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Abstract

Foraging theory has been a remarkably successful approach to understanding the
behavior of animals in many contexts. In patch-based foraging contexts, the
marginal value theorem (MVT) shows that the optimal strategy is to leave a
patch when the marginal rate of return declines to the average for the environ-
ment. However, the MVT is only valid in deterministic environments whose statis-
tics are known to the forager; naturalistic environments seldom meet these strict
requirements. As a result, the strategies used by foragers in naturalistic environ-
ments must be empirically investigated. We developed a novel behavioral task
and a corresponding computational framework for studying patch-leaving deci-
sions in head-fixed and freely moving mice. We varied between-patch travel time,
as well as within-patch reward depletion rate, both deterministically and stochas-
tically. We found that mice adopt patch residence times in a manner consistent
with the MVT and not explainable by simple ethologically motivated heuristic
strategies. Critically, behavior was best accounted for by a modified form of the
MVT wherein environment representations were updated based on local variations
in reward timing, captured by a Bayesian estimator and dynamic prior. Thus, we
show that mice can strategically attend to, learn from, and exploit task structure
on multiple timescales simultaneously, thereby efficiently foraging in volatile envi-
ronments. The results provide a foundation for applying the systems neuroscience
toolkit in freely moving and head-fixed mice to understand the neural basis of
foraging under uncertainty.
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1 Introduction

Foraging animals often need to make trade-offs between competing demands
[Stephens and Krebs, 1986]. In general, the optimal policy should maxi-
mize reward rate (rewards per unit time). In the most well-studied class
of foraging decisions, foragers within a patch of resources need to decide
when to abandon the depleting patch and pay a cost (normally in the form
of a travel time) to move to a newer richer one [Charnov, 1976, Stephens
and Krebs, 1986, Hayden et al., 2011]. Optimal behavior in this context is
dictated by the marginal value theorem (MVT), which shows that leaving
times are reward-rate maximizing when marginal reward declines to match
the average of the environment. This behavior is normative, so deviations
from it are diagnostic of learning deficits and psychiatric illnesses [Speers and
Bilkey, 2023, Addicott et al., 2017]. There has been increasing interest in
foraging behavior as a potential avenue to understand normal and aberrant
decision-making and, in animals, as a tool for mechanistic understanding of
the neural circuit basis of decision-making [Mobbs et al., 2018, Calhoun and
Hayden, 2015]. This interest is reflected in extensive research in ethology
and behavioral ecology [Krebs et al., 1974, Cowie, 1977, Cassini et al., 1993,
Lundberg and Åström, 1990, McNickle and Cahill, 2009, Parker et al., 1999,
Thompson and Fedak, 2001].

Despite its seemingly broad applicability, the standard MVT makes rather
strict and unrealistic assumptions. Specifically, MVT-based behavior is op-
timal only if the environmental statistics are stationary and the forager has
a good internal model of those statistics. If the forager does not have a good
environmental model, then when the forager encounters an unexpected out-
come they should interpret that outcome as providing new information and
subsequently update their internal model. However, that unexpected out-
come may reflect stochasticity in the already learned environmental statistic,
in which case the current strategy should be maintained. Thus, decision-
makers must constantly make a meta-decision about whether the variability
they encounter reflects stochasticity in known environmental statistics or a
change in those statistics. Both forms of variability are naturalistic, as evi-
denced in the ecological literature [Oaten, 1977, Murdoch and Oaten, 1975,
Reboreda and Kacelnik, 1991, Kacelnik and Bateson, 1996], and consequently
should be accounted for in strategy.

As natural foragers, rodents often encounter such meta-decisions in their
native environments, needing simultaneously to parse the economics and
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risks (e.g. predation), as well as their variability on multiple time scales
[Morris and Davidson, 2000, Brown, 1988, 1989, Orrock et al., 2004]. Given
their predilection for such tasks, and the wide use of rodents in systems
neuroscience, recent laboratory studies have utilized foraging constructs to
explore behavioral strategies and their underlying neurophysiological mecha-
nisms [Kane et al., 2022, 2017, Lottem et al., 2018, Wikenheiser et al., 2013,
Kvitsiani et al., 2013, Sweis et al., 2018, Schneider et al., 2021, Carter and
Redish, 2016]. However, replicating the dynamics of natural foraging in an
experimental setting is difficult. Within patches, reward encounters should
contain some level of variability while also exhibiting sufficient stability based
on which rodents can base patch-leaving decisions. Additionally, the envi-
ronmental information contained in the encounters should be perceptible to
the animal and lead to interpretable outcomes. Striking a balance between
replicating the naturalism needed to tap into rodents’ innate cognitive abili-
ties, while creating experimental constructs for which meaningful behavioral
and/or neurophysiological data can readily be acquired, analyzed, and in-
terpreted, creates a dilemma for the experimenter [Houston and McNamara,
2014].

Here, we implemented a patch-based foraging task in freely moving and
head-fixed mice that captured several key naturalistic elements. In the tasks,
mice run between reward ports on a physical or virtual track and receive liq-
uid rewards at a rate that decays over time. Patch location, and richness,
are indicated with acoustic cues. At any moment within a patch, mice can
leave and travel to the next one, which is replenished to its initial reward
rate. Critically, we introduced stochasticity in the depletion process, so that
sequences of reward encounters contain both informative and stochastic ele-
ments, confronting mice with the need to parse whether deviations in reward
timing reflect the stochasticity in environmental parameters or their uncer-
tainty about the environment. Our results show that a hierarchical model
in which outcome variability is separated from environmental stability by a
Bayesian estimator better explained behavior than simple heuristics or stan-
dard MVT models. These results suggest that mice actively parse variability
during naturalistic decision-making to adapt their behavior to actionable en-
vironmental patterns.
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2 Results

2.1 A patch-based foraging task in freely moving mice

We developed a freely moving mouse preparation to study patch-based for-
aging behavior under uncertainty in the laboratory. We built a linear track
system, similar to designs typically used to study hippocampal function dur-
ing navigation [Lisman et al., 2017, Kemere et al., 2013]. After undergoing
a two-step training regimen to become familiar with the experimental setup
(see Methods and Materials), mice successfully performed the freely moving
patch-based foraging task.

The task consisted of running back and forth between either end of the
linear track where reward ports dispensed a stochastically depleting sugar-
water resource, with acoustic cues for reward availability (Figure 1A, top
right). At the start of each session of the task, a mouse was placed in the
center of the linear track. Upon navigating to either of the two reward ports,
a tone cloud was played continuously from a speaker near the reward port,
indicating that rewards were available (Figure 1A, bottom left). Upon nose-
poking within the reward port, mice could lick a spout for liquid rewards; we
refer to this nose-poked licking behavior as harvesting [Stephens and Krebs,
1986]. Reward availability followed an inhomogeneous gamma process (IGP;
also known as a modified inhomogeneous Poisson process), with an exponen-
tially decaying Poisson rate (Figure 1B, bottom left). Because the underlying
rate for the IGP exponentially decayed over time, availability of rewards be-
came increasingly sparse as the animal remained in the patch, simulating
classical patch depletion in behavioral ecology [Stephens and Krebs, 1986].
The level of stochasticity in reward dynamics was varied between three levels
and was quantified using a reward stochasticity index (RSI), defined as the
ratio of the hidden event volume to observable reward volume (see Methods
and Materials). A larger RSI value corresponded to greater variance in the
timing of rewards, independent from the decay rate.

While mice were engaged in a nose-poke at a reward port, they could
terminate harvesting by un-poking, at which point the tone-cloud stimulus
stopped playing to indicate the port was inactive. Simultaneously, acoustic
pink noise began to play from a speaker near the opposite port, cueing the
mouse that reward was available at that port. Upon traveling to and poking
in the opposite port, the auditory cue switched to the tone cloud, and mice
could receive rewards from the depleting IGP, as previously. The travel
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distance, and thus the opportunity cost imposed by lost time by traveling
between ports, was varied systematically and unambiguously by using two
tracks with different lengths (Figure 1B, top right). A single set of fixed
environmental parameters was used for each behavioral session.

2.2 Mice adapt their behavior to daily perturbations
in the environmental statistics

A cohort of mice (N = 8 mice, 27.6 ± 1.1 sessions per animal) were run in
the patch-based foraging task, at the low stochasticity level. For each session
(one per day), the reward decay rate had one of four values (τ ; 3, 6, 12, or 24
seconds; Figure 1B, bottom left) and used one of two track lengths (1 meter
or 4 meters; Figure 1B, top right). Across environments, mice learned to al-
ternate between reward ports and lick for rewards (Figure 1C), encountering
a substantial number of patches per session (normal distribution; µ = 45.58,
σ = 22.68) and remaining in patches for a wide range of poke durations (log-
normal distribution; µlog10 = 0.91, σlog10 = 0.29), termed the patch-residence
time [Stephens and Krebs, 1986].

We defined residence time as the time from reward port entry (via poking)
to exit (via un-poking) and non-harvest time as the time between exit from a
reward port to entry at the next active reward port. Because animals also ex-
hibited non-foraging behaviors, such as exploring or grooming, we estimated
the task-relevant non-harvest time (referred to as ‘travel time’) as the tenth
percentile of all durations of time between patches, for each animal, on each
track type. Both the full non-harvest (Figure 2A) and task-relevant travel
time estimates (Figure 2B) indicated that track length affected the temporal
cost of traveling between reward ports. To understand the combined in-
fluence of reward depletion rate and travel time on harvesting behavior, we
tested their effect on residence time using a cluster bootstrap design (Supple-
mentary Figure S5; see Methods). We found that both parameters affected
residence times and that the direction of the behavioral adaptations were
in agreement with the MVT (Figure 2C; decay rate: r = 0.50 [0.46, 0.55]
(mean [95% CI]), p(r > 0) > 0.9999; track length: r = 0.10 [0.05, 0.16],
p(r > 0) > 0.9999).

We noticed that patch residence time decreased gradually over the course
of a session, a time-on-task effect possibly resulting from fatigue or satiety
[Murray and Rudebeck, 2013, Iodice et al., 2017]. We also noticed substan-
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tial variability between animals in overall residence times. To quantify how
both experimental manipulations (decay rate, travel distance) and these con-
founding factors (time-on-task and individual-specific bias) affect behavior in
a single model, we fit a linear mixed model (LMM) to the dataset. We set
the reward decay rate, task-relevant travel time, and time-on-task as fixed
effects and animal identity as a random effect. In the low-stochasticity en-
vironments, the effects of decay rate and travel time were highly significant
and consistent with MVT; slower decay rates and longer travel times were
associated with increased residence times (Supplementary Table S1).

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2024. ; https://doi.org/10.1101/2024.03.30.587253doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.30.587253
http://creativecommons.org/licenses/by/4.0/


0 50 100 150 200

rewards
licking
pokes

rewards
licking
pokes

A

C

B

Time in Session (sec)

1 m

2 m

2 m

Port A

Port B

Port A

Port B

0 20 40 60
Time in Patch (sec)

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

ar
d 

ra
te

 (μ
L/

s) � = 3 sec
� = 6
� = 12
� = 24

patch
travel

patch
travel

patch

0

10

20

IP
P

 ra
te

 (s
-1
)

0

1

2

vo
lu

m
e 

(μ
L)

reward
lick

IGP
IPP

IP
P

 ra
te

 (s
-1
)

vo
lu

m
e 

(μ
L)

0

1

2

0

1

2

reward
lick

IGP
IPP

IP
P

 ra
te

 (s
-1
)

vo
lu

m
e 

(μ
L)

0

0.5

1

0

1

2

reward
lick

IGP
IPP

D E F

Time in patch (s)
0 2 4 6

Time in patch (s)
0 2 4 6

Time in patch (s)
0 2 4 6 8

Figure 1: A patch-based foraging task for mice on a linear track. (A) Top right, schematic of freely
moving foraging task, showing that animals navigate between two reward ports at either end of a track;
by nose-poking into port A or B, animals can receive sucrose solution rewards. Bottom left, spectrogram
of sounds from the two speakers; while poked into a port (patch), a tone cloud stimulus played through an
adjacent speaker, with intermittent pure tones indicating reward availability (opaque cyan bands); after
leaving one port, and while traveling to the other (travel), a pink acoustic noise is played at the opposite
speaker until the animal pokes into the adjacent port. (B) Environmental perturbations include two track
lengths (illustrated at top) and four time constants for the exponentially decaying reward rate (illustrated
at bottom). (C) Example data from twelve consecutive patches during the first 2.5 minutes of a session
on the 1 m track with reward decay rate of 3 seconds. Traces of the digital poke signal, smoothed lick
rate, and a raster plot of reward times, are shown for the two reward zones (green indicates Port A and
red indicates Port B, following the color scheme in A). (D-F) The reward-generating process is shown
for an example patch in environments with a low (D; RSI = 0.05; light blue), moderate (E; RSI = 0.5;
green), or high (F; RSI = 1.0; brown) level of variability in reward timing. Top: Black curves indicate
the inhomogeneous Poisson process (IPP) with an exponentially decaying rate, which generated events in
a patch. Middle: Colored stairstep curves indicate the time and volume associated with each event, V0,
added to a potential-reward reservoir that accrued over time. Once the volume of the reservoir reached
a threshold (dashed line; 2 µL for all environments), 2 µL of sucrose solution reward became available
for the animal to receive upon licking. Once the reward droplet was given, the reservoir was depleted by
the reward volume. Note that volume continued to accrue in the reservoir even after the threshold had
been reached. Bottom: Light colored rasters indicate the time of each addition to the reward reservoir
from the IPP; dark colored rasters indicate the times of available reward (IGP); lick times are indicated
with grey rasters; received-reward times are indicated at very bottom in blue. All examples are shown for
environments with τ = 3 seconds.
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2.3 MVT-based models outperform simple heuristics
at explaining the behavior

Although normative models of patch-based foraging are governed by the
marginal value theorem (MVT), and the above analysis showed that our
mouse results were consistent with the major predictions of the MVT, ani-
mals often solve tasks by applying simple heuristic decision-making strategies
[Gibbs, 1962b,a, Murdoch and Oaten, 1975, Hutchinson et al., 2008]. Utiliz-
ing simple heuristics may reduce cognitive demand while achieving adequate
reward rate for survival needs. On the other hand, using MVT-based models
would maximize the rate of reward [Krebs, 1973, Krebs et al., 1974]. There-
fore, before proceeding to more complex models, including those related to
reward stochasticity, we evaluated whether the strategy the mice took in their
foraging behavior followed a simple heuristic that approximated MVT-based
behavior, by fitting predictive models to animals’ residence times.

