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Abstract

Background:
Language and the ability to communicate effectively are key factors in mental health and well-being. Despite this
critical importance, research on language is limited by the lack of a scalable phenotyping toolkit.

Methods:
Here, we describe and showcase Lingo – a flexible online battery of language and nonverbal reasoning skills based on
seven widely used tasks (COWAT, picture narration, vocal rhythm entrainment, rapid automatized naming, following
directions, sentence repetition, and nonverbal reasoning). The current version of Lingo takes approximately 30
minutes to complete, is entirely open source, and allows for a wide variety of performance metrics to be extracted. We
asked > 1,300 individuals from multiple samples to complete Lingo, then investigated the validity and utility of the
resulting data.

Results:
We conducted an exploratory factor analysis across 14 features derived from the seven assessments, identifying five
factors. Four of the five factors showed acceptable test-retest reliability (Pearson’s R > 0.7). Factor 2 showed the
highest reliability (Pearson’s R = 0.95) and loaded primarily on sentence repetition task performance. We validated
Lingo with objective measures of language ability by comparing performance to gold-standard assessments: CELF-5
and the VABS-3. Factor 2 was significantly associated with the CELF-5 ”core language ability” scale (Pearson’s R =
0.77, p-value < 0.05) and the VABS-3 ”communication” scale (Pearson’s R = 0.74, p-value < 0.05). Factor 2 was
positively associated with phenotypic and genetic measures of socieconomic status. Interestingly, we found the parents
of children with language impairments had lower Factor 2 scores (p-value < 0.01). Finally, we found Lingo factor
scores were significantly predictive of numerous psychiatric and neurodevelopmental conditions.

Conclusions:
Together, these analyses support Lingo as a powerful platform for scalable deep phenotyping of language and other
cognitive abilities. Additionally, exploratory analyses provide supporting evidence for the heritability of language
ability and the complex relationship between mental health and language.

1 Introduction

Language is a complex phenomenon that relies on multiple cognitive domains and brain networks [1, 2]. Across
individuals there is incredible variability in language ability and speech patterns [3]. Studies of language ability,
particularly specific language impairments, have shown language ability is a highly genetic trait (twin based
heritability estimates range from 45-60%) [4, 5]. Despite evidence for substantial heritability, the relatively low power
of candidate gene association studies has led to a small handful of tenuously implicated genes and genetic loci [6].
Successful identification of these language-associated genes depends on our ability to uniformly phenotype individuals
across the domains of language, and at the large scale needed for genetic research. Traditionally, gold standard
assessment of language ability has depended on paper-and-pencil, in-person proctored tests. These assessments are
expensive to administer, time consuming, and require highly trained proctors. Beyond the challenges related to
collecting a large enough sample for a genome wide association study (GWAS) with this method, some of these tests
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are not amenable to genetic analysis in the general population because they are designed to detect clinically relevant
language impairment. This may result in a low ceiling, thus limiting their usefulness in assessing inter-individual
variation in language ability in population samples. While recent efforts from the GenLang consortium have shown
significant GWAS associations with traditional language assessments in a large meta-analysis of more than 30,000
individuals, they also discussed the difficulty of collecting additional data with these assessments and the need for a
scalable deep language phenotyping tool to facilitate future research [7]. Recent work has shown short online
assessments can accurately measure general intelligence that has a genetic basis [8]. Unfortunately, current online
assessments lack the flexibility to capture a variety of speech and language related phenotypes. Development of a
language and cognition toolkit that allows for a variety of data to be collected, like audio and selection data, would be
incredibly valuable for deep phenotyping in future genetic research.

Language is an important endophenotype in psychiatric research. Children with language impairments are more
likely to develop psychiatric disorders later in life [9]. Many individuals with psychiatric and neurodevelopmental
disorders show aberrant speech patterns. Schizophrenia is associated with deficits in receptive and expressive language
as well as decreased coherence between sentences when describing pictures [10,11]. Major depression has been linked
to less frequent use of words with positive meaning and more monotone speech [12]. Autism, a neurodevelopmental
condition, is highly comorbid with language impairments. It is estimated that 25-30% of autistic children at the age
of 5 do not speak at all or use very few words when speaking [13]. Collecting rich speech data from populations with
psychiatric and neurodevelopmental conditions may lead to more efficient diagnosis and monitoring [14].

To begin to remove the methodological barriers to study language, we have developed a battery of language and
related cognitive tasks that are administered remotely and unsupervised through a web browser. This web-based
language battery records a variety of user-generated data, including item selections (with time-to-selection) and
recorded audio, from which several latent phenotypes can be derived. Here, we describe this battery, the rationale for
selecting the tasks involved, and several validations of the resulting data across multiple samples. We then conduct
exploratory analysis of the derived phenotypes and show significant associations with mental health, genetic risk, and
socioeconomic status. Together, these results suggest that this web-based battery is a promising tool for
quantitatively phenotyping multiple domains of language and cognitive abilities.

