moPepGen for handling edge cases that differ from other algorithms. Start-codon-altering 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.03.28.587261doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.587261
http://creativecommons.org/licenses/by-nc/4.0/


Page 33 of 38 

and splice-site-altering variants are omitted due to the uncertainty of the resulting translation 

and splicing outcomes. Transcripts with unknown stop codons do not have trailing peptide 

outputs because of the uncertainty of the trailing enzymatic cleavage site. Stop-codon-

altering variants do not result in translation beyond the transcript end, adhering to central 

dogma. d) Non-canonical database search results from benchmarking of moPepGen, 

pyQUILTS and customProDBJ using point mutations, indels, RNA editing, transcript fusion, 

alternative splicing and circular RNAs. 

Extended Data Figure 4: Detection of novel open reading frame peptides 

across proteases 

a) Peptide length distributions after in silico digestion with seven enzymes, as indicated by 

color, of the canonical human proteome and three-frame translated noncoding transcript 

open reading frames (ORFs). The dotted lines indicate the 7-35 amino acids peptide length 

range used for database search. b) Noncoding peptide detection across ten enzyme-

fragmentation methods. The top barplot shows the number of peptides in each set 

intersection and the right barplot shows the total number of non-canonical peptides from 

noncoding ORFs detected in each enzyme-fragmentation method, as indicated by covariate 

color. c) Optimal combinations of one to ten enzyme-fragmentation methods for maximizing 

the number of transcripts detected from the canonical proteome, or the number of ORFs 

detected from noncoding transcripts. The bottom covariate indicates the optimal 

combinations of enzyme-fragmentation methods from combinations of one to ten, with color 

indicating enzyme-fragmentation method. d) Noncoding transcript ORFs with peptides 

detected across four or more enzyme-fragmentation methods, with recurrence count shown 

in the right barplot. The color of the heatmap indicates the number of peptides detected per 

ORF per enzyme-fragmentation method. e) Example ORFs with coverage by multiple 

proteases are shown, with peptides tiled according to detection in each enzyme-

fragmentation method, as indicated by covariate color. Representative fragment ion mass 

spectra of peptide-spectrum matches are shown, with theoretical spectra at the bottom and 

fragment ion matches colored (blue: b-ions, red: y-ions in). 
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Extended Data Figure 5: Germline non-canonical peptide detection in 

mouse strain C57BL/6N 

a) Comparison of canonical and custom database sizes for the C57NL/6N mouse. Germline 

database includes single nucleotide polymorphisms (SNPs) and short insertions and 

deletions. b) Number of non-canonical peptides detected from each database in each tissue, 

with database indicated by color. c) Comparison of a variant peptide-spectrum match (PSM) 

spectra (top, both) with the theoretical spectra of the canonical peptide counterpart (left, 

bottom) as well as the theoretical spectra of the variant peptide harbouring a SNP (right, 

bottom). Fragment ion matches are colored, with b-ions in blue and y-ions in red. d) 

Noncoding transcripts with open reading frames yielding two or more non-canonical peptides 

recurrently detected across tissues, with color indicating the number of peptides detected in 

each tissue. 

Extended Data Figure 6: Proteogenomic investigation of the Cancer Cell 

Line Encyclopedia 

a) Number of non-canonical peptides generated per cell line, with color indicating peptide 

source. Bottom covariate indicates tissue of origin. b) and c) Number of variant peptides per 

cell line with given number of variants in coding (b) and noncoding transcripts (c). d) Number 

of non-canonical peptides detected in each cell line, with color representing peptide source. 

Bottom covariate indicates tissue of origin. e) Per cell line, the number of variant effect 

predictor (VEP) annotated intragenic coding mutations, mutations predicted to produce 

detectable non-canonical peptides and mutations detected through proteomics. f) Per cell line, 

number of transcript fusions, fusions theoretically able to produce detectable non-canonical 

peptides and fusions with detected peptide products. Color indicates tissue of origin. g) 

Fusion transcripts (upstream transcript gene symbol – downstream transcript gene symbol) 

with detected peptide products, with number of peptides shown across cell lines. Color 

indicates whether the upstream fusion transcript was coding or noncoding. h) Fragment ion 

mass spectrum from peptide-spectrum match (PSM) of the non-canonical peptide at the 

junction of the FLNB-SLMAP fusion transcript. The peptide theoretical spectrum is shown at 

the bottom and fragment ion matches are colored (blue: b-ions, red: y-ions in). i) Comparison 

of mass spectrum (top, both) from PSM of a non-canonical peptide with a single nucleotide 

variant against Prosit-predicted MS2 mass spectra based on the canonical counterpart 
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peptide sequence (left, bottom) and the detected variant peptide sequence (right, bottom). 

Fragment ion matches are colored, with b-ions in blue and y-ions in red. j) Cross-correlation 

(Xcorr) distribution of PSMs of coding variant non-canonical peptides against Prosit-predicted 

MS2 mass spectra (solid lines, color indicate charge), in comparison with Xcorr of control 

canonical PSMs against Prosit-predicted mass spectra (dotted lines). 

