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INTRODUCTION
Meningiomas are the most common intracranial tumors in 
adults. Approximately, 33.8% of all intracranial tumors are 
meningiomas.1,2 They are classified into three grades (Grade 
I, II and III) according to the 2016 World Health Organiza-
tion (WHO) criteria.3 Grade I are low-grade tumors, while 
grades II and III are high-grade tumors. Different grades 
represent different biological behaviors of tumors.4–6 High-
grade tumors have more aggressive biological behavior, a 
tendency to recur, and a worse prognosis than low-grade 
tumors. As a result, the treatment strategies are different for 
high- and low-grade tumors. It is essential to perform early 
surgical resection for high-grade tumors.4 However, other 
therapies can be selected for high-grade tumors that cannot 
be completely removed by surgery, including cytotoxic 

chemotherapy, hormone therapy and targeted therapy.7 
Long-term follow-up or stereotactic radiotherapy is a better 
choice for low-grade tumors.8 Thus, accurate pre-operative 
prediction of the tumor grade is important to develop treat-
ment strategies and improve the prognosis.

Previous studies have used conventional MRI to predict 
the meningioma grade, including factors such as the shape, 
size, location, indistinct tumor–brain interface, tumor 
necrosis, and heterogeneous tumor enhancement.9–12 
However, these imaging features are qualitative and subjec-
tive, which has led to controversial conclusions in some 
studies. Radiomics can predict outcomes by modeling 
based on high-throughput extraction of texture parameters 
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Objectives: The objective of this study was to develop 
a radiomics nomogram for predicting the meningioma 
grade based on enhanced T1 weighted imaging (T1WI) 
images.
Methods: 188 patients with meningioma were analyzed 
retrospectively. There were 94 high-grade meningioma 
to form high-grade group and 94 low-grade meningioma 
were selected randomly to form low-grade group. Clin-
ical data and MRI features were analyzed and compared. 
The clinical model was built by using the significant vari-
ables. The least absolute shrinkage and selection oper-
ator regression was used to select the most valuable 
radiomics feature. The radiomics signature was built and 
the Rad-score was calculated. The radiomics nomogram 
was developed by the significant variables of the clin-
ical factors and Rad-score. The calibration curve and the 
Hosmer–Lemeshow test were used to evaluate the radi-
omics nomogram. Different models were compared by 
Delong test and decision curve analysis curve.
Results: The sex, size and surrounding invasion were 
used to build clinical model. The area under the receiver 

operator characteristic curve (AUC) of clinical model 
was 0.870 (95% CI: 0.782–0.959). Nine features were 
used to construct the radiomics signature. The AUC 
of the radiomics signature was 0.885 (95% CI: 0.802–
0.968). The AUC of radiomics nomogram was 0.952 
(95% CI: 0.904–1). The AUC of radiomics nomogram was 
higher than that of clinical model and radiomics signa-
ture with a significant difference (p＜0.05). The decision 
curve analysis curve showed that the radiomics nomo-
gram had a larger net benefit than the clinical model and 
radiomics signature.
Conclusion: The radiomics nomogram based on 
enhanced T1 weighted imaging images for predicting 
the meningioma grade showed high predictive value 
and might contribute to the diagnosis and treatment of 
meningioma.
Advances in knowledge: 1. We first constructed a radi-
omic nomogram to predict the meningioma grade.
2. We compared the results of the clinical model, radi-
omics signature and radiomics nomogram.
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from images.13–15 As a new method, it can predict the menin-
gioma grade quantitatively and objectively.

Recently, some studies have successfully used radiomics to predict 
the meningioma grade and obtained satisfactory results.16–19 The 
area under the receiver operating characteristic curve (AUC) in 
these studies was relatively high. However, most of these studies 
were merely based on texture analysis. Radiomics with many 
different statistical features is preferable. In addition, the number 
of high-grade meningiomas included in previous radiomics 
studies is small.20–23

In this study, we developed a radiomics nomogram that incor-
porates radiomics signatures and clinical factors to predict the 
meningioma grade with a larger sample size of high-grade menin-
gioma (n = 94) based on enhanced T1 weighted (T1WI) images. 
The tumor boundary were more clearly displayed in enhanced 
T1WI images than other sequences because most meningiomas 
strengthened obviously in enhanced T1WI images. This made it 
easier and more accurate to draw ROI in enhanced T1WI images. 
Otherwise, previous study had shown that a model constructed 
by enhanced T1WI images to classify meningioma grade was 
more effective than T1WI and T2WI images.24 Considering the 
above factors, we used enhanced T1WI images to develop the 
radiomics nomogram.