2 Results

2.1 Lingo overview

An overview of the Lingo battery can be seen in Figure 1. Prompt images can be seen in the Supplementary Figures
and descriptions of each task can be found in the ”Methods and materials section”. Code is available at
https://research-git.uiowa.edu/michaelson-lab/language-screener/ScreenerVersion2/-/tree/master.

2.2 Lingo performance features and their factor structure

The open-ended nature of many tasks in the Lingo screener offers flexibility for measuring task performance, allowing
for both hypothesis-driven and exploratory data analysis. Throughout this manuscript we showcase the utility of 14
features from the Lingo tasks in measuring different aspects of language ability. All derived features used in our
analyses are listed in Figure 2A and described in table 2. In brief, we extracted performance metrics related to
concepts like verbal memory, verbal fluency, vocabulary, reading speed, receptive language ability, rhythm, and
nonverbal ability.

Due to the high intercorrelation of these features, we conducted an exploratory factor analysis across a sample of
N = 1,344 unique individuals from multiple samples (descriptions can be found in 1. First, we found the Lingo data
is factorable – as measured by Bartlett’s Test of Sphericity (p-value < 2e-16) and the Kaiser-Meyer-Olkin criterion
test on the correlation matrix of the Lingo variables (KMO value > 0.6). Next, we identified five distinct factors from
our 14 input Lingo features using a data-driven parallel analysis approach (see Figure 2A). Factor 1 (”poor verbal
fluency”) loaded negatively onto number of unique words said during the COWAT and positively onto reading time.
Factor 2 (”core language”) loaded strongly sentence repetition task performance as well as weaker loading from the
following directions and matrix reasoning tasks. Factor 3 (”rhythm/timkeeping”) loaded mostly onto performance
metrics from the sync voice task. Factor 4 (”talkativeness/descriptiveness”) loaded onto number of words said during
the picture narration task. Finally, Factor 5 (”vocabulary”) loaded primarily onto our vocabulary measure and hapax
count, suggesting individuals scoring high on this factor frequently used word others did not. Factor score
inter-correlations are shown in Figure 2B. Of note, Factors 1 and 5 had the strongest correlation (Pearson’s R =
-0.56, p-value < 0.01).
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2.3 Test-retest reliability

To investigate test-retest reliability of Lingo performance, we asked 14 independent adults from the SPARK research
match study to take the Lingo battery twice (separated by at least two weeks between tests). Test-retest reliability
was measured by calculating Pearson’s correlations between the factor score for the first and second testing sessions,
on a factor-wise basis (Figure 2C). Factors 1, 2, 4, and 5 showed acceptable test-retest reliability (Pearson’s R > 0.7).
Factor 2 showed particularly high test-retest reliability (Pearson’s R = 0.95, p-value < 0.01). Factor 3 (rhythm/vocal
timekeeping) did not show strong reliability (Pearson’s R = 0.46, p-value = 0.1) These results suggest that many of
the factors derived from Lingo data are reliable, in particular the verbal memory related variables.

2.4 Agreement with a gold-standard language assessments

To establish concurrent validity between the Lingo battery and well-established measures of language ability, we
compared our factor scores to gold-standard clinical assessments: the CELF-5 and the Vineland Adaptive Behavior
Scales 3 (VABS-3) [15,16]. For the CELF-5 test validity analysis we recruited 8 individuals from a local
neurodevelopmental registry (devGenes, Table 1) who completed Lingo and were assessed with the CELF-5 on the
same day. Factor scores from Lingo were then correlated with their age-normed CELF-5 clinical subscale scores
(Figure 3). Factor 2 had a significant correlation with the ”core language score percentile” from the CELF-5
(Pearson’s R = 0.77, p-value = 0.03, Figure 3A). Next, we conducted a similar analysis in our SPARK sample. Eight
individuals in our SPARK sample also had complete VABS-3 data. We found that factor 2 was significantly
associated with the VABS-3 ”communication” standard score (Pearson’s R = 0.74, p-value = 0.04, Figure 3B).

2.5 Socioeconomic correlations with Lingo factors

Given the findings that Lingo scores are reliable and valid, we sought to showcase the utility of our Lingo factors in a
series of phenotypic and genetic analyses. While previous research has found robust links between socioeconomic
status (SES) and language test scores in children [17–19], less is known about how SES influences specific domains of
language later in life. Common measurements of SES include educational attainment (highest level of education
completed) and the Area Deprivation Index (ADI – a normed measure of socioeconomic disadvantage based on
quality of life variables mapped to the zip code of someone’s residence). To determine the relationship of SES with
different language and cognitive scores in adults, we investigated possible associations between our Lingo factor scores
with educational attainment and ADI. Lingo factor 2 showed a significant positive correlation with educational
attainment in adults at least 30 years old (Pearson’s R = 0.28, p-value < 0.01, N = 250, Figure 3C). Similarly, we
found ADI was negatively correlated with factor 2 scores (Pearson’s R = -0.08, p-value < 0.01, N = 1243, Figure 3D).
The associations between SES and Lingo scores were persistent. All five Lingo factors were significantly correlated
with education level and ADI.