We identified three ‘local’ (within-patch) heuristic rules that the mice may
be employing. Namely, animals may leave a patch: (1) after a fixed duration
since patch entry [heuristic, constant time; HEU-CT; Krebs, 1973], (2) after
a fixed number of encountered rewards [heuristic, number of rewards; HEU-
NR; Gibb, 1958], or (3) after a fixed amount of time since the previous
reward [heuristic, elapsed time since reward; HEU-ETR; Krebs et al., 1974].
For each animal, we used the mean of each relevant metric (i.e. the average
duration, number of rewards, or delay between last reward and patch-leaving
per patch) to predict the residence time in each patch (Figure 3A-B). We first
applied these models to the low-stochasticity regime.

We compared results of the heuristic models to two MVT-based models
(Figure 3C). In the first MVT model, we predicted the residence time for each
environment by optimizing the overall reward rate given knowledge of the
underlying parameters, which equates to the optimal residence time in classic
foraging theory (MVT, optimal; MVT-OPT). Because animals may generate
stable but inaccurate internal estimates of the task parameters, in the second
MVT model, the predicted residence times for each animal followed the MVT,
but with environment-specific parameter estimates that were fixed for each
environment, but not necessarily correct (MVT, internal model-based; MVT-
IM). This model assumes that animals attempt to maximize their overall
harvest rates following the MVT, based on model parameters that reflect
their perceived, or internally estimated, reward decay rates and travel times
for each environment. In doing so, the environmental parameters in the
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Figure 2: Match adapt their patch-residence time to within- and between-patch environment statistics.
(A) Comparison of total non-harvesting times between track types. At top, histograms (solid lines) and fit
of log-normal distributions (dashed curves) for all total travel times in five-day bins for early (left), middle
(center), and late (right) in training on the 1 m (black) and 4 m (grey) tracks. At bottom, non-harvest
time (NHT) followed a log-normal distribution and therefore was compared between short and long tracks
using the ratio of the geometric mean for the 4 m track to the geometric mean for the 2 m track. Each point
is centered on the five-day, non-overlapping bin for which the ratio was calculated. (B) Comparison of
task-relevant travel times between track types. At top, examples from five-day bins in early (left), middle
(center), and late (right) training are shown. Task-relevant travel times for each animal on the 1 m (black
dot) or 4 m (grey dot) track are connected by light gray lines. At bottom, the mean difference between
the two task-relevant travel times for each animal are binned and plotted as in A. Line and shaded area in
A and B are the average value and standard deviation across animals. (C) Box plots of residence times
for the low-stochasticity sessions. Results are stratified by reward decay rate (indicated on x-axis and
with color) and track length (dark, 1 m track; light, 4 m track). Boxes represent the interquartile range
(IQR) of residence times from all animals in the given environment. Whiskers extend 1.5x the IQR from
the box edges. Center lines represent the median. (*, p ¡ 0.05; ***, p ¡ 0.0001; cluster bootstrap analysis)
(D) Same as in C, but for data pooled across the high- and moderate-stochasticity environments.
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MVT-OPT equation were replaced by those values that best predicted the
empirical residence times (Supplementary Figure S6).

When comparing the heuristic and MVT models, we used the fixed dura-
tion heuristic model (HEU-CT) as a null hypothesis. The other two heuristic
models had poor fits to the observed data, both qualitatively and quantita-
tively. The HEU-NR model predicted an opposite trend for the dependence
of patch residence time on decay rate to what was observed in the data
(Figure 3D, mustard yellow). The HEU-ETR data underestimated residence
time for fast reward decay rates and, by construction, could not capture
the effects of the track length (Figure 3D, orange). The MVT-OPT model
qualitatively captured both the effects of track length and reward decay but,
like the HEU-ETR, underestimated patch residence time for fast decay rates
(Figure 3E, cyan). Relative to the optimal time according to MVT, ani-
mals remained too long in patches, or overharvested, particularly in envi-
ronments with fast decay rates (Figure 3E) as has been observed previously
[Nonacs, 2001, Cash-Padgett and Hayden, 2020]. The MVT-IM captured
the data well, with no systematic errors (Figure 3E, green), including ac-
counting for overharvesting in fast-decay rate environments. Thus, animals
adapted to environmental perturbation in agreement with the MVT, but as
if they underestimated the patch reward decay rate (Figure 3F, Supplemen-
tary Figure S6; root-mean-square prediction error (RMSE) [95% CI]: HEU-
CT, 4.88 [4.75, 5.01]; HEU-ETR, 5.86 [5.75, 5.97]; HEU-NR, 6.57 [6.42, 6.71];
MVT-OPT, 4.90 [4.80, 5.00]; MVT-IM, 4.10 [4.00, 4.20]).

2.4 Local reward sequences dynamically influence patch-
leaving decisions

The mice exhibited substantial variability in patch-leaving time within each
session. We hypothesized that this within-session behavioral variability may
stem from two sources of uncertainty: (1) animals do not know the daily
patch decay parameters, and (2) there is patch-to-patch stochasticity in re-
ward availability. We thus sought to determine whether recent reward statis-
tics influence their choices. To do so, we implemented a Bayesian model with
knowledge of the underlying Poisson process to generate a maximum likeli-
hood estimate (MLE) of the current reward rate given a set of observed re-
ward times. We limited the model input to reward times in the current patch
and calculated the MLE and true Poisson reward rates at patch-leaving. We
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then compared the error of the Bayesian model estimate at patch-leaving to
the deviation of the current residence time from the average of all residence
times in a given session.

If animals tracked the immediate reward rate to determine the leaving
time, as proposed by MVT, then overestimating the reward rate would lead to
longer residence times (Figure 4A, left) and vice versa (Figure 4A, right). Lin-
ear regression showed a significant positive correlation between the Bayesian
rate estimation error and the deviation of residence time from average, in the
low stochasticity environment (Figure 4B; observed: r = 0.52±0.01, mean ±
standard deviation across five-fold cross-validation subsets; R2 = 0.27±0.01;
shuffled: r = 0.18 ± 0.01, R2 = 0.032 ± 0.002). Thus, the animals’ leaving
times are influenced by the local (current patch) reward sequence informa-
tion, even when reward stochasticity is low.
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Figure 3: Foraging behavior is better explained by MVT models than by simple heuristics. (A) Schematic
illustrating the heuristic model of patch-leaving based on elapsed time without reward (HEU-ETR). At
top, reward sequences from two example patches (purple and blue vertical lines) are displayed from a
session on the 1 m track with reward decay τ of 6 seconds. Grey triangles indicate the observed patch
leaving (residence) time for each patch. Orange triangles indicate the predicted time of patch leaving
from the HEU-ETR model for the same reward sequences. At bottom, purple or blue traces represent
the current time since the last reward in the given patch (dark purple or blue) and a simulation of the
expected (light purple or blue) time if the animal had not left the patch. Once the threshold criterion is
exceeded (dotted orange line), the model predicts patch-leaving. (B) Schematic illustrating the heuristic
model of patch-leaving based on the number of received rewards in the patch (HEU-NR). At top, same as
A, except that mustard triangles indicate the predicted time of patch leaving from the HEU-NR model
for the associated reward sequences. At bottom, example traces similar to A, but displaying the number
of observed rewards as a function of time in patch. Note the need for computing expected future reward
times for the first (purple) example patch. (C) Schematic illustrating the two models of patch-leaving
based on the MVT. At top, same as A, except that the cyan triangles indicate the predicted time of patch-
leaving from the optimal MVT model (MVT-OPT) and the green triangles for the predicted time for the
internally modeled MVT model (MVT-IM), for the associated reward sequences. Both MVT models
learn the travel time between patches (horizontal line at beginning of the cyan and green curves) and the
average reward function (integration of decaying exponential of the cyan and green curves). Patch-leaving
occurs when the marginal rate (dashed tangent lines) equals the average rate for the overall environment
(tangent line extrapolated to beginning of travel). (D) The per-animal average observed patch residence
time (grey dots and lines) for each track length and reward condition (indicated at bottom). Mustard
and orange dots and dashed lines indicate the model predictions from the two heuristic models (HEU-NR
and HEU-ETR, respectively). (E) Same as in D, but for the two MVT models. For D and E, colored
lines and error bars represent the mean and standard deviation, respectively, of the model predictions for
patches pooled across all animals in a given environment. (F) At left, the model prediction error. Black
vertical lines represent the 95% confidence intervals, which were bootstrapped from the set of prediction
errors. At right, the root-mean-square error (RMSE) of each model. The null model (HEU-CT) RMSE,
which is equivalent to the average standard deviation of residence times across animals, is shown as the
black dashed line.
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2.5 Animals utilize both local and global information
in highly stochastic environments

We next tested whether the behavioral strategies observed in the low stochas-
ticity environments extend to more highly stochastic environments. We ran
the animals that had previously performed the freely moving foraging task
with RSI = 0.05 in the same task, except with increased variability in reward
timing (RSI ∈ [1.0, 2.0]; N = 8 mice, 10 ± 1 sessions per animal). The task
was structured such that average reward dynamics remained unchanged, but
the variance of reward timing between patch encounters increased substan-
tially (Figure 1E-F).

In high-stochasticity environments, mice still shifted residence times with
decay rate and track length in accordance with MVT (Figure 2D). Cluster
bootstrap analysis showed these changes to be statistically significant (de-
cay rate: r = 0.50 [0.46, 0.55] (mean [95% CI]), p(r > 0) > 0.9999; track
length: r = 0.10 [0.01, 0.18], p(r > 0) = 0.985). To further test behavioral
adaptations, as above, we fit the behavioral data in the high-stochasticity en-
vironments with a LMM using the same explanatory variables as the LMM
fit to the low-stochasticity data. The model showed significant adaptations
in residence times, in the directions expected for the MVT, for both decay
rate and track length manipulations (Supplementary Table S1).

