
Petersen et al. 2024 (preprint)   1

  

Enhancing Cognitive Performance Prediction 
through White Matter Hyperintensity Connectivity 
Assessment: A Multicenter Lesion Network Map-
ping Analysis of 3,485 Memory Clinic Patients 
 
Marvin Petersen1*, Mirthe Coenen2, Charles DeCarli3, Alberto De Luca2,4, Ewoud van der Lelij2, Alzhei-
mer's Disease Neuroimaging Initiative, Frederik Barkhof5,6, Thomas Benke7, Christopher P. L. H. 
Chen8,9, Peter Dal-Bianco10, Anna Dewenter11, Marco Duering11,12, Christian Enzinger13,14, Michael Ew-
ers11, Lieza G. Exalto2, Evan F. Fletcher3, Nicolai Franzmeier11, Saima Hilal9,15, Edith Hofer16,17, Hui-
berdina L. Koek2,18, Andrea B. Maier8,9, Pauline M. Maillard3, Cheryl R. McCreary19, Janne M. 
Papma20,21,22, Yolande A. L. Pijnenburg23, Reinhold Schmidt16,17, Eric E. Smith19, Rebecca M. E. Ste-
ketee23,24, Esther van den Berg20,21, Wiesje M. van der Flier23,24, Vikram Venkatraghavan23,24, Naraya-
naswamy Venketasubramanian9,26, Meike W. Vernooij20,25,27, Frank J. Wolters25,27, Xin Xu9,28, Andreas 
Horn29,30, Kaustubh R. Patil31,32, Simon B. Eickhoff31,32, Götz Thomalla1, J. Matthijs Biesbroek2,33, Geert 
Jan Biessels2, Bastian Cheng1 

 

1 Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 
2 University Medical Center Utrecht Brain Center, Utrecht, The Netherlands 
3 University of California at Davis, USA 
4 Image Sciences Institute, Division Imaging and Oncology, UMC Utrecht 
5 Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands 
6 Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK 
7 Clinic of Neurology, Medical University Innsbruck, Austria 
8 Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore 
9 Memory, Aging and Cognition Center, National University Health System, Singapore 
10 Medical University Vienna, Austria 
11 Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany 
12 Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland 
13 Division of General Neurology, Department of Neurology, Medical University Graz, Austria 
14 Division of Neuroradiology, Interventional and Vascular Radiology, Department of Radiology, Medical University of Graz, Austria 
15 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 
16 Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria 
17 Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria 
18 Department of Geriatric Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands 
19 Department of Clinical Neurosciences and Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Can-
ada 
20 Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands 
21 Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands 
22 Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands 
23 Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 
UMC, Amsterdam, The Netherlands. 
24 Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands 
25 Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands 
26 Raffles Neuroscience Center, Raffles Hospital, Singapore, Singapore 
27 Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.  
28 School of Public Health and the Second Affiliated Hospital of School of Medicine, Zhejiang University, China 
29 Charité - Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology with Experimental 
Neurology, 10117 Berlin, Germany. 
30 Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, 
Harvard Medical School, Boston, USA. 
31 Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany 
32 Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Germany 
33 Department of Neurology, Diakonessenhuis Hospital, Utrecht, The Netherlands 
*Correspondence should be addressed to M.P. (mar.petersen@uke.de) 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.03.28.24305007doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.03.28.24305007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Petersen et al. 2024 (preprint)   2

Abstract. Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment 
and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of 
cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), 
enables to infer if brain networks are connected to lesions, and could be a promising technique for enhancing our understanding of 
the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers 
surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain 
networks. Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta 
VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were 
registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed 
LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level 
structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive 
function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three 
cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than 
WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, 
representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral 
attention networks were associated with lower cognitive performance. Conclusion: Measures of WMH-related brain network 
connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume 
as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attention-
related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH 
information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of 
subgroups at risk of cognitive disorders. 
 

Introduction 
Cerebral small vessel disease (CSVD) is a major driver of 
vascular cognitive impairment (VCI) and often also 
contributes to dementia with a primary neurodegenerative 
or mixed pathology.1 White matter hyperintensities (WMH) 
are the signature imaging marker of CSVD, and mark sites 
of white matter disintegration caused by microangiopathic 
axonal loss and demyelination.2,3 However, a 
comprehensive understanding of mechanisms linking WMH 
to their broad range of clinical manifestations, specifically 
cognitive impairment, is still lacking. 

Although there is a well-documented association 
between WMH volumes and cognitive functions at the 
group-level, the association between WMH volume and 
symptom severity demonstrates considerable variability 
with some individuals exhibiting fewer symptoms despite 
high WMH burden and vice versa.4 The apparent complexity 
of this relationship underscores the need for improved 
techniques for disease quantification to more accurately 
predict individual cognitive impairment for effective 
diagnostics and ultimately targeted treatment of CSVD 
patients.5 For example, lesion-symptom inference 
techniques have linked cognitive impairment to WMH 
located in strategic white matter regions, independent of 
total WMH volume.4,6,7  