2.6 Polygenic score associations with Lingo factors

In the previous section we describe evidence linking phenotypic measures of SES to Lingo factors. To investigate
whether these findings had support at the biological level, we tested for associations with genetic estimates of SES.
We computed 12 different polygenic scores (PGS) for 811 individuals of European descent in our SPARK sample with
genotype data to link with our Lingo factors. The 12 PGS we calculated were relevant to cognitive ability, SES, and
neuropsychiatric risk. All PGS were corrected for population stratification prior to analysis. We found factor 2 was
significantly correlated with educational attainment PGS (Pearson R = 0.20, FDR adjusted p-value < 0.01) and
cognitive performance PGS (Pearson R = 0.20, FDR adjusted p-value < 0.01, Figure 4A). Factor 2 also showed a
nominally significant association with depression PGS (Pearson R = -0.08, uncorrected p-value = 0.02) Interestingly,
factor 4 (talkativeness/descriptiveness) was associated with decreased polygenic risk for schizophrenia (Pearson R =
-0.11, FDR adjusted p-value = 0.03) and depression (Pearson R = -0.10, FDR adjusted p-value = 0.04).

2.7 Familiality of language ability

Using our SPARK sample, we investigated whether our factor scores derived from Lingo data showed evidence of
familiality, which would support the well-established heritability of language ability [4, 5]. Upon enrolling in SPARK,
parents are asked to characterize their autistic child’s language ability with Likert-scale responses ranging from: ”Uses
longer sentences of his/her own and is able to tell you something that happened” to ”No words/does not speak”. This
Likert-scale allowed us to binarize their child’s language ability into an unimpaired language group (N = 693, ”Uses
longer sentences of his/her own and is able to tell you something that happened”), and an impaired language group
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(N = 310, ”Combines 3 words together into short sentences” or ”Uses single words meaningfully” or ”No words/does
not speak”). Indeed, we found that parents’ Factor 2 score was significantly associated with their children’s language
ability (t-statistic = 3.7, p-value < 0.01, Figure 4B) – suggesting parents of autistic children with language
impairments have poorer verbal memory themselves. Notably, parents’ Factor 2 score was independently predictive of
their child’s language impairment after controlling for the child’s cognitive impairment, age, and sex (beta = -0.16, Z
= -2.05, p-value = 0.04, Figure 4C). These results support the heritability of language ability that has been previously
reported, and further underscore the validity of the data yielded through Lingo.

2.8 Lingo factors are predictive of psychiatric diagnoses

Finally, we tested whether Lingo captures language and cognitive phenotypic variation relevant to psychiatric
diagnosis. A subset of SPARK participants (N = 845) completed an additional self-report questionnaire about
psychiatric, neurodevelopmental, or neurological diagnoses they have received. We then fit logistic regression models
to predict diagnosis from Lingo factor scores while controlling for age and sex of the participant. Lingo factor 2 was
negatively associated with endorsement of language impairment (beta = -0.6, Z = -4.1, FDR adjusted p-value < 0.01),
intellectual disability (beta = -0.5, Z = -5, FDR adjusted p-value < 0.01), and bipolar disorder (beta = -0.29, Z =
-2.84, FDR adjusted p-value = 0.04), Figure 5. Factor 5 was associated with higher endorsement of autism (beta =
0.51, Z = 5.1, FDR adjusted p-value < 0.01, Figure 5).

3 Discussion

Lingo is a powerful platform for scalable deep phenotyping of language ability. With multiple samples collected from a
variety of settings we were able to validate the utility of Lingo in quantifying distinct language domains. We identified
a factor related to verbal memory that had strong correlations with core language measures of gold-standard clinical
language assessments, providing support that our battery can objectively measure language ability. Additionally, the
Lingo-derived factors showed high test-retest reliability. Analysis of Lingo factor scores offered insights into the
interrelationship that language ability has with genetics, SES, and mental health. While many of these analyses
cannot infer causality (i.e., low language abilities early in life lead to poor SES in adulthood or vice versa), these
findings speak to the importance of considering language when studying SES and mental health. Taken together,
these validations suggest that our battery is a robust platform for measuring individual differences in
language/cognitive skills that are relevant to behavioral and social sciences.