We then assessed behavioral strategies by fitting the same local heuris-
tic and MVT-based models to residence times in high-stochasticity envi-
ronments (Figure 5B-C, left). Of note, models based on average reward
dynamics, including all the local heuristic and MVT models, made pre-
dictions that did not depend on RSI and consequently predicted similar
residence times to those in the low-stochasticity environments. Consistent
with low-stochasticity environments, the models based on the number of
observed rewards (HEU-NR) and perceived MVT parameters (MVT-IM)
were the worst- and best-performing, respectively (RMSE [95% CI]: HEU-
CT, 4.92 [4.72, 5.12]; HEU-ETR, 4.67 [4.48, 4.92]; HEU-NR, 7.03 [6.82, 7.24];
MVT-OPT, 4.85 [4.67, 5.05]; MVT-IM, 3.98 [3.81, 4.16]), suggesting that an-
imals effectively extracted average dynamics from stochastic observations.
However, in contrast to environments with low stochasticity, in high stochas-
ticity, the elapsed time without an observed reward heuristic model par-
tially explained variance in residence time, implying that animals defaulted
to tracking this simple metric when reward timing was more variable. Never-
theless, despite more unpredictable reward sequences, animals demonstrated
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behavioral adaptations consistent with the MVT.
We next leveraged these sessions to further explore whether animals were

making continuous, dynamic estimates of reward parameters, as was indi-
cated by models of the low-stochasticity environment sessions (Figure 4B).
As before, we computed the MLE of the Poisson rate at patch-leaving using
the current reward sequence and compared it with the change in residence
time relative to the session average (Figure 4C). The correlation was both
positive and significant (RSI ∈ [0.5, 1.0]; observed: r = 0.49± 0.02 (mean ±
standard deviation across five-fold cross-validation subsets), R2 = 0.24±0.02;
shuffled: r = 0.06± 0.01, R2 = 0.004± 0.001; see Supplementary Figure S2),
consistent with the hypothesis that mice use recent reward history to mod-
ify the global patch-leaving decision. Interestingly, while the variance of the
estimation error increased with increasing RSI, as expected, the variance of
the residence times remained unchanged (see marginal distributions in Fig-
ure 4C). Thus, increasing the stochasticity of in-patch reward dynamics did
not affect the overall within-session behavioral variability but rather coupled
that decision variability to the broadened distribution of reward sequences.
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Figure 4: Mice dynamically adjust patch-leaving time based on recent patch reward sequences. (A)
Two example time-varying Poisson reward rates in the moderate stochasticity context. The maximum
likelihood estimate (MLE, green curves) of the true underlying Poisson rate (black curve) was calculated
at 500 ms intervals for two example sequences generated from an inhomogeneous gamma process (IGP).
Reward times are shown in the rasters at bottom, with grey and green vertical lines representing event
and reward times, respectively. Triangles indicate the optimal leaving time based on the true reward
rate (black triangle) or MLE of the reward rate (light green triangle), respectively, which occurs when
the immediate reward rate falls below the average reward rate in the environment, indicated with dotted
horizontal black line. The example sequences were generated from an environment with RSI = 0.5 for
illustration purposes. (B) For each patch encounter in the RSI = 0.05 environments, the difference
between the true and the maximum likelihood estimate (MLE) of the Poisson rate at patch leaving
(plotted on the x-axis) is scattered against the deviation of the current residence time from the session
average (y-axis). Color represents the neighboring density of points, ranging from low (blue) to high
(red). The regression line (black) was fit to points within the 99% confidence ellipse from a bivariate
Gaussian distribution fit to the data. Points lying outside of the confidence ellipse are colored gray.
Kernel density estimates of the marginal distributions (Gaussian kernels; bandwidth estimated via Scott’s
rule) are shown in the margins. (C) Same as in B, but for the moderate (green marginal) and high
(brown marginal) stochasticity environments. The low stochasticity marginals (blue) are also shown, for
visual comparison purposes. Moderate and high stochasticity data are pooled for the scatter plot and
regression fit. (D) The MLE of the Poisson rate is shown for a given sequence of rewards in a patch using
different degrees of observation history to generate the estimate. At top, the MLE of the Poisson rate
(green) was computed using observed rewards in the current patch only (N = 1, left) or in addition to
observed rewards in the previous one (N = 2, middle) or ten (N = 11, right) patches. The true Poisson
rate (solid black) and example leaving threshold (dotted black) are also shown. At bottom, raster plots
display the IPP events (gray) and IGP observations (green) used to generate the MLE above. Each row
represents sequences in one patch, with the oldest being at top (patch 11) and the current patch, for which
all three MLEs are computed, at bottom (patch 1). (E) For pooled data from the moderate and high
stochasticity environments, the coefficient of determination for the change in residence time vs. the rate
estimation error was computed as in B and C using various degrees of observation history in the MLE of
the Poisson rate at patch-leaving. The mean (solid line) and standard deviation (shaded area) of the five
cross-validation subsets are shown. As in D, N represents the total number of recent (current plus prior)
patches included in the MLE calculation. The red circles correspond to the examples from D.
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2.6 Animals use recent observations to update their
estimates of environmental variables

We next explored how performance in the current patch was influenced by the
recent patch history. We followed the same procedure as above to compare
the error of the estimated reward rate at patch-leaving with the variation
in residence time, except that the MLE of the Poisson rate incorporated
reward sequences from prior patches in addition to the sequence from the
current patch (Figure 4D). Notably, the correlation with local adaptations
in residence time inversely correlated with the degree of recent history used
to estimate the reward rate, suggesting that large variations in the patch-
leaving decision resulted from the timing of the most recently observed reward
sequence (Figure 4E).

While these findings demonstrate a relationship between estimated re-
ward rates and adaptations in residence times, they do not generate actual
predictions of residence times given the estimated rates. To do so, we con-
structed a predictive model for patch residence times that utilized the MLE
of the reward rate as input. Consistent with the MVT, the model presumed
that animals left patches when the immediate reward rate fell below a given
model. However, the new model utilized the estimated, as opposed to fixed,
reward rate (MLE-x, where x represents the number of recent patches in-
cluded in the likelihood estimate of the Poisson rate). As in Figure 4E, the
MLE of the Poisson rate for each patch was calculated using a given degree
of patch history. The reward rate threshold corresponded to the reward rates
at patch-leaving in the MVT-IM model. Model prediction error decreased
with the extent of patch history, in contrast to local adaptations of residence
times, and asymptotically approached the accuracy of the MVT-IM model
(Supplementary Figure S3A; cf. Figure 5C).

Capturing variability at different timescales thus led to ostensibly con-
flicting suggestions about the degree of patch history incorporated into patch-
leaving decisions. Patch-to-patch variability in residence times was best ex-
plained by the most recent observations, whereas the mean residence time
across a session was best explained by incorporating all previous observa-
tions, including distant ones. In other words, while recent experience influ-
enced patch-to-patch variability in patch-leaving decisions, it did not provide
sufficient evidence, in the form of reward rate estimation, to fully predict
patch-leaving decisions.

This discordant relationship with the degree of observation history sug-
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gested a model in which local and global estimates of the environment were
independently computed and made distinct contributions to behavior. To
address this, we used a Bayesian approach to incorporate the prior probabil-
ities of the underlying reward rate parameters (initial reward rate and decay
rate), as well as the MLE of the reward rate, which reflected the global and
local features of the environment, respectively. The resultant estimate of
the reward rate, termed the maximum a posteriori (MAP) estimate, extends
the MLE by modulating the likelihood by prior beliefs, which, in this case,
reflect the mouse’s perception of average statistics. The model predicted
patch-leaving to occur when the MAP estimate of the reward rate fell below
the reward rate threshold, which corresponded to the parameters of MVT-
IM for a given environment. Based on the results from Figure 4E, we used
observed reward times from the current patch and up to the previous three
patch encounters.

To determine the best model parameterization, we first conducted a grid
search by computing the prediction error across a range of prior distributions
that were centered on the reward parameters of MVT-IM but differed in vari-
ance, reflecting the degrees of uncertainty in the global estimate (Figure 5A,
left; Supplementary Figure S3B-D). Consequently, these models reflected the
animal’s perception of environmental parameters (internal model-based) in
a probabilistic framework (MAP) that was updated by recent experience
(local optimization). The best-fit model (MAP, internal model-based, lo-
cal optimization; MAP-IM-L) utilized observations from only the current
patch (N = 1) with moderate uncertainty in the reward rate parameters
(var(λ0) = 0.3, var(τ) = 0.3); see Methods and Materials for a descrip-
tion of the parameters). The improvement compared to MVT-IM was not
significant (Figure 5B-C; RMSE [95% CI]: 3.75 [3.558, 3.956]).

Although the MAP-IM-L model adopted parameters from the MVT-IM
model to set the reward rate thresholds for patch-leaving decisions, the
thresholds that best explained animal behavior might differ once the lo-
cal adaptions were captured through the probabilistic framework. Conse-
quently, we constructed a model in which both the parameters of the prior
distributions and the reward rate thresholds were optimized with a hierar-
chical approach (MAP, internal model-based, global and local optimization;
MAP-IM-GL). For each set of prior distributions, the reward rate thresh-
olds that minimized prediction error were computed for each environment
(Supplementary Figure S3D; see Methods and Materials). When assessed
for accuracy in predicting residence times, the best-fit MAP-IM-GLmodel
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(N = 1, var(λ0) = 0.3, var(τ) = 3.2) significantly outperformed all other
behavioral models that utilized only global or local environmental features
(Figure 5B-C; RMSE [95% CI]: 3.54 [3.37, 3.72]).
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Figure 5: Animal patch-leaving decisions reflect estimates of both the global and the local environment.
(A) The prediction error was calculated for models using the maximum a posteriori (MAP) estimate of
the Poisson rate. At left, the root-mean-square prediction error (RMSE) is shown for MAP models with
different variances of the prior probability distributions for both τ (horizontal axis) and λ0 (vertical axis),
as well as various degrees of observation history (N as in Figure 4; red arrow indicates increasing order).
The set of values forN and variance of the priors that minimized prediction error (purple box) was analyzed
at finer resolution of the prior distributions (top right). After further refining the analysis window (purple
solid and dotted box), the prediction error was recomputed after additionally choosing a leaving threshold
that best fit the experimental data (bottom right). The colorbar (bottom left) indicates the RMSE values
and was scaled such that the RMSE of the MVT-IM model lies at its center. (B) The squared prediction
error for the moderate and highly stochastic environments is shown for various models as in Figure 3F. (C)
The root-mean-square prediction error for the moderate and highly stochastic environments is organized
by models that used only global information (left), only local information (right), and a combination
of both global and local information (middle), and is shown as the mean (dots) and standard deviation
(error bars) over the five cross-validation sets. Model abbreviations are described in detail in the text.
The RMSE of the null model (HEU-CT) is displayed as the black dotted line.
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2.7 Behavior in a head-fixed virtual foraging task fol-
lows MVT principles, not simple heuristics

Because head-fixed behavior allows for a wider range of physiological meth-
ods, we next tested whether the freely moving task could be adapted to a
virtual patch-based foraging task for head-fixed mice. In the virtual foraging
task, mice ran on a cylindrical treadmill in a 1D virtual space, using the same
auditory cues as used in the freely moving task (Figure 6A). Patches were
separated by a virtual track distance that the animal was required to traverse
on the wheel in order to reach the next virtual patch (Figure 6B). Mice began
in a patch at the start of the task. The acoustic tone cloud presented while
the mice remained stationary, signaling that they were in a patch. Pure tones
were embedded whenever reward was available, following the inhomogeneous
gamma process, at which point mice received reward upon licking. As before,
sucrose solution rewards were a constant volume of 2 µL and had increasingly
longer intervals between them as time in patch progressed. At any time in a
virtual patch, mice could begin walking or running on the treadmill, which
signaled a patch-leaving decision, and pink noise began to play to indicate
they were no longer in the patch. As they approached the next patch in
virtual space, pink noise increased in intensity until they had covered the
full virtual track distance for a given environment, at which point the sound
switched to tone cloud. The reward-generating process began when the mice
had additionally become stationary, which signaled recognition of patch en-
try. This sequence of virtual patch residence and inter-patch travel continued
for the duration of the session.

After a training period to familiarize with the head-fixed apparatus, mice
performed the foraging task with three reward decay rate (τ ∈ [3 s, 6 s, 12 s])
and three virtual track lengths (60 cm, 100 cm, 200 cm) in both low- (RSI =
0.05) and high- (RSI ∈ [0.5, 1.0]) stochasticity environments. As in the
freely moving task, a single set of parameters was used for each session.
Using similar criterion as the freely moving task, low-performing sessions
and animals were removed from the analysis. Within the remaining sessions,
task-relevant behavior was estimated both between and within patches.

We defined the task-relevant travel time as the time during which animal
velocity exceeded the threshold for patch entry (0.5 cm/s), which accounted
for 70% of the total travel time across all included sessions (Supplementary
Figure S4D). Moreover, animals ran continuously to the next patch in approx-
imately one-third of all instances. We estimated the average task-relevant
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travel time as the geometric mean of task-relevant travel times for each ani-
mal on each virtual track length. As expected, task-relevant times increased
with virtual track length in both low- and high-stochasticity environments,
demonstrating that virtual inter-patch distance altered the temporal cost of
traveling to the next patch (Figure 6D; average task-relevant travel time: 60
cm, 13.22 s; 100 cm, 16.14 s, 200 cm, 30.14 s). Once they had traversed
the virtual track length, animals slowed sufficiently to enter the patch in a
time proportionate to the track length (Supplementary Figure S4E; geomet-
ric mean of delay (fraction of average task-relevant travel time): 60 cm, 4.46
s (0.34); 100 cm, 4.77 s (0.30); 200 cm, 7.26 s (0.24)).