Extended Data Figure 7: Functional investigation of non-canonical peptide 

detection in Cancer Cell Line Encyclopedia 

a) Gene dependency CERES scores for genes with detected non-canonical peptides 

(orange), detected canonical peptides only (pink) and no detected peptides (gray). A lower 

CERES score indicates higher gene dependency. Cell lines were selected based on the 

detection of non-canonical peptides in more than 10 genes. P-values were calculated using 

the Mann-Whitney U-test. The red vertical line indicates α = 0.05. The bottom panel 

represents data pooled across all genes and cell lines. b) Gene dependency CERES score 

and c) mRNA abundance of KRAS in cell lines with only canonical peptides detected 

compared to those with detected non-canonical peptides. P-values were calculated using the 

Mann-Whitney U-test. d) Number of putative neoantigens predicted based on detected non-

canonical peptides in cell lines with more than two neoantigens. The color indicates cell line 

tissue of origin. e) Recurrent neoantigens observed across multiple cell lines, along with their 

associated gene, variant, HLA genotype and the full peptide sequence as detected by 

trypsin-digested whole cell lysate mass spectrometry. The color in the left heatmap 

represents neoantigen affinity. 

Extended Data Figure 8: Detection of non-canonical peptides from DIA 

proteomics 

a) Number of variant peptides from different variant combinations generated using genomic 

and transcriptomic data from eight clear cell renal cell carcinoma (ccRCC) tumours, grouped 

by the number of variant sources in combination. b) Number of detected variant peptides in 

the data-independent acquisition (DIA) proteome of eight ccRCC tumours. c-e) Detection of 

non-canonical peptides harbouring germline single nucleotide polymorphisms (SNPs; c), 

alternative splicing (d) and RNA editing sites (e) across genes. Heatmap colors indicate the 

number of peptides detected per gene per sample. The barplot indicates recurrence across 

samples. f) Illustration of non-canonical peptides derived from the canonical sequence 
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FSGSNSGNTATLTISR in gene IGLV3-21 caused by RNA editing events. g-i) Extracted ion 

chromatograms of the canonical peptide (g) and non-canonical peptides derived from IGLV3-

21 caused by RNA editing events: chr22:22713097 G-to-C (h) and chr22:22713111 A-to-G (i). 

Extended Data Figure 9: Detection of non-canonical peptides from 

genomic variants, alternative splicing and circular RNAs 

a) Number of detected non-canonical peptides in five primary prostate tumour samples per 

database tier (colored by database). b) Peptides as the result of a combination of two 

variants, with variant type indicated in left covariate and gene on the right. The heatmap 

shows presence of peptide across samples. c-f) Non-canonical peptide detection results 

across genes, with color of heatmap representing the number of peptides detected per gene 

per sample. The barplot indicates recurrence across samples, and when colored indicates 

variant type associated with the gene entry. The Variant database includes non-canonical 

peptides from coding transcripts with single nucleotide variants, small insertion and deletion, 

RNA editing, alternative splicing or transcript fusion (c). Noncoding database includes all 

peptides from noncoding transcript three-frame translation open reading frames (d) and 

noncoding peptides with any variants are included in the Noncoding Variant database (e). 

The Circular RNA database includes all peptides representing circular RNA open reading 

frames (ORFs) with or without other variants (f). The bottom covariate indicates prostate 

cancer sample. g) Mass spectrum from peptide-spectrum match of a non-canonical peptide 

spanning the back-splicing junction between exon 29 and exon 24 of MYH10, reflective of 

circular RNA translation. The peptide theoretical spectrum is shown at the bottom and 

fragment ion matches are colored (blue: b-ions, red: y-ions in). 
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Extended Data Tables 

Extended Data Table 1: Feature comparison of custom database 

generation algorithms 
Algorithm / Feature 
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c32
 

DNA Single 
Nucleotide Variants 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

DNA Small 
Insertions / 
Deletions 

✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

RNA Point Variantsa ✓          ✓  

Alternative Splice 
Junctions 

✓   ✓ ✓  ✓ ✓ ✓ ✓   

Fusion Transcripts ✓   ✓ ✓  ✓ ✓ ✓ ✓   

Circular RNAs ✓            

Supported Variant 
Combinations 

Any 
combi-
nationsb 

None All 
SNVs 
onlyc 

All 
SNVs 
onlyc 

All 
variants 
onlyc 

None Single 
SNV with 
splicing or 
fusiond 

None None All 
variants 
onlyc 

None All 
variants 
onlyc 

Modular Support for 
New Input Formats 

✓       ✓     

Noncoding 
Transcript Three-
Frame Translation 

✓    ✓ ✓   ✓   ✓ 

Noncoding 
Transcript with 
Variantse 

✓    ✓       ✓ 

Alternative 
Translation W>F 

✓            

Export Only Non-
canonical 
Proteotypic 
Peptides 

✓   ✓    ✓ ✓    

Summary of 
Database 
Generation 

✓ ✓   ✓    ✓   ✓ 

Visualization of 
Database 
Generation 

✓        ✓   ✓ 

Database Splitting 
for Tiered False 
Discovery Rate 
Control 

✓            

Filter FASTA by 
RNA Abundance 

✓    ✓   ✓    ✓ 

aRNA Point Variants: variants at single nucleotide positions within RNA sequences (e.g., RNA 
editing). 
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bAny variant combinations: generates peptides with any combination of variants. 
cAll SNVs only / All variants only: generates peptides containing all variants simultaneously, 
but not separate combinations of individual variants. 
dSingle SNV with splicing or fusion: generates peptides with a single SNV, with or without 
additional alternative splicing or transcript fusion events. 
eNoncoding Transcript with Variants: non-canonical peptides derived from novel open reading 
frames in noncoding transcripts harbouring additional DNA and/or RNA variants. 
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Figure 1
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Figure 2
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