METHODS AND MATERIALS
Patients
This retrospective study was approved by our institutional review 
board, and the requirement for informed consent was waived. 
The patients who underwent meningioma resection surgery 
from January 1, 2014, to June 31, 2021 were analyzed. The inclu-
sion criteria were as follows: (1) patients underwent enhanced 
T1 weighted examination before surgery; (2) patients did not 
receive any treatment before MRI examination and surgery; and 
(3) there was a pathological diagnosis of meningioma and a clear 
grade after surgery. The exclusion criteria were as follows: (1) 
there were severe artifacts on MRI images, and the image quality 

was not satisfactory for analysis; and (2) there was no clear 
pathological diagnosis or grade. Clinical information, including 
age and sex, was recorded.

94 patients were diagnosed with high-grade meningioma and 
met the inclusion criteria. 68 patients were WHO II, and 26 cases 
were WHO III. These 94 cases formed the high-grade group. 
More than 1000 cases were diagnosed with low-grade menin-
gioma. The number of low-grade tumors was far greater than 
that of high-grade tumors. 94 cases of low-grade meningioma 
were selected randomly to match the high-grade meningioma to 
avoid statistical bias. They formed the low-grade group. Finally, 
there were 188 cases in our study.

MRI examination and MRI features analysis
The MRI parameters were as follows: TR: 1800 ms; TE: 10 ms; 
slice thickness: 5 mm; FOV: 25 cm. Enhanced T1WI images were 
obtained after administering 0.1 ml/kg Gd-DTPA.

Two radiologists with 10 and 20 years of neurological imaging 
experience analyzed all of the images. The two readers who were 
blinded to the pathological data analyzed the following MRI 
features by consensus: size (the maximum diameter of the tumor 
on the axial MRI image); indistinct margins (indistinct tumor 
margin with brain parenchyma); surrounding invasion (the 
tumor invaded the surrounding structures, including the brain 
parenchyma, venous sinus, bone and so on); dural tail (peritu-
moral dural thickening and enhancement); and peritumoral 
edema in the brain.

Construction of the clinical model
Univariate analysis was used to compare the differences in 
the clinical data and MRI features between the two groups. A 
multiple logistic regression analysis was used to build the clinical 
factor model by using the significant variables from the univar-
iate analysis as inputs. Odds ratios (ORs) as estimates of relative 
risk with 95% confidence intervals (CIs) were calculated for each 
independent factor.

Figure 1. The axial image in the largest cross-sectional area of a WHO I grade meningioma image in a 53-year-old female patient 
(a). A region of interest (green contour) was drawn within the border of the tumor (b). WHO, World Health Organization
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Radiomics feature extraction
We selected one axial image in the largest cross-sectional area in 
axis-enhanced T1WI and exported the selected image to a Digital 
Imaging and Communications in Medicine (DICOM) file from 
the picture archiving and communications system (PACS) work-
station (GE). The selected image was uploaded to IBEX soft-
ware (http://bit.ly/IBEX), and the region of interest (ROI) was 
drawn manually as close as possible to the tumor edge. The ROI 
included the whole tumor(Figure  1). The radiomics features 
included eight categories: Gradient Orient Histogram, Gray 
Level Co-occurence Matrix25, Gray Level Run Length Matrix25, 
Intensity Direct, Intensity Histogram, Intensity Histogram Gauss 
Fit, Neighbor Intensity Difference25, and Shape.

The intraclass correlation coefficient (ICC) was used to evaluate 
the stability of the radiomics features. 20 cases of meningioma 
(10 low-grade meningiomas and 10 high-grade meningiomas) 
were chosen randomly. Two radiologists independently drew 
ROIs of 20 cases. The ICC was calculated based on a single rater, 
absolute agreement, two-way random-effects model. The ICC 
value of each radiomics feature was calculated, and only radio-
mics features showing high stability (ICC≥0.8) were selected for 
future analysis.

Construction of the radiomics signature
Least absolute shrinkage and selection operator (LASSO) 
regression was used to reduce the dimensions of the radiomics 

features, and the most valuable radiomics feature was selected. 
The selected features were used to build a radiomics signature. 
We applied a linear combination of selected features weighted 
by their respective LASSO coefficient to calculate a radiomics 
score (Rad-score) for each patient. We calculated the Rad-score 
using the following formula: Rad-score = −0.2306×90Percen-
tile + 0.4497×0.4InformationMeasureCorr2+0.1569×0Shor-
tRunHighGrayLevelEmpha + 0.2254×Kurtosis.1–0.1764 
× Skewness.2+0.2738×HistArea-0.3595 × 
Convex−0.3798×Roundness−1.4265×SurfaceAreaDensity.

Development of a radiomics nomogram and 
assessment of the different models
The significant variables of the clinical factors and Rad-score 
were used to develop a radiomics nomogram. The calibration 
curve was used to assess the calibration of the nomogram. The 
goodness-of-fit of the nomogram was evaluated by the Hosmer–
Lemeshow test. The area under the receiver operator character-
istic (ROC) curve (AUC) and Delong test were applied to evaluate 
the diagnostic performance of the clinical model, radiomics 
signature and radiomics nomogram for predicting the menin-
gioma grade. Decision curve analysis (DCA) was performed to 
evaluate the clinical usefulness of the radiomics nomogram by 
calculating the net benefits at different threshold probabilities.

Statistical analysis
R statistical software (https://www.r-project.org/) was used for 
statistical analysis. The “irr” package was used to calculate the 
ICC. The “lars” package was used to perform the LASSO regres-
sion. The “pROC” package was used to draw the ROC curve. The 
“rms” package was used to draw the radiomics nomogram. The 
“rmda” package was used to draw the DCA curve. p＜0.05 was 
considered statistically significant.

RESULTS
Clinical factors of the patients and construction of 
the clinical model
The clinical factors are shown in Table 1. There was a significant 
difference in sex, size, indistinct margins, surrounding invasion, 
dural tail and peritumoral edema between the two groups (p < 
0.05), while there was no significant difference in age between 
the two groups (p > 0.05). The results of the multiple logistic 
regression analysis are shown in Table  2. Sex (p = 0.0073), 
size (p = 0.0001), and surrounding invasion (p = 0.0168) were 

Table 1. Clinical characteristics

Low grade group High grade group p
Sex（Male: Female） 17:77 44:50 0.0000259

Age（years） 54.16 ± 10.10 56.28 ± 12.56 0.207

Size（cm） 3.315 ± 1.450 5.016 ± 1.716 9.97E-12

Indistinct margins(present/absent) 3/91 19/75 0.000283

Surrounding invasion(present/absent) 8/86 33/61 0.0000100

Dural tail(present/absent) 76/18 58/36 0.00372

Peritumoral edema(present/absent) 36/58 68/26 2.67E-06

Table 2. The results of the multiple logistic regression analysis 
of clinical factors

p OR 95% CI
Sex 0.0073 2.904 1.347–6.439

Age 0.1942 1.022 0.989–1.055

Size 0.0001 1.767 1.340–2.395

Indistinct 
margins

0.6007 1.461 0.384–7.181

Surrounding 
invasion

0.0168 3.211 1.275–8.792

Dural tail 0.2832 0.641 0.283–1.447

Peritumoral 
edema

0.7559 1.142 0.485–2.606

CI, confidence interval; OR, odds ratio.
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independent predictors in the clinical model. Tumors in males 
(OR = 2.904, 95% CI = 1.347–6.439), with larger sizes (OR = 
1.767, 95% CI = 1.340–2.395), or with surrounding invasion 
(OR = 3.211, 95% CI = 1.275–8.792) were more likely to be high-
grade meningiomas.