In contrast to the freely moving task, in which animals actively nose-
poked to remain in a patch, the head-fixed task did not necessitate active
engagement while in a virtual patch. Therefore, we considered lick rate to
reflect engagement and estimated task-relevant residence time as the time in
which lick rate exceeded a minimum threshold (0.5 Hz; Supplementary Figure
S4A-B). Mice were engaged in at least 95% of the residence time in 49% of
included patches; at least 80% in 61% of included patches; and at least 60% in
66% of included patches. We further analyzed only those patches exceeding
60% engagement for the remainder of the analysis, in order to effectively
exclude task-irrelevant behavioral epochs (Supplementary Figure S4C).

We then investigated the effect of environmental parameters on task-
relevant residence times in the virtual patch-based foraging task. In low-
stochasticity environments (N = 3 mice, 13.0±2.2 sessions per animal), clus-
ter bootstrap analysis showed that reward decay rate, but not virtual track
length, was significantly correlated with task-relevant residence time (Figure
6E; decay rate: r = 0.41 [0.34, 0.48] (mean [95% CI]), p(r > 0) > 0.9999;
track length: r = 0.01 [−0.08, 0.11], p(r > 0) = 0.59). In high-stochasticity
environments (N = 3 mice, 9.7 ± 2.5 sessions per animal), both parame-
ters were significantly correlated with task-relevant residence time (Figure
6F; decay rate: r = 0.24 [0.12, 0.35] (mean [95% CI]), p(r > 0) = 0.9999;
track length: r = 0.36 [0.25, 0.46], p(r > 0) > 0.9999). Linear mixed mod-
els that predicted task-relevant time from reward decay rate and average
task-relevant travel time were in agreement with the cluster bootstrap re-
sults (Supplementary Table S2). The signs of the coefficients for all signif-
icant parameters were consistent with MVT; that is, slower decay rates or
longer travel times correlated with longer residence times. Consequently,
average behavior overall reflected the principles of MVT in a head-fixed,
virtual patch-based foraging environment. These results demonstrate that
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patch-based foraging can be implemented in head-fixed paradigms.
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Figure 6: Virtual patch-based foraging in head-fixed environments followed MVT principles. (A) Head-
fixed animals ran on a cylindrical treadmill while receiving auditory cues about the patch location and
reward availability. Rewards were dispensed via a lick spout placed in front of the animal. (B) Treadmill
location was mapped into a 1D virtual space in which patches were separated by a fixed length throughout
the session. While stopped in a patch, animals could lick for rewards that became available through a
modified Poisson process with an exponentially depleting rate. Tone cloud played continuously, and pure
tones played intermittently to indicate the availability of reward(s). As animals ran in between patches,
pink noise grew in intensity until the next patch was reached in virtual space, at which time tone cloud
began to play again. Once animals had additionally become stationary, they could begin to receive
rewards from the new, replenished patch as before. (C) Example session with a virtual track length of 1
m and reward decay rate of 3 seconds. Traces for smoothed treadmill speed (top) and corresponding 1D
position (middle), as well as raster plots for lick and reward times (bottom), are shown over a 90-second
window. Shaded areas correspond to residence times. Dotted lines represent the patch entry criteria
for velocity (0.5 cm/s, top) and distance (1 m, middle), while the dashed line represents the velocity
threshold for patch exit (5 cm/s, top). Note that the velocity criteria remained the same for all sessions.
(D) At top, the histogram (solid lines) and corresponding log-normal distribution (dotted lines) of task-
relevant travel times is shown for low- (RSI = 0.05; left) and moderate-/high- (RSI ∈ [0.5, 1.0]; right)
stochasticity environments for three virtual track lengths. At bottom, the average task-relevant travel
time in low- (left) and moderate-/high- (right) stochasticity environments was computed for each animal
on each virtual track length as the geometric mean of the corresponding task-relevant travel times. (E-F)
A comparison of task-relevant residence times for different environmental parameters is shown for low- (E)
and and moderate-/high- (F) stochasticity environments. Boxes represent the interquartile range (IQR)
of residence times from all animals in the given environment. Whiskers extend 1.5x the IQR from the box
edges. Center lines represent the median. (n.s.: not significant; **: p < 0.001; ***: p < 0.0001; cluster
bootstrap analysis)
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3 Discussion

Foraging is a canonical choice process in nature and thus, by necessity, has
driven the evolution of cognitive processes. As such, the mental pathways uti-
lized during foraging directly correlate to decision-making as it exists in the
natural world [Adams et al., 2012, Pearson et al., 2014, Mobbs et al., 2018].
Extensive research in behavioral ecology and ethology have shown that suf-
ficient gathering of resources during foraging tasks may be captured by a
variety of strategies [Krebs, 2013, Gibbs, 1962b,a, Krebs et al., 1974, Oaten,
1977, Murdoch and Oaten, 1975, Hassell and May, 1974, Hutchinson et al.,
2008] or behavioral models [Tenhumberg et al., 2001, Hutchinson et al., 2008,
Lottem et al., 2018, Davidson and Hady, 2018, Kilpatrick et al., 2020, Con-
stantino and Daw, 2015, Shuvaev et al., 2020, Constantinople et al., 2019].
Moreover, because several components of foraging, such as the trade-off be-
tween exploration and exploitation, are disrupted in psychiatric disorders
[Speers and Bilkey, 2023, Addicott et al., 2017], foraging tasks present a po-
tential cross-species tool for characterizing underlying neural pathology. In
contrast, traditional laboratory tasks, which are designed for ease of analysis
and interpretation, shed light indirectly on real-world decision-making pro-
cesses. Here, we leveraged a large collection of behavioral data from a novel
experimental paradigm to elucidate mechanisms by which animals behave
in naturalistic settings. Our results demonstrated that animals learned the
task and behaved in a manner consistent with the marginal value theorem
(MVT) in both physical and virtual environments. Importantly, we discov-
ered that animals handle uncertainty by combining information on multiple
time scales, utilizing a hierarchical framework to harvest resources effectively.

The uncertainty we modeled in this study occurred at two distinct lev-
els: the uncertainty of the depletion rate of the patch, which resulted from
the daily perturbation of the environmental parameter; and the uncertainty
of the reward times given a known depletion rate, which resulted from the
underlying stochasticity of the reward-generating process. This variability in
variability is known as ”meta-variability,” and the associated cognitive load
is known as ”meta-uncertainty”. Meta-variability is ubiquitous in the natural
world and, consequently, has been framed in a number of ways across vari-
ous disciplines. For example, in the realm of machine learning [Hüllermeier
and Waegeman, 2021], meta-uncertainty has been theorized to consist of
aleatoric uncertainty, which relates to the observed outcome, and epistemic
uncertainty, which relates to the model parameters. In the context of the
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Bayesian model presented here, these two types of uncertainty directly relate
to the likelihood (reward timing) and posterior distribution (reward decay
rate), respectively [Schmitt et al., 2023]. Within the neuroscientific commu-
nity, meta-uncertainty has been studied in contexts ranging from fluctuations
in neural states that encapsulate levels of stimulus variability [Waschke et al.,
2021, M lynarski and Hermundstad, 2018] to the uncertainty about confidence
in a decision [Boundy-Singer et al., 2023]. More generally, a related paradigm
introduced by Yu and Dayan [2005] distinguishes between the expected un-
certainty associated with inherently stochastic observations (or rewards) and
the unexpected uncertainty that arises from a change in the parameters of the
underlying process, a concept often tied to reinforcement learning and explo-
ration/exploitation tradeoffs [Eppe et al., 2022, Schwartenbeck et al., 2019,
Soltani and Izquierdo, 2019, Stolyarova and Izquierdo, 2017, Dalton et al.,
2014, Amodeo et al., 2017]. Studies have shown that mice learn to handle ex-
pected uncertainty by estimating the variance of a stimulus [Li and Dudman,
2013] and, to a lesser degree, they handle unexpected uncertainty by encod-
ing deviations from the expected distribution [Ineichen et al., 2012, Phillips
et al., 2018, Grossman et al., 2022, Woo et al., 2023]. However, these studies
often use traditional, trial-based methods, even in the context of foraging
[Grossman et al., 2022]. Furthermore, these methods, such as probabilistic
reversal learning, model the response to unexpected uncertainty as animal
preference amongst two or more reward sites without explicit inference of the
underlying parameters. By contrast, the meta-uncertainty introduced by our
task assesses decision-making in both continuous time (variability of reward
times) and continuous task space (variability of reward decay rates). Our
work builds upon previous models of uncertainty in mice by demonstrating
their ability to handle meta-uncertainty in a naturalistic form—patch-based
foraging. Consequently, our results facilitate the study of a cognitive reper-
toire, and underlying neural circuits, which cannot be directly assessed in
trial-based tasks.

More generally, the behavioral strategies, and underlying neural circuits,
for processing meta-variability and meta-uncertainty are largely unknown
and actively being studied. Animals look to prior information for guid-
ance [Tosun et al., 2016]; tend to persist with current choices even in the
face of contradictory evidence [Lak et al., 2020, Gershman, 2020, Balcarras
et al., 2016] (also known as perseverance, or, related to the case of foraging,
over-harvesting); and, intriguingly, make decisions that are, at least in part,
inherently stochastic [Beron et al., 2022]. For instance, although average
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behavior may correlate with a trained, or even ideal, Bayesian observer, in-
dividual decisions maintain a significant level of variability that cannot be
captured by behavioral models [Beron et al., 2022], as was seen in our results.
High behavioral variability in the context of foraging has been observed in
previous studies [Hayden et al., 2011], and related overharvesting may be ex-
plained as either a consequence of Bayesian inference [Kilpatrick et al., 2021],
particularly for fast-decaying patches, or as a compensatory mechanism to
one’s behavioral variability [Cash-Padgett and Hayden, 2020]. At the same
time, the utilization of posterior probability is an important feature of forag-
ing decisions; although early theoretical models of stochastic environments
suggested a heuristic strategy [Oaten, 1977], our results are consistent with
more recent models that propose a Bayesian approach [Kilpatrick et al.,
2020]. This strategy is important because it shapes how one might inves-
tigate the underlying neural circuits. For instance, previous studies have
demonstrated the importance of the dorsal anterior cingulate cortex (dACC)
in patch-leaving decisions via an integrate-to-threshold mechanism [Hayden
et al., 2011]. While activity in the dACC transiently increased during stay-
or-leave decisions, the encoding during continual decision-making, and faced
with meta-uncertainty, is not known. Additionally, neuromodulators such
as dopamine, serotonin, or acetylcholine may track different levels and types
of variability [Beierholm et al., 2013, Niv et al., 2005, 2007, Shuvaev et al.,
2020] or modulate leaving times [Lottem et al., 2018]. The behavioral and
analytical framework for stochastic foraging environments we propose here
will allow a better mapping between neural activity and natural behavior.

Our approaches and results point to a number of promising areas for
further investigation. Although the number of patch encounters included in
the analyses of the freely moving task was large (14, 060 patches over 300
sessions), the number of animals (N = 8) was insufficient to study between-
animal differences in behavior. For instance, individual mice exhibited differ-
ent sensitivities to reward variability, which may reflect either a continuum
of learning rates or a cluster of different strategies altogether. Additionally,
future experiments could test what aspects of behavior, and underlying neu-
ral circuit mechanisms, are common or distinct between freely moving and
virtual patch foraging environments. In both tasks, animals also displayed
a significant proportion of task-irrelevant behavior, such as exploration or
grooming outside of patches in the freely moving task, or periods of inactiv-
ity in the head-fixed task, which may have partially resulted the behavioral
freedom granted by the naturalistic task design. Although this layer of be-
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havioral noise was excluded from analysis in this study, future work could
utilize more complex data, such as video tracking of animal movements and
pupil size, respectively, to build a more comprehensive model of behavior,
including both foraging and non-foraging states [Nonacs, 2001]. Finally, be-
cause animals underwent a prolonged training period, and environmental
parameters were modified sequentially across days, task learning was diffi-
cult to study. Moreover, comparable sessions for the same animal to study
a parameter of interest (e.g. τ = 12.0 vs. τ = 3.0 on a given track) were
in some cases separated by multiple days due to the experimental schema.
Future work using within-session switching of environment parameters, de-
terministically or stochastically, would allow further elucidation of the time
course of behavioral adaptation to environmental perturbations.