The scalability of Lingo makes it a prime candidate for prospective and genetic study designs. Our analyses
showing significant associations between PGS and our factor scores suggest there is a biological basis to the variation
captured by Lingo, making this assessment amenable to a large-scale GWAS in the future. Finally, the ability to
deploy this battery in large population samples, allowing for rapid deep phenotyping, is ideal for genetic analysis like
GWAS. Follow up studies, like GWAS or rare variant association tests on Lingo scores could clarify the role genes may
play in specific speech and language domains. Based on previous large-scale GWASs on reading phenotypes and the
heritability of multiple language domains [4, 7], we expect that the different Lingo scores would be genetically distinct.

The recorded audio that Lingo provides is a significant benefit that distinguishes it from traditional language and
cognitive assessments. Lingo’s recorded audio and millisecond-scale timing allows for unparalleled feature extraction,
allowing researchers to address a variety of research questions with data collected from one session. The richness of
the raw recordings allows for a degree of ”future proofing” as new analytic techniques are developed to derive features
with greater signal-to-noise and interpretability properties. Beyond the 14 features we examined in the factor analysis,
Lingo also offers the ability to assess acoustic speech qualities. Changes in speech acoustics have been linked to a
variety of mental health and mood outcomes, like depression and mania in bipolar disorder [14]. It can be extremely
difficult to diagnose or treat manic and depressed individuals, but tools like Lingo offer a novel avenue to collect this
data without the need for them to come into a clinical setting [14]. Additionally, the nature of the COWAT and
picture narration tasks would allow for semantic or sentiment analysis by looking at the specific words participants
use. Recent work has shown significant differences in the semantic space of words used by individuals with
schizophrenia compared to controls [20]. Ultimately, digital phenotyping tools like Lingo could reduce mental
healthcare treatment barriers and allow for improved diagnosis, monitoring, and treatment.

The relatively short time to complete and inexpensive implementation of the Lingo screener makes it a promising
tool for longitudinal studies. Participants can complete the Lingo battery multiple times (as long as they have access
to a web browser and device with a microphone), which would allow for longitudinal tracking of speech and cognitive
phenotypes. This could be particularly useful in speech biomarker studies of neurodegenerative diseases like
Alzheimer’s, or on the opposite end of the age spectrum to capture developmental trajectories of language acquisition
and use in children.
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3.1 Limitations

While we believe the Lingo battery is a significant stride forward in scalable deep phenotyping of language and
cognitive abilities, there are a number of limitations with the current implementation. First and foremost, we do not
cover all domains of language. For example, written language (including grammar and spelling) are not probed in
Lingo - limiting its utility. Still, it may be possible to compute proxies for written grammar from the spoken grammar
in the picture narration task. Additionally, while we found machine transcription to be highly accurate, human
involvement is still needed for the highest levels of accuracy. Machine transcription is also biased by confounds that
may be of interest to language researchers, like accent or dialect, which likely decrease transcription accuracy.
Disrupted speech and vocal acoustics seen in psychiatric, neurological, and neurodevelopmental conditions could also
decrease automated transcription accuracy and can lead to inaccurate results with clinical implications if they are not
corrected or flagged [21]. Consequently, depending on the application, machine mistranscription may be either a
feature or a bug.

4 Methods and materials

4.1 Implementation of Lingo

This language battery is a custom built, self-contained, web server. The front end (the website the participant sees
and interacts with) was written with Angular (https://angular.io/), the back end was written in NodeJS
(https://nodejs.org/en/), and the server is deployed on Amazon Web Services (AWS, https://aws.amazon.com/). This
design allows for straightforward customization of the tasks included in the battery, where one can add or remove
tasks easily prior to deployment on AWS. Once a participant navigates to the corresponding URL, their device
compatibility is tested by ensuring they can listen to and record audio. Following device testing the participant begins
the battery, which takes approximately 25-35 minutes for the full battery (depending on time to complete the matrix
reasoning and listening comprehension tasks). We record raw audio, timing, and item selections across the battery.
The raw audio for each trial undergoes text-to-speech transcription, which was checked manually through random
sampling for transcription accuracy. Audio recordings of responses were initially transcribed and timestamped by
OpenAI’s Whisper Large-V2 text-to-speech model []. To ensure the machine transcription process was reliable, we
completed manual review of >100 randomly selected audio files and found the Whisper transcriptions to be highly
accurate (9̃5%).

4.2 Verbal fluency task: word naming by letter

To assess verbal fluency, we prompted participants to name as many words as they could think of that start with a
provided prompt letter in 30 seconds. During this 30 second interval, audio was recorded from the participant’s device
microphone. The prompt letters were A, C, F, L, and S. No further instruction (e.g., exclusion of proper nouns) was
given. Similar word naming tasks have long been used in neurology and psychiatry to assess verbal fluency (see the
FAS or COWAT [22,23]).