Radiomics feature extraction, selection and 
radiomics signature construction
There were 756 radiomics features in each ROI and 642 features 
(84.9%) showed high stability (ICC≥0.8). We selected the nine 
most valuable features by LASSO regression. These nine features 
were used to construct the radiomics signature. There was a 
significant difference in Rad-score between the two groups 
(p＜0.05).

Construction of the radiomics nomogram and 
evaluation of the different models
Sex, size, surrounding invasion and Rad-score were used to 
construct the radiomics nomogram (Figure 2). The calibration 
curve of the nomogram is shown in Figure  3. Actual proba-
bility represents the actual meningioma grade and predicted 
probability represents the predicted meningioma grade by the 
radiomics nomogram. The ideal line means the ideal result that 
predicted probability is equal to actual probability. The apparent 
line represents the entire cohort (n = 188). The bias-corrected 
line is bias-corrected by bootstrapping (B = 1000 repetitions), 
indicating observed nomogram performance. The bias-corrected 
line represents the result of radiomics nomogram. The closer 

Figure 2. The radiomics nomogram combines the sex, size, surrounding invasion and Rad-score.

Figure 3. The calibration curve of the radiomics nomogram show good calibration. The 45° straight line represents the perfect 
match between the actual and predicted probabilities. The closer the line approaches the ideal prediction line, the better the 
predictive efficacy of the nomogram is

http://birpublications.org/bjr
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the bias-corrected line approaches the ideal line, the better the 
predictive efficacy of the nomogram is. Good calibration was 
shown in the calibration curve and Hosmer–Lemeshow test (p 
= 0.6632).

The results of the clinical model, radiomics signature and radio-
mics nomogram are shown in the Table 3. ROC curves are shown 
in the Figure  4. The AUC of the radiomics nomogram (0.952, 
95% CI = 0.904–1) was higher than that of the clinical model and 
radiomics signature. The result of Delong’s test is shown in the 
Table 4. There was no significant difference between the AUCs 
of the clinical model and the radiomics signature (p = 0.701). 
There was a significant difference between the AUCs of the 

clinical model and the radiomics nomogram (p = 0.042). There 
was a significant difference between the AUCs of the radiomics 
signature and the radiomics nomogram (p = 0.022). The DCA 
is shown in the Figure 5. The radiomics nomogram had a larger 
net benefit across the range of the threshold probability than the 
clinical model and the radiomics signature.

DISCUSSION
In the present study, we constructed a radiomics nomogram 
that combined the radiomics signature and the clinical factors to 
predict the meningioma grade based on enhanced T1WI images. 
The radiomics nomogram had a better predictive value with an 

Table 3. The results of different models

Accuracy Sensitivity Specificity AUC 95% CI
Clinical model 0.79 0.85 0.73 0.87 0.782–0.959

Radiomics signature 0.81 0.78 0.83 0.885 0.802–0.968

Radiomics nomogram 0.86 0.85 0.87 0.952 0.904–1.000

AUC, area under the receiver operator characteristic curve; CI, confidence interval.

Figure 4. The ROC curves and AUC values of the clinical model, radiomics signature and radiomics nomogram. AUC, area under 
the ROC curve; ROC, receiver operating characteristic.
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AUC of 0.952, accuracy of 0.860, sensitivity of 0.850, and speci-
ficity of 0.870.

Previous studies have found some conventional features to 
differentiate low- and high-grade meningioma. Kane et al25 
found a twofold higher risk in males for high-grade menin-
gioma. Kasuya et al26 found that male sex was an independent 
risk factor for high proliferative potential. A large tumor size was 
more common in high-grade meningioma.27,28 Hale et al29 found 
that tumor volume was the most robust pre-operative indicator 
of a higher-grade meningioma. In the study of Salah et al,30 bone 
erosion and brain invasion showed a significant correlation with 
high-grade meningioma.