However, these recent findings might not fully reflect 
the complexity of CSVD-related cognitive impairment, 
which is thought to emerge from disturbances in the 
interplay of large-scale brain networks involving cortical 
and subcortical gray matter areas, interconnected by white 
matter tracts.8  In recent years, advanced imaging analysis 
models have been developed to comprehensively capture 
lesion effects on brain circuitry.9 Specifically, lesion 
network mapping (LNM) techniques capitalize on advanced 
neuroimaging to map lesions on reconstructions of the 
human brain network.10 By that, a lesion’s impact on 
connectivity to different brain regions can be quantified – 
i.e., the lesion’s network embedding is measured – allowing 
to infer which regions are disconnected. Application of LNM 
has been shown to predict clinical symptoms in a variety of 

neurological disorders that can be understood as 
“disconnection syndromes”, such as stroke or multiple 
sclerosis.11,12  

Here, we propose LNM as a technique to quantify WMH-
related, strategic neuronal disconnectivity for improved 
prediction of cognitive performance in CSVD. We employ 
LNM on a large-scale, multicenter dataset, integrating 
cognitive test results and MRI-based WMH segmentations 
from 3485 patients of 10 memory clinic cohorts through the 
Meta VCI Map Consortium.6,13 Our hypotheses are twofold: 
(1) LNM-based measures of WMH connectivity surpass 
WMH volumes in predicting cognitive performance, and (2) 
WMH contributing to cognitive deficits map to specific brain 
networks that functionally determine their symptom 
profile. 
 

Materials and methods 
Study population 
Methodological details are illustrated in figure 1. We 
examined previously harmonized, cross-sectional clinical 
and imaging data of 3485 patients from 10 memory clinic 
cohorts of the Meta VCI Map Consortium.6,13 Meta VCI Map 
is a multi-site collaboration for conducting meta-analyses of 
strategic lesion topography in vascular cognitive 
impairment. The memory clinic cohorts included in this 
study comprise the Erasmus MC Memory Clinic Cohort 
(ACE, n=52, Netherlands), Alzheimer’s Disease 
Neuroimaging Initiative (ADNI, n=994, USA)14, UC Davis 
Alzheimer’s Disease Center Diversity Cohort (AUCD, n=641, 
USA)15, BrainIMPACT (n=53, Canada)16, Functional 
Assessment of Vascular Reactivity (FAVR, n=47, Canada)16, 
Harmonization (n=207, Singapore)4, Prospective Dementia 
Registry (PRODEM, n=367, Austria)17, TRACE-VCI (n=821, 
Netherlands)18, Utrecht Memory Clinic Cohort (UMCC, 
n=227, Netherlands) and VASCAMY (n=76, Germany). All 
cohorts include patients assessed at outpatient memory 
clinics for cognitive symptoms, undergoing structural MRI 
alongside neuropsychological tests of cognitive 
performance.  
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Figure 1. Methodology. a) Data from 10 memory clinic cohorts of the Meta VCI Map Consortium were used including harmonized cognitive scores and 
WMH segmentations in MNI space. For functional LNM we employed the GSP1000 normative functional connectome comprising resting-state fMRI data 
from 1000 healthy GSP participants. For structural lesion network mapping, we used the HCP32 normative structural connectome based on diffusion-
weighted imaging data from 32 healthy HCP participants, detailing the fiber bundle architecture. b) LNM was performed to quantify the functional and 
structural connectivity of WMH to multiple ROIs (Schaefer400x7 cortical, Melbourne Subcortical Atlas subcortical, HCP1065 white matter areas). For this, 
voxel-level functional and structural connectivity maps were computed for each ROI, reflecting resting-state BOLD correlations or anatomical connection 
strength via tractography streamlines, respectively. ROIwise LNM scores were derived by averaging voxel-level connectivity indices within the normalized 
WMH masks, considering only positive correlation coefficients for functional mapping. This resulted in a matrix for both fLNM and sLNM scores per ROI 
per patient (nROIs x npatients). The matrices shown in the figure are populated with random data only serving as a visual aid. c) The fLNM and sLNM scores 
across patients were used in predictive models to estimate cognitive domain scores (predictive modelling analysis) and analyzed in permutation-based 
general linear models to identify regions significantly influencing the cognitive domain-WMH disconnectivity relationship at the ROI level (ROI-level in-
ferential statistics). Abbreviations: fLNM = functional lesion network mapping, GSP = Genomic Superstruct Project, HCP = Human Connectome Project, ROI 
= region of interest, rsfMRI = resting-state functional magnetic resonance imaging, sLNM = structural lesion network mapping, WMH = white matter 
hyperintensities of presumed vascular origin. 
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Patients with cognitive impairment due to non-vascular, 
non-neurodegenerative causes (e.g., excessive alcohol use 
disorder, cerebral malignancies, multiple sclerosis) or 
monogenic disorders (e.g., CADASIL) were excluded. Fur-
ther details on each cohort including sample-specific inclu-
sion and exclusion criteria were reported previously.6 
 
Ethics approval 
All cohorts received the requisite ethical and institutional 
approval in accordance with local regulations, which in-
cluded informed consent, to allow data acquisition and 
sharing.6 
 
Cognitive assessments 
Detailed harmonization procedures, including specific test-
to-domain assignments, were reported previously.19 Neuro-
psychological tests from participating cohorts were norm-
referenced against local norms or a healthy control group, 
and adjusted on the individual subject level for age, sex, and 
education. These tests were categorized into four cognitive 
domains: attention/executive function, information pro-
cessing speed, language, and verbal memory. Within these 
domains, norm-referenced neuropsychological test scores 
were z-scored and averaged to obtain cognitive domain 
scores (z-scores), which capture individual-level cognitive 
domain performance relative to healthy controls. 
 