Many studies of cognition take a top-down approach in which experiments
are designed to test a particular cognitive function. Not only does this lead
to design of unnatural tasks, but it also presumes that mental processes de-
rived from human psychology are applicable to the animal species of study.
In both cases, the results may be difficult to interpret or even misleading.
We instead followed a bottom-up approach by constructing a task from nat-
ural principles, allowing animals to perform the task freely, and following
their behavior to generate interpretive models. Of course, no laboratory task
can perfectly replicate a native environment, and trade-offs must be made
between data acquisition (including neural data) and freedom of behavior.
There is, however, a growing consensus that laboratory tasks will yield the
best results of mimicking the world for which the brain evolved, an idea that
is especially true for patch-based foraging [Mobbs et al., 2018, Calhoun and
Hayden, 2015]. Moreover, the behavioral paradigms and analysis approaches
outlined in this study provide a framework for investigating further aspects
of decision-making processes, such as contextual information or continuous
models [Yoo et al., 2021, Huk et al., 2018]. By invoking native behaviors and
presenting naturalistic uncertainty, patch-based foraging tasks offer myriad
opportunities to study fundamental decision-making processes.
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4 Methods and Materials

4.1 Animals

Sixteen male C57/BL6 mice (Jackson Labs) were selected for experiments.
Mice were restricted to no less than 80% of normal body weight and were
given free access to water in their home cages. Mice were kept on a regular
light/dark cycle and performed all tasks during the light phase. All animal
procedures were in compliance with the ethical guidelines of the National
Institutes of Health and approved by the Institutional Animal Care and Use
Committee at Baylor College of Medicine.

4.2 Head-post Implantation

Eight of the sixteen mice underwent the procedure for head-post implantation
in order to train on the head-fixed experimental setup. All surgical instru-
ments were sterilized prior to use. Animals were anesthetized with isoflurane
gas (2-3% in oxygen) for the duration of the procedure. The surgical site was
shaved and prepped with betadine and alcohol. An incision was along the
midline of the scalp. After the overlying fascia was removed, the skull was
scraped and cleaned with a sterile saline solution. A sterile head-post was
secured with dental acrylic slightly ( 0.5 cm) anterior to bregma.

4.3 Experimental Setup

4.3.1 Freely-moving Behavioral Apparatus

Freely-moving experiments were conducted inside an enclosed sound booth
(Otometrics; Schaumburg, IL) in a dark environment. Mice performed the
behavioral task on one of two elevated tracks ( 6 cm wide), consisting of a
single 100 cm segment or two two-meter segments joined at a 90 degree an-
gle (400 cm track). Both tracks were lined with red semi-transparent acrylic
walls (3 mm x 30 cm; TAP Plastics) to discourage irrelevant exploratory
behaviors. Custom 3D-printed reward ports were placed at the ends of the
tracks and housed a lick spout (blunt-tip 19G 1.5” needle) centrally. Rewards
were dispensed via a syringe pump (model NE-500; New Era Pump Systems,
Inc.) that was elevated to the same height as the track to avoid unintentional
leakage. Speakers (ES-1 Free Field Electrostatic Speaker; Tucker-Davis Tech-
nologies) were mounted approximately 7 cm above each reward port. Speaker
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output was recorded to the host computer via a custom microphone adaptor
board. Overhead webcams (C-920; Logitech) modified to remove the factory
infrared (IR) filter recorded experimental activity, which was illuminated by
IR illuminators (850nm; Univivi).

Data acquisition and behavioral logic were managed by a custom Python-
based behavioral platform (available here). Briefly, the system peripherals
consisted of 1) a custom IR beam break circuit to detect pokes within the re-
ward port; 2) a custom capacitive sensor board to detect licks that employed
open-source firmware [Badger and Stoffregen, 2016, Brakel, 2014, ; available
here]; and 3) an interface with the syringe pump to trigger reward disburse-
ment. The poke and lick detector inputs, and the syringe pump outputs,
were managed by a custom I/O board that recorded logic states at 500 Hz
and interfaced with the host computer. The digital inputs, audio waveforms,
and video were synchronized via custom Python software running on the host
computer. Additional Python software managed the task logic to coordinate
the audio and reward outputs as described in the task below.

4.3.2 Head-fixed Behavioral Apparatus

Head-fixed experiments were conducted inside individual sound booths (Oto-
metrics; Schaumburg, IL). Mice ran on a cylindrical treadmill while fixed to
the head-post. Rewards were dispensed through a lick spout (blunt-tip 19G
1.5” needle) placed slightly anterior to the mice via a programmable syringe
pump (model NE-500; New Era Pump Systems, Inc.). Licks were detected
via an electrical sensor (Janelia) connected to the spout. Auditory stimuli
played through a speaker (ES-1 Free Field Electrostatic Speaker; Tucker-
Davis Technologies) mounted on the left side of the animal. Speakers were
calibrated routinely throughout the duration of the study.

Behavioral logic and data acquisition were managed through custom Lab-
VIEW software. Analog outputs from the sound waveform, lick detector,
and syringe pump were simultaneously recorded to a DAQ (National In-
struments). Treadmill position and velocity was recorded from an encoder
(Model 15T Accu-Coder) attached to the treadmill.

4.3.3 Auditory Stimuli

Auditory stimuli were generated using custom Python (freely-moving) or
LabVIEW (head-fixed) code at 192 kHz for playback. Pure tones indicated
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reward availability. For every available observable reward, the frequency
was increased by two semitones, with the base frequency f0 indicating the
presence of a single reward. Thus the tone frequency to indicate n available
rewards is given by:

fn = f02
2n
12

Tone cloud stimuli consisted of repeating chords divided into 20 ms bins
[de Gee et al., 2022]. Each chord was comprised of 5 semitones randomly
selected between 1.5 kHz and 96 kHz. To reduce boundary anomalies, cosine
gating was applied to the first and last 5 ms of each time bin. Pink noise
was generated via the Voss-McCartney algorithm using 16 sources [Gardner,
1978, Voss and Clarke, 1975, 1978]. Additionally, in the head-fixed task,
the intensity of the pink noise, which was played when the animal was in
between patches, was modulated according to the inverse square law to mimic
natural acoustic attenuation in physical environments. If an animal is some
distance r1 from a sound source (e.g. speaker), then the sound intensity I1,
sound pressure amplitude p1, and sound pressure level L1 (in decibels) can
be approximated as:

I1 =
P

4πr21
∼ p21

L1 = 10log10
p21
p20

= 20log10
p1
p0

where P is power and p0 is the reference pressure amplitude. For a given
pressure level L1, the pressure level L2 at distance r2 from the sound source
is:

L2 = L1 − 20log10

(
p1
p2

)
= L1 − 20log10

(
r2
r1

)

In the head-fixed task, r1 and L1, the distance to and pressure level of the
virtual sound source when the animal was in a patch, was set to 5 cm (the
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approximate distance in the freely-moving task) and 50 dB, respectively. As
the animal was approaching a patch, the remaining travel distance, r2 − r1,
was used to calculate the level of attenuation per the equation above. The
sound pressure level of the tone cloud stimulus, which played when the animal
was stopped in a patch, remained constant at L1.

4.3.4 Reward dynamics

Each patch featured rewards that depleted as the animal remained in it.
Rewards were always given as 2 µL droplets. Because reward volume was
fixed, depletion was realized by increasing the interval between rewards over
time in patch. The rate at which the inter-reward interval increased, and
thus reward rate decreased, was governed by the decay rate parameter (τ),
which corresponds to the time constant of the exponential depletion. A
larger τ means intervals increase more slowly, and thus more reward can
be harvested in a given interval. In order to ensure that rewards were not
delivered with deterministic inter-event intervals, we used a modified Poisson
process, known as an inhomogenous gamma process [Berman, 1981], which
is described next.

Within a patch, the times at which fixed-volume reward droplets were
given followed an inhomogeneous gamma process with an exponentially de-
caying event rate. Here, we use the term event to mean an occurrence in
the underlying process, and the term reward to mean the observed, 2 µL
droplet that the animal receives. Because variance in a traditional Poisson
process is equal to the expected value over a given interval, the stochasticity
and, in this case, reward rate are inextricably linked. For instance, slowing
reward depletion (by increasing τ) would increase both the expected num-
ber of rewards and the variance of rewards in a patch. However, this would
confound analyses of both the reward decay rate and stochasticity, since any
change in behavior in response to one could not be separated from a change
in response to the other. In order to separate changes in stochasticity from
changes in reward decay rate, we instead generate events from a hidden, in-
homogeneous Poisson process with an exponentially decaying Poisson rate.
Each event is assigned some volume V0, which remains fixed for a given ses-
sion, and rewards are given whenever the sum of event-volumes exceed the
reward droplet volume, Vr = 2µL.

The underlying inhomogeneous Poisson process is characterized by the
following time-varying rate and its cumultative probability distribution::
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λ(t) = λ0e
− t

τ

Λ(t, s) =

∫ t+s

t

λ(t′)dt′ = λ0τ
(
1 − e−

s
τ

)
Given a decay rate τ , stochasticity is independently varied by modulating

the volume associated with each Poisson event, termed V0. To see why, note
that the cumulative reward function in each patch becomes:

V (s) = V0Λ(0, s)

= V0λ0τ
(
1 − e−

s
τ

)
with the following expectation and variance:

E[V (s)] = V0Λ(s)

var[V (s)] = V 2
0 Λ(s)

By setting V0λ0 = r0 for all values of V0, where r0 = 2.5µL is the same
for all experiments, we can scale the initial Poisson rate λ0 and event volume
V0 such that, for a given τ , all patches maintain the same expected reward
value but with variance increasing as V0:

E[V (s)] = (V0λ0) τ
(
1 − e−

s
τ

)
= r0τ

(
1 − e−

s
τ

)

var[V (s)] = V 2
0 Λ(s)

= V0 (V0λ0) τ
(
1 − e−

s
τ

)
= V0

(
r0τ
(
1 − e−

s
τ

))
= V0E[V (s)]

Thus V0 directly influences the level of reward stochasticity independently
of the decay rate. Rewards were made available to the animal whenever
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the cumulative volume associated with the hidden Poisson process equaled
Vr = 2µL. In other words, every L = Vr

V0
events constituted an observable

reward. This modified process, in which every Lth event from a inhomoge-
neous Poisson process is observable, is known as an inhomogeneous gamma
process [Berman, 1981].

Moreover, we defined the reward stochasticity index, a measure of environ-
mental uncertainty, as the ratio of the event volume to the observed reward
volume:

RSI =
V0

Vr

Thus RSI was necessarily bounded within the interval (0, 1]. Increased
RSI reflected increased environmental uncertainty. The set of environmental
RSI values was [0.05, 0.5, 1.0].

4.4 Behavioral Task

4.4.1 Freely-moving Foraging Task

Mice selected for the freely-moving task were initially trained to poke and
lick from a single reward port while being confined to the last 25 cm of
the track. Rewards consisted of 5 µL droplets of 10% sucrose solution and
were exponentially distributed in time (β = 2 s, t ∈ [0.25, 4]) to encourage
persistence. After animals demonstrated significant poking and licking, they
were trained to alternate between two reward ports at opposite ends of the
track that had the same reward characteristics. Once alternation accuracy
(defined as the fraction of poking decisions in which an animal correctly
traveled to the opposite reward port) exceeded 60%, animals proceeded to
the main foraging task.

In the main foraging task, animals had to poke into one of two reward
ports at either end of the track. Both entering and leaving the reward port
required a minimum of 500 ms to avoid registering unintentional movements.
Once poked, rewards consisting of 2 µL droplets became available through
the previously described IGP and were dispensed through the lick spout
upon licking. Simultaneously, a tone cloud auditory stimulus played through
the speaker located above the reward port to denote it as ”active.” Animals
could unpoke at any time to leave the current reward port, at which point
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the associated speaker stopped playing the tone cloud stimulus to denote
it as ”inactive”, and move towards the other reward port, where the other
speaker began playing a pink noise stimulus. Pokes into the same reward
port were ignored and did not yield further rewards. Once poked in the
other reward port, the adjacent speaker switched to a tone cloud stimulus,
and the animal could receive rewards as before from the IGP reset to the
initial values. The alternation pattern continued for the remainder of the
session, which typically lasted 30 minutes. Each poke-unpoke sequence is
termed a ”patch,” while the subsequent movement to the next reward port
is termed ”travel.”

4.4.2 Head-fixed Foraging Task

The head-fixed task mirrored the freely-moving version in a virtual environ-
ment denoted by auditory cues. Animals were first placed on the cylindrical
treadmill and secured to the head-post. The task began with the animals in
a virtual ”patch”, during which a tone cloud auditory stimulus was played.
Similar to the freely-moving task, fixed-volume rewards consisting of 2 µL
droplets (10% sucrose solution) were generated by the underlying modified
Poisson process. A pure tone played when reward(s) were available to har-
vest. Animals could receive the available reward(s) by licking the spout.
Patch-leaving decisions were determined by the onset of running, which was
defined as treadmill velocity greater than 5 cm

s
. Once velocity exceeded the

running threshold, pink noise played to indicate that the animal was in be-
tween patches and rewards were no longer available. In order to enter the
next patch, the animal had to traverse a set virtual track length on the
treadmill. As the animal approached the next patch, the intensity of the
pink noise stimulus grew proportionate to inverse square of the remaining
distance, mimicking the inverse square law for acoustics. Once the animal
had covered the virtual track distance, tone cloud again played to indicate
the animal was in a virtual patch. However, the reward-generating process
did not start until the animal had additionally stopped moving, which was
defined as velocity less than 0.5 cm/s. Note that two different velocity thresh-
olds were used both to 1) avoid rapidly fluctuating in and out of patches and
2) encourage animals to lick while stationary. Treadmill velocity was com-
puted as a running average of over the previous one second and continually
monitored for the appropriate threshold crossing.