The results of the present study are in agreement with previous 
studies. Our study showed that males, larger size and surrounding 
invasion were factors more likely to be observed in high-grade 
meningioma. We used these three factors to construct the clin-
ical model. The clinical model had a predictive value with an 
AUC of 0.870 (95% CI: 0.782–0.959), accuracy of 0.790, sensi-
tivity of 0.850, and specificity of 0.730.

There have been some previous studies using radiomics to 
predict the meningioma grade. Chu et al22 used the logistic 
regression method to analyze 98 patients with 16 cases of high-
grade meningioma, and they reported that the areas under the 
curve values were 0.958 and 0.948 in the training and test groups, 

Table 4. The results of DeLong test between every two models

Clinical model Radiomics signature Radiomics nomogram
Clinical model – −0.3846 −2.031 Z

 �  0.7005 0.04226 p

Radiomics signature −0.3846 – −2.2972 Z

 �  0.7005 0.02161 p

Radiomics nomogram −2.031 −2.2972 – Z

 �  0.04226 0.02161 p

Z, Z statistic ; p, p-value.

Figure 5. Decision curve analysis of the three models. The X-axis represents the threshold probability, and the Y-axis represents 
the net benefit. The radiomics nomogram gets the larger net benefit than the clinical model and radiomics signature.

http://birpublications.org/bjr


Br J Radiol;95:20220141

BJR  Duan et al

7 of 8 birpublications.org/bjr

respectively. Zhu et al23 used support vector machine (SVM) to 
analyze 181 patients with 35 cases of high-grade meningioma, 
and they reported that the AUC, sensitivity, and specificity to 
predict the meningioma grades were 0.811, 0.769, and 0.898, 
respectively. Chen et al21 applied linear discriminant analysis 
(LDA) and a SVM to construct a radiomics model to predict the 
meningioma grade. Their sample included 150 with 89 cases of 
high-grade meningioma. They found that the highest accuracy 
among the LDA-based models was 75.6%, shown in the combi-
nation of LASSO + LDA.

The present study had several improvements compared to 
previous studies. There were 94 cases of high-grade meningioma, 
which was more than the other radiomic studies. Radiomics is a 
technology based on artificial intelligence and big data. A larger 
sample size produces a more reliable result. The result of the 
present study was more accurate and objective due to the larger 
sample of high-grade meningioma. To the best of our knowledge, 
no previous study has used radiomic nomograms to predict the 
meningioma grade.

We first constructed a radiomic nomogram to predict the menin-
gioma grade. The radiomics nomogram showed improvement 
when combining clinical factors and radiomics. In the present 
study, the radiomic nomogram had an AUC of 0.952 (95% CI: 
0.904–1), which was significantly higher than that of the clin-
ical model and radiomics signature. The radiomics nomogram 
had a larger net benefit across the range of the threshold proba-
bility than the clinical model and radiomics signature from the 

DCA curve. The radiomics nomogram also showed good cali-
bration. The radiomics nomogram is visual and can quantified 
by doctors. We can calculate the risk of high-grade meningioma 
for the patient and formulate an individualized treatment plan.

There were some limitations of this study. First, selection bias 
and accuracy overestimation of the diagnosis cannot be avoided 
because this study was a retrospective study. Second, the ROI 
was two-dimensional (2D) instead of three-dimensional (3D). 
Recently, some studies found that 2D radiomics models were 
better than 3D radiomics models.31,32 Given the cost of the 
radiomics feature calculation, the 2D approach is currently more 
appropriate. Even so, future studies should compare the 2D and 
3D models in predicting meningioma grade. Third, although the 
sample size of high-grade meningioma was larger than that in 
previous studies, it was still less than 100 cases. We should select 
more cases for additional validation of our model. Fourth, the 
validation of models were internal validation in our study. There 
was no external validation because we did not use meningioma 
images from other hospitals or research centers. We would add 
it in the future study.

CONCLUSION
Our study developed a radiomics nomogram based on enhanced 
T1WI images for predicting the meningioma grade. It showed a 
high predictive value and could play an important role in clinical 
decision-making, although further validation is needed before 
clinical use.
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