4.3 Phonological memory task: sentence repetition

Phonological memory was assessed with a sentence repetition task. Prompt sentences were provided via playback of a
recording of a female narrator. Prompt sentences were structurally identical to some of those on the sentence
repetition task of the CELF-5 [15]. We then augmented this set with several additional sentences generated by us to
raise the difficulty ceiling. In total, 12 sentences are presented in the task, in order of increasing complexity. Three
seconds after the auditory prompt, the participant’s response was recorded through their device microphone.

Typical scoring of in-person administration of sentence repetition tasks provides little numerical range (i.e., scored
0-3), making it challenging to assess accuracy on easy or difficult prompts where the majority of individuals will be at
one extreme score. In our implementation, we provide a continuous score that is based on the bigram accuracy, i.e.,
the proportion of correct bigrams (consecutive word pairs) included in the participant’s response. Performance in the
sentence repetition task is dependent on phonological memory, yet includes other aspects of language as well (i.e., it is
a combined receptive/expressive language task). Prompt sentences can be seen in Supplementary Figure S1 (with
punctuation and capitalization removed).
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4.4 Reading task: rapid automatized naming

Reading fluency was tested using the well-validated Rapid Automatized Naming (RAN) task. Briefly, participants are
shown a grid of numbers and asked to read them aloud as quickly as they can. Our implementation includes 4 total
trials, with number grid lengths of either 25 (5x5) or 36 (6x6) integer numbers. During this task, audio from the
participant reading off the grid of numbers was recorded, allowing us to calculate the time spent reading and
correctness through each number grid. Actual number grids used in this task can be seen in Supplementary Figure S2

4.5 Timing task: sync voice

This task aimed to evaluate participants’ abilities in vocal timekeeping and rhythm. Participants were instructed to
mimic a series of ”La’s” pronounced at fixed intervals (e.g., every 1 second) and continue the pattern for 10 seconds.
The task comprised separate trials with intervals set at 0.5, 0.75, 1, and 1.25 seconds. To analyze participant
performance, we examined the raw audio recordings to pinpoint instances of vocalization during the task. From these
recordings, we extracted timestamps, allowing us to calculate the time intervals between each uttered ”La”.
Subsequently, we computed several features related to consistency, error, and overall accuracy based on these
timestamps. Consistency-related features were determined by fitting linear models to each participant’s response data,
predicting actual prompt period times based on the intervals between their ”La” utterances. Participant-level
R-squared values were then extracted from these models, indicating the degree to which participants’ performances
across trials accurately predicted the prompt period times.

4.6 Expressive language task: picture narration

During this task, participants were prompted with pictures and asked to describe what they saw for 30 seconds. No
further instruction was given. During this 30 second interval, audio was recorded from the participant’s device
microphone. Participants completed 4 trials, and were shown the pictures in Supplementary Figure S3

4.7 Spatial receptive language task: following directions

In order to quantify the participants’ ability to interpret and follow verbal directions we implemented a task similar to
the “Following Directions” task found in the CELF assessment [15]. Participants were given 8 prompts of increasing
difficulty, where they heard a narrator give directions to select a specific shape in a grid of shapes. We record both
the time to select an item and whether that item was correct for each trial. For example, prior to seeing the prompt
in Supplementary Figure S4, participants might hear “select the blue triangle underneath the red square”.

4.8 Nonverbal reasoning task: matrix reasoning

Matrix reasoning is a visual-spatial problem solving task often used as a measure of nonverbal intelligence. The
prompt assets for the matrix reasoning task used here were used with permission from the well-validated UK Biobank
version [24], which was presented in a comparable fashion. In brief, the matrix reasoning problems involve seeing an
incomplete pattern, then selecting the option that would correctly complete the pattern from six choices. This task
had 14 trials of increasing difficulty. We record both the time to select an item and whether that item was correct for
each trial. An example prompt is shown in Supplementary Figure S5

4.9 Sample description: SPARK

Through a research match for the SPARK for Autism study [25, 26] we recruited 1,336 adults (mean age = 41.4 years
old, SD = 10.3) with rich phenotypic data. Sample demographics can be seen in Table 1 and Supplementary Figure
S6. In order to establish test-retest reliability, 14 participants retook the battery two weeks after the initial test.
Individuals who reported being blind or deaf were excluded due possible issues with tasks involving visual or audio
stimuli (like matrix reasoning or the spatial receptive language tasks). Approximately 1/3 of this sample had been
diagnosed with autism (31.2%), the other 68.8% were parents of children with autism. Many of these individuals
and/or their children had extensive genetic, cognitive, and behavioral phenotype data which were used in downstream
analysis to better understand the relationship relevant phenotypes and our Lingo performance results. We utilized
SPARK V10 phenotype data for downstream analysis.
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4.10 Sample description: in-person

We recruited 8 children from a local neurodevelopmental condition registry (devGenes, 1) who completed a
gold-standard language assessment, the CELF-5, as well as our battery. We then compared CELF-5 and Lingo scores
to evaluate the suitability of the included tasks. The CELF-5 was administered by trained research assistants. Due to
limitations in the valid age range for the CELF-5 (valid in ages 5-21), this sample was substantially younger than the
SPARK sample. All participants were younger than 21 years old.

4.11 Imputation

There was sporadically missing data in the matrix reasoning and following directions tasks due to server issues in part
of the data collection phase for the SPARK sample (we believe excessive server load led to failure to save user data;
no such data loss was experienced in a second wave of recruitment). Since the other five tasks recorded in full, and
many participants had the majority of their data recorded, we decided to impute the missing data to improve
statistical power in downstream analyses. The imputation procedure consisted of subsetting our data to individuals
missing less than 33.3% of features. We then imputed the missing values using the ”missRanger” R package [27], a
random forest and predictive mean matching based method. We used the following parameters: ”num.trees = 500”,
”pmm.k = 10” and a seed value for reproducibility. Imputation converged after 4 iterations, and provided a final
dataset of 1,344 samples with 14 features each.

4.12 Factor analysis

Prior to determining the factor structure with exploratory factor analysis of the Lingo screener, we residualized for
the effects of age and sex for each input variable. Then, we fit the initial factor model using 604 samples who had
complete Lingo data (i.e., did not suffer any data loss and were not repeats). To determine the optimal factor number,
we used the ”fa.parallel” function from the ”psych” package in R [27]. The ”fa.parallel” function uses parallel analysis
to identify the number of factors in a dataset by comparing eigenvalues of the observed data to eigenvalues of a
random dataset with the same dimensionality. Using this data-driven method, we identified five factors in our data.
We then fit our five factor model with the ”fa” function from the ”psych” package. After computing initial factor
scores, we removed 36 outliers (i.e., samples whose absolute value of a factor score was greater than 3 * median
absolute deviation + median value of that factor), and refit the five factor model. Once factors were derived, we
predicted factor scores for all of the held out data (i.e., the samples with imputed data or retest data). In total, we
computed Lingo factor scores for 1,336 unique SPARK participants (14 of these samples had data from 2 Lingo
sessions for test-retest reliability validation) and 8 participants from our local cohort.

4.13 Genetic data and polygenic score analysis

Much of this methodology has been previously described in our prior work [28]. We describe a few small updates to
our methodology and ensured we followed current best practices with the PGS calculation tool used here.

4.13.1 Genotype Quality Control and Imputation

For the SPARK reseach match cohort, many participants had genetic data available. We used the genotype arrays
from SPARK integrated whole-exome sequencing (iWES1) 2022 release and SPARK whole-genome sequencing (WGS)
releases 2, 3, and 4. iWES1 (n = 69,592) was quality controlled on release, including removing samples due to
heterozygosity or high missingness, so no quality control was performed by us before imputation. iWES1 provided
genetic ancestry assignments based on 1000 Genomes populations (26). WGS release 2 (n = 2365), release 3 (n =
2871), and release 4 (n = 3684) were not quality controlled on release, so we performed quality control using PLINK
(27) before imputation. First, we removed participants from WGS if they were in iWES1. Second, we removed
variants with missingness > 0.1 and participants with missingness > 0.2. Third, we merged the 3 releases and
removed any participant whose heterozygosity (F statistic) was not within 3 standard deviations of the mean. We
used the TopMed reference panel to identify strand flips [29]. The final sample size for WGS 2 to 4 was n = 8152.
iWES1 and WGS 2 to 4 were then imputed to TopMed [29] using the Michigan Imputation Server [30] with phasing
and quality control steps included and to output variants with imputation quality r2 ¿ 0.3. After imputation, variants
were filtered to single nucleotide polymorphisms with imputation quality r2 ¿ 0.8 and a minor allele frequency > 0.1%
in our sample using bcftools [31]. They were lifted over from hg38 to hg19 using the VCF-liftover tool
(https://github.com/hmgu-itg/VCF-liftover) and normalized to the hg19 reference genome. Finally, files were merged,
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subset to HapMap3 Plus variants [32], and variants with 0% missingness were retained (final number of variants =
1,147,121).