Animals were first acclimated to the head-fixed apparatus for several days.
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They then trained on the task with a slow reward decay rate (τ = 30.0) and
short virtual track (15 cm) for one week, followed by a faster decay rate
(τ = 12.0) for an additional week. They then performed the foraging task
with the environmental parameters described below.

4.4.3 Task Environments

Each task environment was defined by two reward dynamic parameters (V0,
τ) and the track type (physical or virtual) (Supplementary Table S3). The
decay rate τ was varied weekly for both tasks, and the track length was varied
daily and weekly for the freely-moving and head-fixed tasks, respectively.
Experiments were first conducted with RSI = 0.05 until all environments
(i.e. τ -track pairs) had been tested, followed by RSI = 0.5 and RSI = 1.0.
Note that fewer values of the decay rate were explored with the larger values
of RSI due to the large number of potential combinations.

4.5 Data Analysis

4.5.1 Analysis Environment

All analyses were done using Python 3.7 running on Ubuntu 16.04. The
linear mixed models were fit using the statsmodels package (v0.12.2).

4.5.2 Inclusion and Exclusion Criteria

After training, eight mice completed a total of 440 sessions on the freely-
moving foraging task. Sessions comprised at least 20 patches in order to be
included in the analysis. A log-normal distribution was fit to all residence
times (µ = 9.62, σ = 5.25), and outliers, defined as more than three standard
deviations above or below the mean, were excluded from analysis. Latencies
between the generated and experienced reward time occasionally arose due
to licking behavior and technical errors. Because reward timing is vital to
assessing and responding to the environmental dynamics, patches with one
or more latencies exceeding 500 ms were excluded, and any session that com-
prised greater than 10% such patches was excluded entirely. Lastly, sessions
that included fewer than 10 patches after application of the above criteria
were excluded. The remaining dataset comprised 385 sessions with 17,877
patches. All subsequent analyses were conducted on the less (RSI = 0.05)
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or more (RSI ∈ [0.5, 1.0]) stochastic experiments separately unless otherwise
specified.

For the head-fixed foraging task, experiments comprised 383 sessions
across eight mice after the training period. The same criteria as the freely-
moving task, but with different thresholds, were initially applied to the
dataset (minimum patches in session: 12; log-normal distribution of resi-
dence times: µlog10 = 1.32, σlog10 = 0.58), except for the reward latency
criterion. Additionally, animals with more than 50% of sessions that did
not meet the above criteria were excluded entirely from the analysis (five of
eight). Of sessions in the remaining three animals, one was excluded due to
overactive running, and two were excluded because no rewards were given.
Lastly, after estimating the task-relevant residence times from licking behav-
ior (see below), patches with task-relevant residence times that were more
than two standard deviations below the mean (log-normal distribution) or
with active licking comprising less than 60% of the total residence time were
excluded from the analysis. The remaining dataset consisted of 2,086 patches
from 112 sessions amongst three animals. Analyses were likewise conducted
on the less or more stochastic environments independently.

4.5.3 Residence and Travel Times

Residence times during the freely-moving task were defined to start and end
after the animal had poked and unpoked, respectively, for 500 ms continu-
ously at the reward port. The total travel time was consequently the time
between the end of one residence time to the start of the next residence
time. However, given that animals also exhibited unrelated behavior while
traveling, the task-relevant travel time was estimated for each animal in a
particular environment (i.e. decay rate and track type) as the tenth percentile
of the distribution of total travel times.

Residence times during the head-fixed task were defined to start when
the animal had both traversed the virtual track length and became station-
ary, and to end when the animal began to run (see Head-fixed Foraging
Task), which coincided with the reward-generating process. Unlike the freely-
moving task, in which the nose poke required animals to actively engage in
the task in order to be in a patch, animals displayed periods of inactivity
during the head-fixed task both within and outside of patches. Task-relevant
residence time was estimated using lick rate as a surrogate for task engage-
ment. Lick rate was computed by counting the number of licks within 500 ms
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time bins and smoothing the ensuing rate with a Gaussian kernel (σ = 2 s).
Task-relevant residence times were then calculated by excluding time bins
in which the smoothed rate fell below 0.5 Hz. A similar procedure was
conducted to estimate task-relevant travel times from treadmill velocity, ex-
cluding intervals in which velocity fell below the patch entry threshold (0.5
cm/s).

4.5.4 Cluster Bootstrap

Statistical tests were utilized to assess the effects of environmental param-
eters on patch residence times. Traditional statistical tests, however, were
inappropriate because 1) variance was significantly different between environ-
ments, and 2) residence times were not measured independently due to the
repeated nature of the experimental design. (Although repeated-measures
ANOVA could account for the latter violation, it cannot handle missing data
and loses a significant amount of information by collapsing several hundred
data points into a single mean.) Therefore, a cluster bootstrap approach [Sar-
avanan et al., 2020], which builds upon the original bootstrap methodology
[Efron, 1979, Kulesa et al., 2015], was taken to account for the hierarchical
nature of the data. The data was organized into the following hierarchical
levels:

environment ⇒ animal ⇒ session ⇒ patch

where environment consists of a tuple defined by the three environmental
parameters, (τ, track, V0). The hierarchical representation can be visualized
as a tree data structure, with each node representing unique values (e.g.
animal IDs) for a given level (e.g. animals) under the parent node (e.g. envi-
ronment). The data was first separated into the groups at the environment
level. Within each group, Ni values at the subsequent levels were sampled
with replacement, where Ni is the minimum number of nodes at the ith level
within the group, until Nk patches were drawn from each sampled session,
constituting a sample of size (N1) · · · (Nk). Utilizing the minimum num-
ber of nodes across levels ensured that the resultant sample was balanced
across potential sources of bias (e.g. animal ID). The process was repeated
M = 10, 000 times for each group to build a bootstrapped sampling distri-
bution upon which statistical tests were conducted.
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Separate analyses were conducted for the less (RSI = 0.05) and more
(RSI ∈ [0.5, 1.0]) stochastic conditions. Sampling distributions were sorted
by the parameter of interest (τ or track). The Pearson correlation coefficient
was computed for each sample to generate M values, and the resulting mean
and 95% confidence intervals were calculated. The presence of the entire con-
fidence interval either less than or greater than zero indicates a significant
negative or positive correlation, respectively, of the parameter with residence
time (assuming a two-tailed Type I error tolerance of 0.05). For comparisons
with two values (e.g. track type), the fraction of sample mean differences
greater than zero, an equivalent metric, was also calculated. Similarly, frac-
tions less than 0.025 or greater than 0.975 indicate a significant negative or
positive relationship, respectively.

4.5.5 Linear Mixed Model

Residence times were fit to a linear mixed model of the form:

y = Xβ + Zµ + ϵ

where y is the observed residence times; X and β are the values and
parameters, respectively, of the fixed effects; Z and µ are the values and
parameters, respectively, of random effects; and ϵ is noise. Fixed effects
included environmental parameters (τ and track) and time-on-task effects.
Different metrics of the travel time (task-relevant and total travel time) and
time on task (patch number, patch start time) were explored until the model
with the lowest Bayesian information criterion score was obtained. Mice
constituted the random effects in all models. All model inputs were normal-
ized to lie within [0, 1]. Likelihood ratio tests between the full model and
reduced model, in which the parameter of interest was excluded, were con-
ducted to determine parameter significance. χ2 and p values were obtained
by comparing the log-likelihood ratio to the χ2

1 distribution.

4.5.6 Global Behavioral Models

All analyses of the behavioral models and parameter estimation were con-
ducted for the freely-moving task only.

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2024. ; https://doi.org/10.1101/2024.03.30.587253doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.30.587253
http://creativecommons.org/licenses/by/4.0/


Expected Reward Times All behavioral models were constructed to pre-
dict patch residence times for each animal, given their particular inputs. Of
note, patch-leaving criteria for sequence-based models were often not fulfilled
at the observed leaving time, creating a need for predicted, unobserved re-
ward times. Because the specific sequence generated for a given patch could
introduce bias, the expected future reward times were instead computed and
used as model inputs.

To compute the expectation for reward times {T1, . . . , TM} after time t,
note the cumulative distribution function for the time of the M th event, using
the transformation SM = TM − t and s = t′ − t for ease of calculation:

FSM
(s; t) = P (SM ≤ s; t)

= 1 − P (Sm > s; t)

= 1 −
M−1∑
m=0

P (M(s) = m; t)

= 1 −
M−1∑
m=0

(
e−Λ(t,s)

(
Λ(t, s)m

m!

))
where

Λ(t, s) =

∫ t+s

t

λ(s′)ds′

Because observing the M th event becomes increasing unlikely as M grows,
it is not guaranteed to always be observed: lims→∞(FSM

(s; t)) < 1. Thus,
for a given sequence, the cumulative probability can be separated into two
components:

FSM
(s; t) =

P (SM < s; t)

P (SM < ∞; t)
P (SM < ∞; t)

= F̃SM
(s; t)F0

where
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F0 = P (SM < ∞; t)

= 1 −
M−1∑
m=0

e−Λ(t,∞)Λ(t,∞)m

m!

represents the probability that the M th event is observed in a given se-
quence, and F̃ is the normalized cumulative distribution function. Conse-
quently, the normalized probability density function becomes:

f̃SM
(s; t) =

dF̃SM
(s; t)

ds

=
1

F0

dFSM
(s; t)

ds

=
M−1∑
m=0

1

m!

[
e−Λ(t,s)λ(t + s)Λ(t, s)m−1 (Λ(t, s) −m)

]
The expectation for SM when the M th event occurs is found by integrating

sf̃SM
over the domain of s:

Et(SM) =

∫ ∞

−∞
sf̃SM

(s; t)ds

=

∫ ∞

0

s

(
1

F0

M−1∑
m=0

1

m!

[
e−Λ(t,s)λ(t + s)Λ(t, s)m−1 (Λ(t, s) −m)

])
ds

=
1

F0

M−1∑
m=0

(
1

m!

∫ ∞

0

s
[
e−Λ(t,s)λ(t + s)Λ(t, s)m−1 (Λ(t, s) −m)

]
ds

)
Lastly, due to the nature of the inhomogeneous Poisson process, some

unobserved events may have occurred between the last observed event and
the patch-leaving time. To account for this phenomenon during estimation
of the first future reward time, the expected number of unobserved events at
patch-leaving, L0 was estimated. The probability that m unobserved events
occurred since the last observed reward was given by:
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P (M(s) = m | M(s) < L; t) =

{
e−Λ(t,s) Λ(t,s)

m

m!
if m < L

0 if m ≥ L

where L = Vr

V0
was the threshold at which a reward is given (see Reward

dynamics). Summing over all values of m gave the marginal probability P0:

P0 =
∞∑

m=0

P (M(s) = m; t)

=
L−1∑
m=0

P (M(s) = m; t)

=
L−1∑
m=0

(
e−Λ(t,s)Λ(t, s)m

m!

)
which was used to normalize the distribution:

P̃ (M(s) = m | M(s) < L; t) =

 e−Λ(t,s) Λ(t,s)
m

m!

P0

if m < L

0 if m ≥ L

=


e−Λ(t,s) Λ(t,s)

m

m!∑L−1
m=0

(
e−Λ(t,s)

Λ(t, s)m

m!

) if m < L

0 if m ≥ L

The expected value was calculated by:

Et[M(s) | M(s) < L] =
L−1∑
m=0

mP̃ (M(s) = m; t)

=

∑L−1
m=0

(
me−Λ(t,s) Λ(t,s)

m

m!

)
∑L−1

m=0

(
e−Λ(t,s) Λ(t,s)

m

m!