White matter hyperintensity segmentation 
WMH segmentations were provided by the participating 
centers or performed at the UMC Utrecht (ACE cohort). Seg-
mentation masks were obtained applying established auto-
mated neuroimaging software on fluid-attenuated inver-
sion recovery (FLAIR) MRI.20 WMH segmentations were 
spatially normalized to the Montreal Neurological Institute 
(MNI)-152 template.21 To ensure registration quality, the 
normalized WMH masks were visually inspected and pa-
tients with failed registrations were excluded. Furthermore, 
random subsamples of normalized WMH segmentations 
were returned to the respective participating institutions to 
confirm the data quality. WMH segmentation masks were 
used to compute the total WMH volume as well as tract-
level WMH volumes for each of the 64 white matter fiber 
tracts of the HCP1065 Tract Atlas.22 Details on cohort-spe-
cific segmentation and registration procedures were re-
ported previously.6,23 
 
Lesion network mapping 
LNM was performed to quantify the functional and struc-
tural connectivity of WMH to cortical, subcortical and white 
matter regions of interest (ROIs).24 ROIs were defined in 
MNI space according to the Schaefer400x7 Atlas 
(nROIs=400), the Melbourne Subcortical Atlas (nROIs=16) and 
the HCP1065 Tract Atlas (nROIs=64) (figure 1b).22,25,26 For 
visualization of the investigated HCP1065 tracts, see supple-
mentary figure S1. 

Functional lesion network mapping (fLNM) was 
conducted using a normative functional connectome, de-
rived from resting-state fMRI scans of 1,000 healthy indi-
viduals from the Genomic Superstruct Project (GSP1000).27 
Preprocessing included global signal regression and spatial 
smoothing at a 6mm full width at half maximum kernel as 

previously detailed.28 For each ROI, we averaged blood ox-
ygen level-dependent (BOLD) signal fluctuations across 
voxels within the ROI and correlated this aggregate time se-
ries with BOLD signals of all brain voxels. This process gen-
erated 1,000 Pearson correlation coefficients per voxel, i.e., 
one for each GSP1000 subject, which were then Fischer z-
transformed and averaged across subjects to create a func-
tional connectivity map per ROI. Functional connectivity 
map computations were performed using the ROI masks as 
seeds in the connectome mapper function of Lead-DBS 
(lead-dbs.org).29 Subsequently, ROI-level fLNM scores were 
calculated by averaging positive Pearson correlation coeffi-
cients within the WMH mask, reflecting each ROI's func-
tional connectivity to WMH. 

Structural lesion network mapping (sLNM) was 
performed employing a normative structural connectome 
of 32 subjects of the Human Connectome Project (HCP32).30 
The structural connectome was reconstructed by applying 
DSI Studio on multi-shell diffusion MRI data acquired on a 
MRI scanner specifically designed for high-fidelity connec-
tome reconstruction. Streamlines resulting from whole 
brain tractography were normalized to MNI and aggregated 
across subjects.31 Employing Lead-DBS, voxel-wise struc-
tural connectivity maps were computed per atlas ROI, quan-
tifying per voxel the number of streamlines connecting the 
voxel to the ROI.29 ROI-level sLNM scores, reflecting struc-
tural connectivity between WMH and individual ROI, were 
determined by averaging the voxel values (representing 
streamline counts to the ROI) within the WMH mask. 

Summarized, LNM yielded both a fLNM and sLNM 
score for each ROI per subject, indicating the functional and 
structural connectivity between WMH and ROI, respec-
tively. 
 
Predictive modelling analysis 
To evaluate the predictive capacity of fLNM and sLNM 
scores, we performed a predictive modelling analysis lever-
aging scikit-learn (v. 1.0.2, scikit-learn.org) and julearn (v. 
0.3.0, juaml.github.io/julearn).32,33 This work defines 'pre-
diction' in accordance with previous studies as the estima-
tion of target variables using a trained statistical model on 
new unseen data – emphasizing the crucial aspect of model 
generalizability.9,34,35 We note that this definition varies 
from those indicating longitudinal study designs used in ep-
idemiological contexts.36 In the analysis, six different fea-
ture sets were compared: (1) demographics (age, sex and 
education), (2) total WMH volume + demographics, (3) 
tract-level WMH volumes + demographics, (4) ROI-level 
fLNM scores + demographics, (5) ROI-level sLNM scores + 
demographics, (6) ROI-level fLNM and sLNM scores + de-
mographics. 

For each cognitive domain, multivariable ridge re-
gression models were trained using the abovementioned 
feature sets to predict cognitive domain scores. Ridge re-
gression models include a L2 penalty that reduces coeffi-
cients to mitigate overfitting and address multicollinearity. 
We optimized the L2 penalties through a 10-fold nested 
cross-validation, tuning α values ranging from 0.001 to 
1000 (α = 0.001, 0.01, 0.1, 1, 10, 100, 1000). The model per-
formance was scored by the Pearson correlation between 
actual and predicted cognitive domain scores, 
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supplemented with explained variance (R², coefficient of 
determination) and negative mean squared error as addi-
tional measures of performance. In line with best practices, 
explained variance was calculated via sum-of-squares for-
mulation (using scikit-learn's r2_score) instead of squaring 
Pearson correlations.34 Before model fitting, continuous in-
put features were z-scored in a cross-validation consistent 
manner to avoid data leakage.37 To maintain a consistent 
distribution of the target variable across training and test 
sets, we employed julearn’s ContinuousStratifiedKFold func-
tion for creating the folds. Cross-validations were repeated 
10 times with varied random splits to minimize bias from 
any single split.38 This approach yielded 100 scores for each 
feature-target set combination which were compared be-
tween feature sets using a machine learning-adjusted t-
test.39 We repeated the predictive modelling analysis for dif-
ferent sample sizes (20%-100%, 1% steps, randomly sam-
pled) to examine the robustness and sample size depend-
ency of predictive performances. As a whole, this analysis 
follows current best practices of predictive modelling in 
neuroimaging.34 
 
Region of interest-level inferential statistics 
To investigate whether WMH-related connectivity of spe-
cific brain circuits links to impaired cognitive performance, 
we conducted permutation-based testing for linear associa-
tions between regional LNM scores and cognitive domain 
scores in a general linear model. All statistical analyses 
were conducted in FSL’s Permutation Analysis of Linear 
Models (PALM) based on MATLAB (v. 2021b) and Python 
3.9.1 leveraging neuromaps (v. 0.0.5).40–42 Statistical tests 
were two-sided (npermutation=5000), with a p<0.05 as the sig-
nificance threshold. To account for multiple comparisons, p-
values were adjusted for family-wise error. General linear 
models were adjusted for age, sex and education. To obtain 
standardized β-coefficients, input variables were z-scored 
beforehand. As a result, β-coefficients and p-values were ob-
tained for each cortical, subcortical, and white matter ROI 
(nROIs=480) indicating the strength and significance of the 
LNM score's linear association with cognitive domain 
scores for each ROI. To aid in interpreting the spatial effect 
patterns, we averaged the β-coefficients representing corti-
cal effects in the 7 intrinsic resting-state networks (Yeo net-
works), which reflect the cerebral cortex's intrinsic func-
tional organization.28 The Schaefer400x7 Atlas assigns ROIs 
to these networks: visual, somatomotor, dorsal attention, 
ventral attention (salience), limbic, frontoparietal control, 
and default mode network.25 Significance was tested via 
spin permutations (nspins=1000) which represent a null 
model preserving the inherent spatial autocorrelation of 
cortical information. 
 
Sensitivity analyses 
During computations of fLNM scores, we decided to only 
consider positive Pearson correlations of resting-state 
BOLD signal within WMH masks following previous ap-
proaches as the role of negative correlations is controver-
sial.43 However, some studies suggest biological meaning in 
anticorrelations of BOLD signal fluctuations.44,45 Hence, we 
conducted a sensitivity analysis based on fLNM scores com-
puted by averaging only the negative Pearson correlations 

in the WMH masks. We reconducted the predictive model-
ling analysis and ROI-level inferential statistics using these 
negative fLNM scores.  

Moreover, previous work employs thresholding to discard 
potentially noisy connectivity information. To further ex-
amine the effect of thresholding on our results we repeated 
the predictive modelling analysis comparing the main anal-
ysis results to fLNM and sLNM scores computed based on 
25% and 50% highest voxel intensities in the WMH mask. 
For negative fLNM scores, the lowest 25% and 50% voxel 
intensities in the WMH mask were considered. 

Exploratory analyses 
Further exploratory analyses including investigations of 
voxel-level lesion network maps and structure-function 
coupling of LNM scores are described in supplementary text 
S2.  
 
Data availability 
Analysis code can be accessed on GitHub 
(https://github.com/csi-hamburg/2024_pe-
tersen_wmh_disconnectivity_memory_clinic). The data that 
support the findings of this study are available from the cor-
responding author/project leads on reasonable request 
(https://metavcimap.org/group/become-a-member/). Re-
strictions related to privacy and personal data sharing reg-
ulations and informed consent may apply. 
 

Results 
Sample characteristics 
The pooled study sample of 3485 patients had a mean age 
of 71.7 ± 8.9 years and 49.8% were female. Among patients, 
777 (22.3%) had subjective cognitive impairment, 1389 
(39.9%) had mild cognitive impairment, and 1319 (37.9%) 
had dementia. Further details on the sample characteristics 
can be found in table 1. A heatmap of WMH distribution can 
be found in supplementary figure S3. 
 