4.13.2 Genetic Ancestry

Genetic principal components (PCs) were calculated using bigsnpr [33], specifically following the authors’
recommendations [34] and tutorial: https://privefl.github.io/bigsnpr/articles/bedpca.html. In summary, we 1) used
the ”snpplinkKINGQC” function to identify and remove related participants at KING threshold of 2-3.5, 2)
performed PC analysis using the bedautoSVD with unrelated participants, 3) detected and removed PC outliers, 4)
recalculated PCs, and 5) projected PCs onto the entire cohort using the bedprojectSelfPCA function. We used 40
PCs and performed k-means clustering with K = 5 (for the 5 populations of 1000 Genomes [35] and used the genetic
ancestry labels from iWES1 to assign labels to the genetic population clusters. Due to the lack of diversity in many
GWASs, PGS based on these results tend to perform much better in individuals with predominantly European
ancestry. To ensure our PGS were valid and accurate, for the PGS analysis we subset to individuals who clustered
with the Europeans samples (final N = 811 with QC passing genetic data, were European, and had Lingo data).

4.13.3 Polygenic Scores

PGSs were calculated using the ”LDpred2” [36] and ”bigsnpr” tools [33] in R. Because SPARK is family based, an
external linkage disequilibrium reference based on 362,320 participants in the UK Biobank (provided by the authors
of LDpred2) was used to calculate infinitesimal beta weights. PGSs were calculated from the following GWASs
conducted by the Psychiatric Genetics Consortium: alcohol abuse [37], Alzheimer’s disease [38],
attention-deficit/hyperactivity disorder (ADHD) [39], anorexia nervosa [40], autism [41], bipolar disorder [42], major
depression [43], post traumatic stress disorder (PTSD) [44], and schizophrenia [45]. As well as the following GWASs
conducted by the the Social Science Genetic Association Consortium: cognitive performance [46], educational
attainment [47], and risk taking [48]. To correct for population stratification we residualized out the main effects of
the first 20 genetic PCs from each PGS and z-scaled the scores. Finally, we tested for PGS associations with Lingo
factor scores using Pearson’s correlations, as both the PGS and Lingo scores were normally distributed. P-values were
adjusted for multiple testing burden by using the False Discovery Rate (FDR) method with the ”p.adjust” function in
R.

4.14 Statistical analysis

All statistical analysis was conducted in R version 4.3.0 [49].
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Figures and Tables

Table 1. Demographic information of samples collected.

Figure 1. Schematic overview of Lingo, our online language battery. Participants were routed to
the Lingo website where they completed the Lingo battery using personal computers and laptops. Raw audio,
selections, and timing are recorded during Lingo. Some screenshots of the assessment are shown here as well
as examples of how the data can be analyzed
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Figure 2. Factor structure of Lingo and test-retest reliability. 2.A. Factor loadings of the 14 Lingo performance features we
analyzed. We found a 5 factor model fit our data best. 2.B. Correlation heatmap between the Lingo factor scores for all participants.
2.C. Test-retest reliability analysis of the 5 Lingo factors for the subset of participants who completed the assesment twice (at least 2
weeks apart).
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Figure 3. Validation of Lingo factors with gold-standard assessments and SES. 3.A. Concurrent validity analysis
of the Lingo factor 2 scores with the CELF-5 scores in a small local cohort who completed both assessments. 3.B. Concurrent
validity analysis of the Lingo factor 2 scores with the Vineland Adaptive Behavior Scales-3 language score in a small subset of
SPARK participants who had data for both assessments available. 3.C. Correlation between educational attainment in years (i.e.,
10 = did not complete high school, 19 = graduate or professional degree) and Lingo factor 2 scores. As many young adults are
still in school, we subset the sample to individuals > 30 years old to limit the effects of age in our analysis. 3.D. Correlation
between the Area Deprivation Index and Lingo factor 2 scores.
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Figure 4. Genetic analysis of Lingo factors. 4.A. Brain related polygenic score (PGS) correlations with Lingo factor 2
scores for European SPARK participants with available genetic data (N = 811). Due to the multiple testing burden we used FDR
p-value correction. Plotted are the Pearson’s R and 95% confidence interval estimates for correlations between PGS and Lingo
factor 2 scores. 4.B. Parental score on Lingo factor 2 was associated with their child’s language impairment. 4.C. Parental score
on Lingo factor 2 are an independent predictor of their child’s language impairment after accounting for their child’s cognitive
impairment, age, and sex. Odds’ ratios and 95% confidence interval computed from a multivariate logisitc regression model
predicting the child’s language impairment are shown. ”***” indicates p-value < 0.001, ”**” indicates p-value < 0.01, and ”*”
indicates p-value < 0.05.
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Figure 5. Lingo factors associations with psychiatric and neurodevelopmental conditions. Plotted are the test
statistics from logistic regression models predicting self-reported diagnosis from the Lingo factor scores after accounting for age
and sex (N = 845). Due to the multiple testing burden we used FDR p-value correction. ”**” indicates FDR adjusted p-values
are less than 0.05. ”*” indicates nominal statistical significance, unadjusted p-vale < 0.05 but the FDR adjusted p-value > 0.05.
Negative values indicate scoring high on the Lingo factor is associated with a lower likelihood of having that diagnosis. Positive
values indicate scoring high on the Lingo factor is associated with a higher likelihood of having that diagnosis. Values near zero
indicate no significant association.
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Supplementary information

Supplementary tables and figures

Table 2. Description of Lingo features.
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Figure S1. Prompt sentences used in the sentence repetition task (with punctuation and capitalization removed).
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Figure S2. Prompt number grids used in the RAN reading task.