)
= L0

The first future observed reward was thus an estimation of L−L0 events,
whereas all subsequent future rewards were estimations of L events.
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Local Heuristic Models The elapsed time model (HEU-ETR) predicted
residence time based on an animal’s average delay between receiving a reward
and leaving the patch. First, the mean duration between the last observed
reward and patch-leaving time for each animal was calculated:

∆tn =

{
t
(p)
n − t

(r)
n,Mn

if Mn > 0

t
(p)
n else

∆t =
1

N

∑
n

∆tn

where n = 1, . . . , N is the patch number, t
(p)
n is the nth residence time, and

t
(r)
n,Mn

is the last reward time in the nth patch with rewards mn = 1, . . . ,Mn.
The predicted residence times for an animal were calculated by first finding
the earliest inter-reward interval that was greater than the leaving criterion
∆t:

m∗
n = min

{
mn | t̃(r)n,mn+1 − t̃(r)n,mn

≥ ∆t
}

where t̃
(r)
n = [(tn

(r))T , (̂t
(r)
n )T ]T is the concatenation of the observed re-

ward times tn
(r) and the expected future reward times t̂

(r)
n . The predicted

residence times were then calculated as the time of reward m∗
n followed by

the average patch-leaving delay:

ŷn = t̃
(r)
m∗

n
+ ∆t

To estimate residence time based on observing a certain number of re-
wards (HEU-NR), the mean number of rewards observed at patch-leaving
was similarly computed for each animal:

M =
1

N

∑
n

Mn

and using the same framework for constructing observed and future re-
ward times, residence times were predicted as the time at which reward M
was observed in the patch:

ŷn = t̃
(r)

M
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Marginal Value Theorem According to the marginal value theorem (MVT),
the animals should leave the patch when the instantaneous rate of return,
v(t), equals or falls below the average rate of return in the environment:

v(t(p)) =
V (t(p))

t(p) + t(t)

Given the equations for v(t) and V (t) above, the value t(p)∗ that satisfies
this condition, which is the optimal residence time according to MVT (MVT-
OPT), is:

e−
t(p)∗

τ

(
t(t) + t(p)∗ + τ

)
− τ = 0

for a given set of values (τ , t(t)) defined by the environment. Note that
according to MVT, the optimal residence time is independent of the initial
reward rate. If the kth environment has associated parameters (τk, t

(t)
k ), then

the predicted residence time for a patch n in environment k is:

ŷn = t
(p)∗
k

where t
(p)∗
k satisfies the previous equation for (τk, t

(t)
k ). Predictions for

each animal were based on the known value τk and the travel time that was
estimated from all sessions for that animal on the track in environment k.
Optimal residence times were calculated by applying Broyden’s first Jacobian
approximation to solve for t

(p)∗
k .

The internal MVT model (MVT-IM) presumes the same underlying pre-
sumptions but allows for different perceived parameters to fit the observed
data. In particular, the predicted time in environment k is given by t̂

(p)
k such

that:

e
−

t̂
(p)
k
τ̂k

(
t̂
(t)
k + t̂

(p)
k + τ̂k

)
− τ̂k = 0

The parameters τ̂k and t̂
(t)
k were fit to the observed data by minimizing

the following loss function:
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L(θ) = ∥ŷ − y∥22 + λ
∥∥∥θ̂ − θ

∥∥∥2
2

where y = [t
(p)
1 , . . . , t

(p)
N ]T and ŷ = [t̂

(p)
1 , . . . , t̂

(p)
N ]T are the observed and

predicted residence times, respectively, and θ = {τ , t(t)} and θ̂ = {τ̂ , t̂(t)}
are the experimental and perceived environmental parameters, respectively.
The regularization term θ̂ ensured that the fitted parameters maintained
reasonable proximity to the observed values. Additionally, constraints were
imposed on the parameters such that the number of fitted and experimental
parameters remained equal:

τ̂k = τ̂k′ ∀ k, k′ s.t. τk = τk′

t̂
(t)
k = t̂

(t)
k′ ∀ k, k′ s.t. dk = dk′

where dk indicates the track length in environment k. In other words,
in a given dataset (comprised of a given stochasticity level on either the
freely-moving or head-fixed task), each value for the experimental τ corre-
sponded to one estimate τ̂ , and each value for the track length corresponded
to one estimate for travel time, t̂(t). The parameters were fit using the Broy-
den–Fletcher–Goldfarb–Shanno algorithm to minimize the loss function.

4.5.7 Local Behavioral Models

Parameter estimation Bayesian estimates of the reward rate were de-
rived from similar principles shared by previous models [e.g. Kilpatrick
et al., 2021] but adapted to the specific reward structure of the task. Given
a series of patches, m = 1, . . . ,M , and reward times within those patches,
[t1, . . . , tKm ], constituting the inhomogeneous gamma process, the probability
of the Poisson rate λ at time t is proportional to:

p(λ|x(t);λ0, τ) =
∏
m

∏
k

lim
dt→0

1

dt
(p(N = L− 1 ∈ {tk−1, tk})p(N = 1 ∈ {tk, tk + dt}))

=
∏
m

∏
k

(
e−Λ(tk−1,tk)

(Λ(tk−1, tk))L−1

(L− 1)!

)
(λ(tk)dt)
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and the log-probability is proportional to:

ln(p(λ|x(t);λ0, τ)) =
∑
m

∑
k

(
− Λ(tk−1, tk) + (L− 1)ln(Λ(tk−1, tk)) − ln((L− 1)!)

+ ln(λ(tk) + ln(dt))

)
=
∑
m

(
− Λ(tm) + (L− 1)

∑
k

ln(Λ(tk−1, tk)) −Kmln((L− 1)!)

+
∑
k

(
ln(λ(tk)) + ln(dt)

))
where L = Vr

V0
= 1

RSI
is the number of Poisson events that constitute an

observable reward, and λ(t) and Λ(t) are as defined previously. (Here, Λ(t)
is shorthand for Λ(0, t).) The maximum likelihood estimate (MLE) of the
parameters (τ , λ0) is found by setting their partial derivatives equal to zero:

∂ln(p(λ|x(t);λ0, τ))

∂λ0

= 0 = −
∑
m

τ
(

1 − e
−tm
τ

)
+ L

∑
m Km

λ0

∂ln(p(λ|x(t);λ0, τ))

∂τ
= 0 = −λ0

∑
m

(
1 − e

−tm
τ

)
+

λ0

τ

∑
m

tme
−tm
τ +

(L− 1)
∑

m Km

τ

+
L− 1

τ 2

∑
m

∑
k

α(tk−1, tk) +

∑
m

∑
k tk

τ 2

where α(tk−1, tk) =

(
tk−1e

−tk−1
τ − tke

−tk
τ

e
−tk−1

τ − e
−tk
τ

)
Solving for λ0 in the first equation and plugging it into the second, the

following equation for τ is obtained:

0 =

(∑
m

Kmτ −
∑
m

∑
k

tk − (L− 1)
∑
m

∑
k

α(tk−1, tk)

)∑m

(
1 − e

−tm
τ

)
∑

m tme
−tm
τ

− L
∑
m

Km
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The solution, τMLE was found by applying Brent’s method to the above
equation. Leveraging the relationship λ(t) = λ0e

− t
τ , the MLE of the Poisson

rate, λMLE(t), was then calculated by rearranging the equation for ∂ln(p(λ|x(t);λ0,τ))
∂λ0

=
0 and substituting λ(t) for λ0:

λMLE(t) =
L
∑

m Km∑
m τMLE

(
1 − e

−tm
τMLE

)e− t
τMLE

Errors in parameter estimation were calculated from only the current
(M = 0) reward sequence. The corresponding changes in residence time
were calculated as the deviation from the average of all N residence times in
the session:

∆t(p)n = t(p)n − 1

N

N∑
i=1

t
(p)
i

To compute the change in residence time (but not the rate estimation
error), the time-on-task effect was removed from all residence times. A best-
fit line relating residence time to the patch number in a session was calculated
for each animal. The change from baseline based on its slope was then added
to the residence times for each animal prior to calculating both the session
average and deviation from session average. A control dataset was generated
by shuffling the residence times across patches within each session. Given
the newly assigned residence times, the rate estimation error at patch-leaving
and change in residence time were computed for each patch, where the time-
on-task effect was removed prior to computing the latter as before.

A bivariate Gaussian distribution was fit to the set of rate estimation er-
rors and their corresponding changes in residence time for both the observed
and shuffled data. Data outside of the ellipse representing the 99th percentile
were excluded. Linear regression was performed on the remaining data us-
ing rate estimation error and change in residence time as the explanatory
and response variable, respectively, using five-fold cross-validation. As in the
behavioral model assessment, cross-validation subsets were constructed by
dividing residence times within each session into five groups, and combining
each group over all sessions to build five subsets.
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Predictive model The MLE of the Poisson rate, λMLE, was utilized to
form a predictive model of foraging decisions. Following the theoretical
framework of MVT, the model predicted patch-leaving to occur when the
estimated reward rate (i.e. λMLE) fell below a threshold for a given envi-
ronment. For a given environment k, the threshold λ∗

k was derived from the

parameters of MVT-IM, τ̂k and t̂
(t)
k , for each animal as:

λ∗
k = λ(t̂

(p)
k ) = λ0e

−
t̂
(p)
k
τ̂k

where t̂
(p)
k is the predicted residence time in environment k according to

the MVT-IM model. The estimated Poisson rate was evaluated for each
patch at 100 ms intervals. The predicted residence according to the MLE-M
model was the first time point in which the estimated reward rate was less
than or equal to the patch-leaving threshold:

ŷn = min {ti | λMLE(ti) ≤ λ∗
k}

where ti represents the ith time bin, and M refers to the number of patches
preceding patch n to include in the MLE. (For initial patches with n ¡ M ,
the first n patches were included). Note that for models with M = 0 or
no observed rewards in sequences prior to a given patch, the MLE for time
bins prior to the first observed reward for such a patch trivially yielded a
homogeneous process with zero reward rate (i.e. λMLE = 0 and tauMLE =
∞), which is incongruent with the MVT-based threshold strategy. To address
these initial patch times, a very weak prior was incorporated into the model
to avoid nonsensical model behavior, as described below. However, the prior
had negligible effect on the estimated reward rate, and consequently the
predicted patch-leaving time, once either of the criteria had been satisfied.

4.5.8 Multiscale Behavioral Models

Parameter estimation To provide models with estimates derived glob-
ally, prior probabilities for the parameters (λ0 and τ) of the inhomogeneous
gamma process (IGP) were included with the likelihood to generate maximum
a posteriori (MAP) estimates of the current reward rate. The gamma distri-
bution was chosen because it is the conjugate prior for the Poisson distribu-
tion, allowing the resulting equations to be more computationally tractable.
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(Due to the inhomogeneity of the gamma process underlying reward timing
(i.e. the non-stationary term Λ(t)), the gamma prior distribution does not
yield a Poisson posterior distribution and thus is not technically a conjugate
prior for the IGP, as seen below.)

The prior distributions of both λ0 and τ were of the general form:

p(λ0) = Gamma(αλ, βλ) = λαλ−1
0 e−βλλ0

βαλ
λ

Γ(αλ)

p(τ) = Gamma(ατ , βτ ) = τατ−1e−βτ τ
βατ
τ

Γ(ατ )

where the parameters (α, β) are the shape and rate parameter, respec-
tively, for the gamma distribution; Γ represents the gamma function; and λ0

is abbreviated to λ for visual clarity. Each of the IGP parameters thus had
an independent prior distribution. By incorporating these prior distributions
into the general model presented above, the following posterior distribution
was generated:

p(λ|x(t)) ∼ p(x(t)|λ)p(λ0)p(τ) =
∏
m

∏
k

(
e−Λ(tk−1,tk)

(Λ(tk−1, tk))L−1

(L− 1)!

)
(λ(tk)dt)

×
(
λαλ−1
0 e−βλλ0

βαλ
λ

Γ(αλ)

)(
τατ−1e−βτ τ

βατ
τ

Γ(ατ )

)
with the corresponding log-posterior:

ln(p(λ|x(t))) ∼ ln
(
p(x(t)|λ)

)(
p(λ0)

)(
p(τ)

)
=ln

(
p(x(t)|λ)

)
+

(
(αλ − 1)ln(λ0) − βλλ0 + αλln(βλ) − ln(Γ(αλ)

)
+

(
(ατ − 1)ln(τ) − βττ + ατ ln(βτ ) − ln(Γ(ατ )

)
where ln

(
p(x(t)|λ)

)
was given in the previous section. Analogous to the

MLE, the MAP estimate of the IGP parameters (λ0 and τ) was calculated
by setting the respective partial derivatives of ln(p(λ|x(t))) to zero:
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∂ln(p(λ|x(t)))

∂λ0

= 0 = −
∑
m

τ
(

1 − e
−tm
τ

)
+ L

∑
m Km

λ0

+
αλ − 1

λ0

− βλ

∂ln(p(λ|x(t)))

∂τ
= 0 = − λ0

∑
m

(
1 − e

−tm
τ

)
+

λ0

τ

∑
m

tme
−tm
τ +

(L− 1)
∑

m Km

τ

+
L− 1

τ 2

∑
m

∑
k

ϕ(tk−1, tk) +

∑
m

∑
k tk

τ 2
+

ατ − 1

τ
− βτ

where

ϕ(tk−1, tk) =
tk−1e

−tk−1
τ − tke

−tk
τ

e
−tk−1

τ − e
−tk
τ

and ln
(
p(x(t)|τ)

)
was derived in the previous section. As before, solving

for λ0 in the first equation and substituting it into the second equation yielded
the following equation for τ :

0 =

(
L
∑
m

Km + αλ − 1 − (L− 1)
∑
m

Km − L− 1

τ

∑
m

∑
k

ϕ(tk−1, tk)

−
∑

m

∑
k tk

τ
− ατ + 1 + βττ

)

×

τ
∑

m

(
1 − e

−tm
τ

)
+ βλ∑

m tme
−tm
τ + βλ

−

(
L
∑
m

Km + αλ − 1

)

Similarly, the MAP estimate of τ was computed by applying Brent’s
method to the above equation, and the MAP estimate of λ was subsequently
calculated as:

λMAP (t) =
L
∑

m Km + αλ − 1∑
m τMAP

(
1 − e

−tm
τMAP

)
+ βλ

e
− t

τMAP
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Predictive model As with the ML estimates, a predictive model was built
from the MAP estimates of the reward rate using the MVT construct: for
a given environment k, the predicted patch-leaving time yn corresponded to
the first time point ti in the patch in which the estimated reward rate λMAP

was less than the leaving threshold λ∗
k. Simplistically, the Bayesian (MLE-

or MAP-based) models predict patch-leaving times in two distinct steps: 1)
estimate the underlying reward rate parameters, and thus current reward
rate, from previous observations, and 2) leave the patch when the estimated
reward rate is less than the model threshold. The first step, however, was
significantly more computationally expensive than the second, which guided
approaches to numerical optimization below.

First, the centers and shapes of the prior distributions were determined.
Because they were governed by parameters (αλ, βλ, ατ , βτ ) in a continuous,
four-dimensional space, numerical approaches to optimization based on min-
imizing predictive error were computationally intractable; every parameter
adjustment during an iteration would require recalculation of all MAP es-
timates for all time points. Therefore, a grid search was instead conducted
over a discrete space limited to prior distributions that were centered on the
IGP parameter value corresponding to that of the MVT-IM model but dif-
fering in variance (Figure 5A). The mode, as opposed to mean, of the prior
distribution was chosen to represent the center because in the absence of in-
formation from the likelihood function, the MAP estimate of the reward rate
simply becomes the mode of the prior (i.e. the maximum). Consequently,
the modes of p(λ0) were equivalent for all animals in a given environment
k, but those of p(τ), set to τ̂ in the MVT-IM model, varied by animal and
environment k:

mode(pk(λ0)) =
αλ,k − 1

βλ,k

= λ0,k

mode(pk(τ)) =
ατ,k − 1

βτ,k

= τ̂k

Given the constraints of the equations above, the variance of each point
in parameter space was given by:
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σ2(pk(λ0)) =
αλ,k

β2
λ,k

σ2(pk(τ)) =
ατ,k

β2
τ,k

For each animal, each set of prior parameter values in the grid was used
to generate MAP estimates of the reward rates for all patches.

For a given animal-environment pair k, the leaving threshold λ∗
k was either

calculated from the parameters of the MVT-IM model (MAP-IM-L), as in the
MLE-x model, or fit to the experimental data to minimize prediction error
(MAP-IM-GL). In the latter, the best-fit leaving thresholds were computed
using the Nelder-Mead algorithm to find iteratively the simplex of leaving
thresholds that minimized prediction error for patch-leaving times. Unlike
the MVT-IM model, the algorithm had no natural way of constraining the
leaving thresholds to eight values (two track lengths, four decay rates) per an-
imal; consequently, each animal was assigned a best-fit leaving threshold per
unique environment. However, fitting the MVT-IM to the high-stochasticity
environments (RSI ∈ [1.0, 2.0]) similarly without constraints did not signif-
icantly reduce its prediction error nor affect the significance of model com-
parisons (root-mean-square prediction error (RMSE) [95% CI]: unconstrained
MVT-IM, 3.96 [3.79, 4.13], constrained MVT-IM, 3.98 [3.81, 4.16]). Due to
the large computational cost of fitting reward rate thresholds, a grid search
of the prior distributions was conducted over narrowed range of values that
was centered around the best-fit results from MAP-IM-L (Figure 5A, right);
additionally, the search was limited to models that utilized observations from
only the current patch (N = 1).

4.5.9 Model Comparisons

All behavioral models were assessed by measures of their predictive error.
The mean absolute error (MAE) was calculated as:

MAE =
1

N

∑
n

|ŷn − yn|

and the root-mean-square error (RMSE) as:
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RMSE =

√
1

N

∑
n

(ŷn − yn)2

Lastly, the R2 value was calculated as:

R2 = 1 −
∑

n (ŷn − yn)2∑
n (yn − y)2

= 1 − N × (RMSE)2∑
n (yn − y)2

All models underwent five-fold cross-validation. Data subsets were gen-
erated by splitting each session into five groups of patches of approximately
equal length to ensure that all hierarchical levels of the data were equally rep-
resented in each data subset. The null model (HEU-CT) predicted residence
times to be the average residence time for each animal across all sessions
(R2 = 0 by definition). Mean error metrics were calculated from the average
of all errors in all test sets. Confidence intervals were computed by boot-
strapping M = 10, 000 samples of length N from the set of prediction errors,
taking the average of each sample to generate a distribution of sample means,
and finding the percentiles corresponding to [α

2
, 1 − α

2
], with α = 0.05.

4.6 Data and Code Availability

Data and code will be made available upon publication.
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Figure S1: (top) Cumulative reward functions for environments with τ = 12.0 and a low (left), moderate
(center), or high (right) level of stochasticity in the reward dynamics, shown as mean (V0Λ(t), solid curve)
± standard deviation (V 2

0 Λ(t), shaded area). (bottom) Three example reward sequences for each level of
stochasticity.

a b

Figure S2: Correlations in local information were not present in shuffled data. Within sessions, residence
times were shuffled across patches prior to calculating to rate estimation error at patch-leaving and the
change in residence time relative to the session average. The scatter plot, regression line, and marginal
distributions were then calculated from the shuffled data as in Figure 4B-C for environments with (A)
low (RSI = 0.05) and (B) moderate to high (RSI ∈ [0.5, 1.0]) stochasticity.
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Figure S3: Aspects of the Bayesian behavioral models. (A) The root-mean-square prediction errors
(RMSE) of various MLE-x models (solid line) were calculated for all patches in environments with
moderate-to-high stochasticity (RSI ∈ [0.5, 1.0]). In order to estimate the Poisson rate, models uti-
lized the observations from the current patch plus zero (MLE-1) up to ten (MLE-11) of the previous patch
encounters. The prediction error asymptotically approached that of the MVT-IM model (dotted line).
(B) Two example prior distributions (solid or dotted curve) for the initial Poisson rate (lambda0; left)
and decay rate (τ ; right) are shown for three different levels of variance (var(p)). Prior distributions were
generated from a gamma distribution such that the mode was equal to either the experimental (λ0) or
internally-modeled (τ) value for the environment (solid or dotted triangle). (C) The Poisson rate esti-
mates of the MAP-IM-L model are shown for an example reward sequence in a patch (raster at bottom),
which consists of unobserved (light purple) and observed (dark purple) events. The rate estimates utilized
observations from the example patch and reflect prior distributions with high (orange), moderate (light
blue), and low (dark purple) levels of uncertainty, as shown in B. The predicted leaving times for the
models (colored triangles) occur when the estimated rates fall below a given threshold for the environ-
ment (dotted black line) that is derived from the MVT-IM model. (D) Given the same example reward
sequence as in C, the MAP-IM-GL model estimates the Poisson rate (purple solid line) from observations
(raster at bottom) and additionally modulates the rate threshold for patch-leaving (black dotted line).
Higher (dark red) or lower (light red) thresholds lead to earlier or later leaving times, respectively. The
true Poisson rate in C and D is shown by the black curve.
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Figure S4: Inclusion criteria for the head-fixed task. (A) The raw (solid line) and smoothed (dotted curve)
histogram of the smoothed lick rate (bin size = 0.5 seconds, σ = 2 seconds) is shown for data pooled from
all animals (N = 3) on the head-fixed task. The rate threshold for active engagement (vertical dotted
line) was chosen to represent the ”elbow” of the second derivative of the smoothed histogram of lick rates
(inset). (B) The animal licks (raster at bottom) and smoothed lick rate (solid purple curve) are shown
for a 200-second window of an example session. The residence time (shaded areas) was estimated as the
time during which the smoothed lick rate exceeded the rate threshold (horizontal dotted line). (C-E) A
histogram (step-wise solid line) and fitted log-normal distribution (shaded area) with its associated median
(vertical solid line) are shown for the estimated residence times (C; calculated per B), travel times (D;
calculated as time between patches during which velocity exceeded 0.5 cm/s), and delay from traveling the
required distance to stopping within the next patch (E). (insets) Histograms (purple bins, left axis) and
cumulative summations (solid line, right axis) of the fraction of raw residence (C) and travel (D) times
during which the animal met the respective engagement criteria. Residence times additionally required
at least 60% engagement (vertical dotted line in C) for the patches to be included in the analysis.
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environment
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session
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Figure S5: Overview of the cluster bootstrap approach. Residence times, which are the data points
of analysis, exist within a hierarchical structure of contextual characteristics that influence outcomes,
including the environment (such as travel distance or reward decay rate), animal, or session in which
the patch occurred. When sampling via the bootstrap method, these characteristics (colored outlines of
circles) must be appropriately randomized at each level to respect their individual contributions to the
overall outcomes.
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Figure S6: Internal models of environmental parameters. For environments with low- (A; RSI = 0.1) and
moderate-to-high (B; RSI ∈ [0.5, 1.0]) stochasticity, the estimates of the reward decay rate (left) and travel
time (right) were calculated per the MVT-IM model, which constrained each animal to have a one-to-one
mapping between parameter estimates (vertical axis) and unique environments (horizontal axis). Internal
estimates are shown for individual animals (colored squares and dotted lines), which were used in the
analysis, and for pooled data (black squares and dotted lines), which are shown for visualization purposes.
The experimental values are also shown for individual animals (colored circles and solid lines) and pooled
data (black circles and solid lines); note that individual experimental decay rates were equivalent (i.e.
independent of animal behavior) and thus are not shown.
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RSI parameter β χ2 p

0.05 τ 7.14 [ 6.88 , 7.39 ] 2649.38 <0.001
t̂(t) 1.10 [ 0.84 , 1.36 ] 67.13 <0.001
np −4.71 [−5.18 , −4.23 ] 366.52 <0.001

1.0, 2.0 τ 5.35 [ 5.08 , 5.61 ] 1354.05 <0.001
t̂(t) 0.84 [ 0.36 , 1.31 ] 12.07 <0.001
np −5.65 [−6.35 , −4.94 ] 238.01 <0.001

Table S1: Linear mixed-effects models of the freely moving task. Parameters were fit as predictors of
residence time for patches in low-stochasticity (RSI = 0.05, m = 9547 patches) or high-stochasticity
(RSI ∈ [1.0, 2.0], m = 4513 patches) environments. All fixed effects were normalized to the range [0, 1].
Coefficient values are provided as mean [95% CI]. χ2 and p values were generated from likelihood ratio
tests between the full model and reduced model with the respective parameter removed. Key: τ = decay
rate, t̂(t) = task-relevant travel time, np = patch number.

RSI parameter β χ2 p

0.05 τ 8.49 [ 7.32 , 9.65 ] 188.67 <0.001
t̂(t) −1.30 [−2.71 , 0.11 ] 3.24 0.072
np −3.03 [−5.06 , −1.00 ] 7.50 0.006

1.0, 2.0 τ 1.53 [ 0.47 , 2.58 ] 7.95 0.005
t̂(t) 6.30 [ 4.73 , 7.88 ] 59.11 <0.001
np −2.90 [−5.23 , −0.56 ] 5.89 0.015

Table S2: Linear mixed-effects models of the head-fixed task. Notation and analysis follows Table S1.
Low-stochasticity (RSI = 0.05, m = 1299 patches) and high-stochasticity (RSI ∈ [1.0, 2.0], m = 787
patches) environments were analyzed separately.

task RSI decay rate (τ) track length

freely-moving 0.05 3 6 12 24 1.0 4.0
0.50 3 12 1.0 4.0
1.00 3 12 1.0 4.0

head-fixed 0.05 3 6 12 0.6 1.0 2.0
0.50 3 12 1.0 2.0
1.00 3 12 1.0 2.0

Table S3: List of Environmental Parameters. Reward stochasticity index (RSI) and decay rate are defined
elsewhere. Decay rate is given in seconds and track length in meters.
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