Predictive modelling analysis 
To evaluate if information on WMH network connectivity 
exceeds the predictive capacity of volumetric WMH metrics 
for cognitive performance, we first computed regional fLNM 
and sLNM scores, that capture the structural and functional 
connectivity profile of WMH. We then employed ridge re-
gression for predictive modelling. Model performance was 
assessed via Pearson correlation (r) of predicted and actual 
cognitive domain scores averaged across folds. All models 
incorporated age, sex, and education (demographics) as fea-
tures to establish a performance baseline. The correspond-
ing results are visualized in figure 2a.  In summary, LNM 
scores significantly improved cognitive function prediction 
in all domains, except language, over WMH volumes. In de-
tail, the predictive performance achieved by the de-
mographics-only model was r = 0.312 for attention / execu-
tive function, r = 0.239 for information processing speed, r 
= 0.404 for language, and r = 0.305 for verbal memory. Mod-
els informed by total or tract-wise WMH volumes achieved 
a predictive performance of r = 0.341 - 0.365 for attention / 
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executive function, r = 0.247 – 0.250 for information pro-
cessing speed, r = 0.404 – 0.416 for language, and r = 0.327 
– 0.356 for verbal memory. For the prediction of attention / 
executive function, models informed by LNM scores exhib-
ited a significantly higher predictive performance than 
models informed by volumetric WMH measures (LNM: r = 
0.399 - 0.410 vs. WMH volume: r = 0.341 – 0.365; adjusted 
t-test, all p < 0.05). LNM-informed models also better pre-
dicted information processing speed (LNM: r = 0.310 - 0.316 
vs. WMH volume: r = 0.247 – 0.250, adjusted t-test, all p < 
0.05) as well as verbal memory (LNM: r = 0.390 - 0.408 vs. 
WMH volume: r = 0.327 – 0.356; adjusted t-test, all p < 0.05). 
Across these domains, the best prediction was achieved by 
models incorporating both structural and functional LNM 
scores. For attention / executive function, comparing the 
improvement from the demographics-based model to the 
model informed by total WMH volume (0.341 – 0.312 = 
0.029) with the improvement to the model based on both 
LNM modalities (0.410 – 0.312 = 0.098), the usage of fLNM 
and sLNM scores amounts to a 3.38-fold increase (0.098 / 
0.029 = 3.38) in added predictive performance. Considering 
both LNM modalities for predicting information processing 
speed and verbal memory amounted to 7.00-fold and 4.68-

fold increase in predictive performance, respectively. For 
the prediction of language domain scores, performance be-
tween LNM-informed models and WMH volume measures 
did not differ significantly (LNM: r = 0.380 - 0.409 vs. WMH 
volume: r = 0.404 – 0.416, all p > 0.05). See supplementary 
materials S4 and S5 for predictive modelling results using 
explained variance and negative mean squared error as 
scoring methods. Details on regional averages of LNM 
scores are shown supplementary figure S6. 

To test the robustness of prediction results, we re-
peated the analysis in randomly chosen subsamples of in-
creasing sizes (figure 2b). For attention / executive function 
and verbal memory, LNM-informed models started to con-
sistently exceed WMH volume-based models at approxi-
mately 50% (attention / executive function: n=1723, verbal 
memory: n=1712; note that data availability differed be-
tween cognitive domain scores) of the sample size.  
  

Figure 2. Predictive modelling analysis. Violin plots illustrate prediction outcomes across cognitive domains. Each violin displays the distribution of 
Pearson correlations (between actual and predicted cognitive domain performance; 10-fold cross-validation × 10 repeats = 100 folds → 100 Pearson 
correlations) for a model informed by a different feature set. The higher the Pearson correlation, the higher the prediction performance. blue: de-
mographics (age, sex and education); orange: total WMH volume + demographics; green: tract-level WMH volumes + demographics; red: sLNM scores + 
demographics; purple: fLNM scores + demographics; brown: sLNM scores + fLNM scores + demographics. Average Pearson correlations are indicated 
above each violin, with colored dots showing training score averages. Geometric symbols denote t-test results comparing LNM-based models against 
demographics- and WMH volume-based models: ▲ indicates higher Pearson correlation than demographics, ■ than WMH volume + demographics, ⬟
than tract-level WMH volume + demographics. Below the violin plots, performance curves display the average Pearson correlations across folds, for sub-
sets randomly sampled in sizes ranging from 20% to 100% of the entire dataset.  Line colors match the corresponding violin plots in panel a) which 
display predictive modelling results for the full sample size. Again, higher Pearson correlation indicates higher prediction performance. Abbreviations: 
fLNM = functional lesion network mapping, sLNM = structural lesion network mapping, WMH = white matter hyperintensities of presumed vascular 
origin. 
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For information processing speed, LNM-informed 
models surpassed WMH volume-based models at approxi-
mately 25% (n=604) of the sample size. Regarding lan-
guage, LNM-informed models approximated the perfor-
mance of WMH volume-based models with increasing sam-
ple sizes. For all cognitive domain scores, predictive perfor-
mance in the sample size range 80-100% showed high sta-
bility and only minor increases indicating saturation. 
 
Contextualization of WMH connectivity: Region of interest 
analysis 
We tested if WMH connectivity of specific brain circuits 
links to cognitive performance by quantifying the associa-
tion between regional LNM scores (cortical brain regions 
and white matter tracts) and cognitive domain scores ad-
justing for age, sex and education. 

Results of the general linear model linking LNM 
scores in cortical and subcortical gray matter regions to 
cognitive domain scores are shown in figure 3. Higher fLNM 
scores (i. e. increased WMH connectivity) in cortical regions 
of the dorsal attention and ventral attention networks were 
linked to lower attention / executive function and verbal 
memory (figure 3a and c). Regarding information pro-
cessing speed, the extent of the effect was limited to several 
cortical brain areas mapping to the dorsal attention net-
work (figure 3b). In terms of sLNM, higher scores in the dor-
sal attention network were significantly associated with 
lower attention / executive function and information pro-
cessing speed (figure 3d and e). Again, information pro-
cessing speed showed a spatially more limited effect pat-
tern. The relationship of regional sLNM and verbal memory 
scores showed a different spatial distribution mapping to 
the ventral attention, frontoparietal and default mode net-
work (figure 3f). The cortical and subcortical LNM scores 
showed no significant association with the language domain 
score. 

The results for anatomically predefined white mat-
ter tracts are shown in figure 4. For tract-level fLNM, lower 
cognitive performance in attention / executive function, in-
formation processing speed and verbal memory was most 
strongly linked to higher fLNM scores in association and 
projection tracts connecting the parietal cortex (figure 4b): 
the middle longitudinal fasciculus (MdLF), parietal corti-
copontine tract (CPT), dorsal, medial and ventral sections of 
the superior longitudinal fasciculus (SLF 1-3), the parieto-
parahippocampal cingulate (C parietoparahipp.). For atten-
tion / executive function, a strong negative effect was also 
evident for the right arcuate fasciculus (AF). For verbal 
memory, significant negative effects were additionally 
found for the corticobulbar tract (CBT) and frontal aslant 
tract (FAT). 

Regarding tract-level sLNM, lower attention / exec-
utive function and verbal memory were significantly asso-
ciated with higher sLNM scores in association and projec-
tion tracts connecting frontal regions (figure 4c): the fron-
toparahippocampal cingulate (C parietoparahipp.), parol-
factory cingulate (C parolfactory), the superior longitudinal 
fasciculus (SLF 1-3), frontoparietal cingulate (C frontopari-
etal), anterior thalamic radiation, anterior corticostriatal 
pathways (CS anterior), uncinate fascicle, frontal corti-
copontine tract (CPT frontal). For attention / executive 
function, a strong negative effect was also evident for the 
right arcuate fasciculus (AF). Furthermore, higher verbal 
memory scores were significantly linked to higher sLNM 
scores in the fornices. Information processing speed 
showed a significant negative association with sLNM scores 
in the right medial superior longitudinal fasciculus (SLF 2) 
and frontoparahippocampal cingulate (C frontoparahipp.). 
Tract-level LNM scores showed no significant association 
with language function. For plots displaying all tract-level 
associations refer to supplementary figures S7 and S8. 

The spatial effect patterns, i.e., β-coefficient maps, 
showed significant overlap with 26 of 28 effect pattern pairs 
being significantly correlated (see supplementary figure S9 
for a correlation matrix). 
 
Sensitivity analyses 
Predictive modelling results were stable when using nega-
tive fLNM scores (based on anti-correlations in resting-
state fMRI measures) and when including a 25% or 50% 
thresholding step (supplementary figure S10). Exploratory 
ROI-level inferential statistics based on negative fLNM 
scores indicated that lower attention / executive function 
and information processing speed were more significantly 
associated with more negative fLNM scores in the default 
mode network (supplementary figure S11 & S12). 
 
Exploratory analyses 
Exploratory analyses are detailed in supplementary text S2. 
Functional and structural LNM scores were significantly 
correlated across ROIs and across subjects (supplementary 
figure S13). Voxel-level lesion network maps indicating 
white matter regions that contribute to variance in cogni-
tive domain function are shown in supplementary figure S14 
& S15. 
 
 

Figure 3. Inferential statistics results of cortical and subcortical gray matter. Anatomical plots on the left side display the regional relationship 
between LNM scores and cognitive domain scores. ROIs in which LNM scores across participants were significantly associated with cognitive domain 
scores after family-wise error-correction are highlighted by colors encoding β-coefficients from general linear models: a negative β (red) denotes that a 
higher regional LNM score, i.e., higher WMH connectivity, is associated to a lower performance in individual cognitive domains; a positive β (blue) indi-
cates that a higher regional LNM score is linked to a higher cognitive domain performance. Barplots on the right side display the corresponding β coeffi-
cients averaged in the canonical (Yeo) resting-state functional connectivity networks. The brain in the lower right corner indicates the regional distribu-
tion of the canonical resting-state networks with colors corresponding to the bars. Statistical significance was assessed using spin permutations. Each row
corresponds with a different combination of lesion network mapping modality and cognitive domain: a) fLNM – attention / executive function, b) fLNM –
information processing speed, c) fLNM – verbal memory, d) sLNM – attention / executive function, e) sLNM – information processing speed, f) sLNM –
verbal memory. Abbreviations: fLNM = functional lesion network mapping, pspin = p-value derived from spin permutations, ROIs = regions of interest, sLNM 
= structural lesion network mapping. 
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Discussion 
In a large multicentric sample of memory clinic patients, we 
conducted an in-depth examination of the link between 
functional and structural LNM scores and cognitive perfor-
mance. We report two main findings: (1) both structural 
and functional LNM scores, capturing WMH-related connec-
tivity, significantly improved the prediction of cognitive 
performance compared to WMH volume; (2) WMH connec-
tivity associated with lower cognitive performance, pre-
dominantly mapped to the dorsal and ventral attention net-
works. 
 
LNM scores surpass WMH volumes  in predicting cognitive 
performance 
In current clinical practice, vascular cognitive impairment 
in individual patients is often attributed to total WMH bur-
den, but interindividual variance in this relationship can 
lead to diagnostic dilemmas. Previous research has demon-
strated that strategic WMH locations, specifically in com-
missural and association tracts are statistically more likely 
to be associated with lower cognitive performance.4,6,7 Our 
approach adds to this perspective, not only considering the 
localization of WMH but also integrating them with network 
connectivity information to capture the WMH network em-
bedding. In our analysis, statistical models capitalizing on 
LNM scores demonstrated superior performance over those 
relying on total or tract-level WMH volume in predicting 
cognitive performance in almost all cognitive domains. As 
this analysis implements current best practices of predic-
tive modelling in neuroimaging, our findings represent evi-
dence for a true prediction of cognitive performance by 
LNM.34 Comparing the improvement from the de-
mographics-based model to the model informed by total 
WMH volume with the improvement to the model based on 
both LNM modalities, the usage of fLNM and sLNM scores 
yielded to a 3- to 7-fold increase in added predictive perfor-
mance across the three cognitive domains. Moreover, our 
findings highlighted that total WMH volumes only margin-
ally surpass age, sex, and education in predictive accuracy, 
stressing the importance of including demographic infor-
mation as a baseline in predictive models to assess the 
added value of WMH volume. Collectively, these findings are 
important, given the longstanding reliance on WMH extent 
as a primary imaging surrogate marker for cognitive im-
pairment in CSVD. We provide evidence for the considera-
ble role of WMH-related “covert” network effects as indi-
cated previously in studies from smaller clinical or popula-
tion-based studies.8,46–48 

Improved prediction of cognitive performance was 
achieved irrespective of the applied LNM modality. Con-
trasting prior studies suggesting the inferiority of func-
tional LNM compared to structural approaches for predict-
ing cognitive performance post-stroke,9,49 our contrary 

findings might arise from differences in the LNM approach 
as well as our focus on WMH rather than ischemic stroke 
lesions. The ROI-based functional LNM method we used 
may be more suitable to detect the widespread network dis-
turbances induced by WMH, as opposed to the localized dis-
ruptions from stroke lesions. Notably, fLNM and sLNM 
scores were positively correlated, suggesting some degree 
of structure-function coupling that could account for their 
comparable predictive performance. However, the correla-
tion strength was mostly moderate and prediction perfor-
mance of fLNM and sLNM differed noticeably across sample 
sizes. In addition, among LNM-informed models, those in-
corporating both fLNM and sLNM modalities yielded the 
strongest results. This suggests that both LNM approaches 
are equally valuable for achieving a high predictive accu-
racy in general but might also offer complementary infor-
mation. 

Although prediction of almost all cognitive do-
mains was improved by LNM scores, predictive perfor-
mance for language functions did not exceed that of WMH 
volumes and demographics. From a network perspective, 
we argue that this finding can be explained by the relatively 
confined network of left-lateralized brain regions involved 
in language functions which might present lower vulnera-
bility to WMH disconnectivity compared to cognitive func-
tions such as information processing speed, that rely on a 
widely distributed network of brain regions.50 In general, 
the minor improvement of WMH-based measures over the 
predictive performance attributed to demographics in the 
whole sample suggests that in this patient population, WMH 
contribute minimally to the variance in language function. 
 
WMH related to cognitive impairment map to attention con-
trol networks 
WMH compromise cognitive performance by impacting the 
function of specific brain networks. To localize these effects, 
we investigated regional associations between functional 
and structural LNM scores to cognitive performance. We 
found that higher LNM scores in cortical areas of the dorsal 
and ventral attention networks were linked to lower atten-
tion and executive function, information processing speed 
and verbal memory (figure 3). Therefore, higher WMH con-
nectivity in these networks is associated with reduced cog-
nitive performance indicating that WMH impair cognitive 
function by disrupting the respective connecting white mat-
ter fiber tracts. 

The dorsal attention network – including the 
frontal eye field, the superior parietal lobule, the intrapari-
etal sulcus and caudal areas of the medial temporal gyrus – 
governs top-down attention control by enabling voluntary 
orientation, with increased activity in response to cues in-
dicating the focus location, timing, or subject.51,52 The ven-
tral attention network comprises the frontal and parietal 
operculum in the inferior frontal gyrus, medial areas of the 

Figure 4. Inferential statistics results of white matter tracts. Radar plots displaying the top 10 of strongest linear associations (standardized β) for 
the functional (a) and structural (b) lesion network mapping scores in each tract in association with cognitive domain scores. Strongest associations are 
shown at the 3 o’clock position, decreasing in strength counterclockwise. Red dots indicate a negative association (higher LNM score – lower cognitive 
domain score) and blue dots indicate a positive association (higher LNM score – higher cognitive domain score). Faintly colored dots indicate non-signif-
icant associations. Tracts with a significant association are displayed below the radar plots in alphabetical order. For paired tracts only left side examples 
are visualized. Tract abbreviations: AF = arcuate fascicle, C = cingulate, CBT = corticobulbar tract, CPT = corticopontine tract, CS = corticostriatal pathway, 
F = fornix, FAT = frontal aslant tract, MdLF = middle longitudinal fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus; Abbreviations:  
fLNM = functional lesion network mapping, IPS – information processing speed, n.s. = non-significant, p = p-value, sLNM = structural lesion network 
mapping. 
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superior frontal cortex and the temporoparietal junc-
tion.44,53 This system exhibits activity increases during bot-
tom-up attention control, i.e., upon detection and orienta-
tion to salient targets, especially when they appear in unex-
pected locations.51,54 As the effect patterns largely con-
verged on these networks (supplementary figure S9), we ar-
gue that WMH affect the cognitive functions emerging from 
these networks, specifically top-down and bottom-up atten-
tion control. This aligns with the observation that deficits in 
attention and executive function are among the most prom-
inent symptoms in CSVD and VCI in general.1 Furthermore, 
prior work demonstrates altered resting-state functional 
connectivity as well as task activation in attention control 
networks related to CSVD.55–57 Given the covariance of the 
identified effect patterns, we speculate that WMH contrib-
ute to variance in the performance of other cognitive do-
mains, e.g., information processing speed by affecting the 
attention demands posited by the corresponding tests. 
 
WMH contribute to cognitive impairment by disrupting 
frontal and parietal white matter tracts 
Regional findings in gray matter areas of the attention con-
trol networks are further complemented by white matter 
tract-level results (figure 4). Functional and structural LNM 
converged on a significant involvement of tracts connecting 
frontal and parietal areas involved in attention: the dorsal, 
medial and ventral section of the superior longitudinal fas-
ciculus – which are known to connect the anterior and pos-
terior parts of the dorsal and ventral attention networks, 
the medial longitudinal fasciculus, the corticopontine tract, 
frontoparietal sections of the cingulate, the anterior tha-
lamic radiation, the frontal aslant tract and the arcuate fas-
cicle. Although there were some differences in highlighted 
tracts between functional and structural LNM, this possibly 
reflects that both approaches capture different aspects of 
the same anatomy, with sLNM possibly being more sensi-
tive to direct WMH-induced disruption of axonal connec-
tions and functional LNM also reflecting effects mediated 
via polysynaptic brain circuitry. 

Strikingly, in the context of verbal memory, struc-
tural WMH connectivity pinpointed a distinct set of 
memory-relevant tracts: the uncinate fascicle, cingulate, 
and fornix. Intriguingly, disruptions in fornix connectivity 
due to WMH were associated with improved verbal 
memory in patients, a finding that appears counterintuitive 
given the fornix's involvement in maintaining memory func-
tion. This paradox may be attributable to WMH disrupting 
inhibitory fibers. For further discussion covering negative 
fLNM scores/anticorrelations see supplementary text S16. 
 
A unifying hypothesis of WMH disconnectivity 
Drawing upon a comprehensive LNM analysis in a memory 
clinic sample of patients with differing extent and etiology 
of cognitive impairment, our research converges on a unify-
ing hypothesis: WMH contribute to variance in cognitive 
functions by disrupting brain circuitry involved in attention 
control. Our findings not only shed light on the intricate re-
lationships between CSVD, neuroanatomy and cognitive im-
pairment, but they also hint at potential avenues of clinical 
utilization. The definitive role of CSVD treatments, particu-
larly in precluding cognitive sequelae, is yet to be firmly 

established. Although there have been promising outcomes 
related to risk factor modification, particularly blood pres-
sure control,58,59 pointing towards enhanced cognitive tra-
jectories, clinical trials in VCI require biomarkers to ro-
bustly identify vascular contributions to cognitive impair-
ment and vulnerable individuals. Moving forward, leverag-
ing connectivity information could address this gap contrib-
uting to patient-tailored therapeutic interventions and fa-
cilitating the identification of subgroups at risk of cognitive 
disorders through vascular lesions likely to reap the most 
substantial benefits from medical interventions. 
 
Strengths and limitations 
This study's strength lies in its integration of innovative an-
alytical techniques with a large, multicentric dataset.60 
However, we acknowledge several limitations that warrant 
consideration when interpreting our findings. The inclusion 
of selected patient samples in several cohorts may limit gen-
eralizability to the broader memory clinic population. Addi-
tionally, with most patients being of European ancestry, the 
generalizability of our findings to other ethnicities remains 
to be established. Furthermore, despite the harmonization 
of cognitive and imaging data, biases stemming from varia-
tions in data acquisition and processing protocols across 
sites may have impacted our results. On a technical note, 
while computing fLNM scores, we sampled resting-state 
BOLD signals in the white matter, typically regarded as 
noisy and often dismissed as an artifact. However, by inte-
grating it with WMH data, we successfully predicted cogni-
tive performance and demonstrated correlations with 
structural connectivity information. This challenges the tra-
ditional view of the white matter BOLD signal as a mere ar-
tefact and supports recent studies – including LNM analyses  
of white matter lesions in multiple sclerosis – demonstrat-
ing that it contains biologically meaningful information.61–63 
 
 
Conclusion 
WMH-related brain network connectivity measures signifi-
cantly improve the prediction of current cognitive perfor-
mance in memory clinic patients compared to WMH volume 
or epidemiological factors. Our findings highlight the contri-
bution of WMH disconnectivity, particularly in attention-re-
lated brain regions, to vascular cognitive impairment. As 
this research field progresses, harnessing neuroimaging 
markers of WMH connectivity in CSVD has the potential to 
aid individualized diagnostic and therapeutic strategies. 
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Table 1. Sample characteristics 
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