Figure S3. Please contact the authors for a copy of the prompt images. Prompt images used in the picture
narration task will be included here in the final peer reviewed version of the manuscript.
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Figure S4. Prompt 1 image for the following directions. Participants were asked to click on the shape that matched
the verbal description they had heard.
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Figure S5. Prompt 1 image for the matrix reasoning task, used with permission from same task in the UK
Biobank. Participants were asked to click on the pattern that best fit the matrix shown above.
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Figure S6. Demographic distributions of the SPARK Lingo cohort.
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33. F. Privé, H. Aschard, A. Ziyatdinov, and M. G. B. Blum, “Efficient analysis of large-scale genome-wide data with two r packages:
bigstatsr and bigsnpr,” Bioinformatics, vol. 34, pp. 2781–2787, 2018.
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M. Mattheisen, et al., “Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for
anorexia nervosa,” Nature Genetics, vol. 51, no. 8, pp. 1207–1214, 2019.

41. J. Grove, S. Ripke, T. D. Als, M. Mattheisen, R. K. Walters, H. Won, J. Pallesen, E. Agerbo, O. A. Andreassen, R. Anney, et al.,
“Identification of common genetic risk variants for autism spectrum disorder,” Nature Genetics, vol. 51, no. 3, pp. 431–444, 2019.

42. N. Mullins, A. J. Forstner, K. S. O’Connell, B. Coombes, J. R. I. Coleman, Z. Qiao, T. D. Als, T. B. Bigdeli, S. Børte, J. Bryois,
A. W. Charney, O. K. Drange, M. J. Gandal, S. P. Hagenaars, M. Ikeda, N. Kamitaki, M. Kim, K. Krebs, G. Panagiotaropoulou,
B. M. Schilder, L. G. Sloofman, S. Steinberg, V. Trubetskoy, B. S. Winsvold, H.-H. Won, L. Abramova, K. Adorjan, E. Agerbo,
M. A. Eissa, D. Albani, N. Alliey-Rodriguez, A. Anjorin, V. Antilla, A. Antoniou, S. Awasthi, J. H. Baek, M. Bækvad-Hansen,
N. Bass, M. Bauer, E. C. Beins, S. E. Bergen, A. Birner, C. B. Pedersen, E. Bøen, M. P. Boks, R. Bosch, M. Brum, B. M.
Brumpton, N. Brunkhorst-Kanaan, M. Budde, J. Bybjerg-Grauholm, W. Byerley, M. Cairns, M. Casas, P. Cervantes, T.-K.
Clarke, C. Cruceanu, A. Cuellar-Barboza, J. Cunningham, D. Curtis, P. M. Czerski, A. M. Dale, N. Dalkner, F. S. David,
F. Degenhardt, S. Djurovic, A. L. Dobbyn, A. Douzenis, T. Elvs̊ashagen, V. Escott-Price, I. N. Ferrier, A. Fiorentino, T. M.
Foroud, L. Forty, J. Frank, O. Frei, N. B. Freimer, L. Frisén, K. Gade, J. Garnham, J. Gelernter, M. G. Pedersen, I. R. Gizer,
S. D. Gordon, K. Gordon-Smith, T. A. Greenwood, J. Grove, J. Guzman-Parra, K. Ha, M. Haraldsson, M. Hautzinger,
U. Heilbronner, D. Hellgren, S. Herms, P. Hoffmann, P. A. Holmans, L. Huckins, S. Jamain, J. S. Johnson, J. L. Kalman,
Y. Kamatani, J. L. Kennedy, S. Kittel-Schneider, J. A. Knowles, M. Kogevinas, M. Koromina, T. M. Kranz, H. R. Kranzler,
M. Kubo, R. Kupka, S. A. Kushner, C. Lavebratt, J. Lawrence, M. Leber, H.-J. Lee, P. H. Lee, S. E. Levy, C. Lewis, C. Liao,
S. Lucae, M. Lundberg, D. J. MacIntyre, S. H. Magnusson, W. Maier, A. Maihofer, D. Malaspina, E. Maratou, L. Martinsson,
M. Mattheisen, S. A. McCarroll, N. W. McGregor, P. McGuffin, J. D. McKay, H. Medeiros, S. E. Medland, V. Millischer, G. W.
Montgomery, J. L. Moran, D. W. Morris, T. W. Mühleisen, N. O’Brien, C. O’Donovan, L. M. O. Loohuis, L. Oruc, S. Papiol,
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