Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Mar 28:2024.03.27.586980. [Version 1] doi: 10.1101/2024.03.27.586980

A 3D in vitro assay to study combined immune cell infiltration and cytotoxicity

Ashleigh J Crawford, Adrian Johnston, Wenxuan Du, Eban A Hanna, David Schell, Zeqi Wan, Ting-Hsi Chen, Fan Wu, Kehan Ren, Yeongseo Lim, Praful R Nair, Denis Wirtz
PMCID: PMC10996627  PMID: 38586013

Abstract

Immune cell-mediated killing of cancer cells in a solid tumor is prefaced by a multi-step infiltration cascade of invasion, directed migration, and cytotoxic activities. In particular, immune cells must invade and migrate through a series of different extracellular matrix (ECM) boundaries and domains before reaching and killing their target tumor cells. These infiltration events are a central challenge to the clinical success of CAR T cells against solid tumors. The current standard in vitro cell killing assays measure cell cytotoxicity in an obstacle-free, two-dimensional (2D) microenvironment, which precludes the study of 3D immune cell-ECM interactions. Here, we present a 3D combined infiltration/cytotoxicity assay based on an oil-in-water microtechnology. This assay measures stromal invasion following extravasation, migration through the stromal matrix, and invasion of the solid tumor in addition to cell killing. We compare this 3D cytotoxicity assay to the benchmark 2D assay through tumor assembloid cocultures with immune cells and engineered immune cells. This assay is amenable to an array of imaging techniques, which allows direct observation and quantification of each stage of infiltration in different immune and oncological contexts. We establish the 3D infiltration/cytotoxicity assay as an important tool for the mechanistic study of immune cell interactions with the tumor microenvironment.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES