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INTRODUCTION
Hepatic fibrosis (HF) is a pathological repairing process 
response to liver damage caused by chronic liver disease 
(CLD), which may be caused by various reasons (including 
virus, alcohol, drug damage, autoimmune, cholestasis and 
metabolic diseases), accompanied by abnormal deposition 
of connective tissue in the liver. Most clinical studies have 
shown that non-advanced HF can be reversed by clinical 
intervention.1 However, CLD without effective treatment 
can eventually develop cirrhosis or liver failure, and even 
increases the risk of primary malignant liver tumors, 

especially hepatocellular carcinoma.2 Therefore, accurate 
early diagnosis of HF is important for the treatment selec-
tion and prognosis of CLD. The current gold-standard for 
the diagnosis of HF is still liver puncture biopsy, however, 
this technique is invasive and difficult to be accepted by 
patients. Besides, the accuracy of the pathological results is 
also affected by subjective and objective factors.3 Moreover, 
the risk caused by liver biopsy may lead to death in 0.018% 
of patients.4 Accordingly, a non-invasive method for accu-
rate diagnosis and staging of HF is highly needed.
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Objective: To evaluate the value of radiomics models 
created based on non-contrast enhanced T1 weighted 
(T1W) and T2W fat-saturated (T2WFS) images for staging 
hepatic fibrosis (HF) and grading inflammatory activity.
Methods and materials: Data of 280 patients with 
pathologically confirmed HF and 48 healthy volunteers 
were included. The participants were divided into the 
training set and the test set at the proportion of 4:1 by 
the random seed method. We used the Pyradiomics soft-
ware to extract radiomics features, and then use the least 
absolute shrinkage and selection operator to select the 
optimal subset. Finally, we used the stochastic gradient 
descent classifier to build the prediction models. DeLong 
test was used to compare the diagnostic performance of 
the models. Receiver operating characteristics was used 
to evaluate the prediction ability of the models.

Results: The diagnostic efficiency of the models based 
on T1W & T2WFS images were the highest (all p < 0.05). 
When discriminating significant fibrosis (≥ F2), there 
were significant differences in the AUCs between the 
machine learning models based on T1W and T2WFS 
images (p < 0.05), but there were no significant differ-
ences in area under the receiver operating characteristic 
curves between the two models in other groups (all p > 
0.05).
Conclusion: The radiomics models built on T1W and 
T2WFS images are effective in assessing HF and inflam-
matory activity.
Advances in knowledge: Based on conventional MR 
sequences that are readily available in the clinic, namely 
unenhanced T1W and T2W images. Radiomics can be 
used for diagnosis and differential diagnosis of liver 
fibrosis staging and inflammatory activity grading.
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The evaluation of liver disease severity by non-invasive liver 
imaging has become a major hot topic in recent years.5 Many 
researchers have evaluated HF using functional MRI such as 
diffusion-weighted imaging (DWI) with the apparent diffusion 
coefficient (ADC), which is based on the Brownian motion of 
water molecules in biological tissue, and they find that ADC 
value has a certain correlation with the degree of HF.6,7 However, 
the measurement of liver ADC may be affected by many factors,8 
including b value, steatosis, iron content, etc. All these factors 
may have significant influences on repeatability and stability of 
the results. Magnetic resonance elastography (MRE) has also 
been used to study the fibrosis stages, based on the principle of 
measuring liver hardness.9,10 Although MRE is effective in eval-
uating HF, it is expensive and requires additional equipment 
support. Moreover, the iron overload will reduce the signal-to-
noise ratio of the images and lead to the inaccuracy of the MRE.11 
Therefore, a more practical and effective detecting method holds 
great promise in the future.

Dutch scholars Lambin et al12 proposed the concept of radiomics 
in 2012. Up to now, radiomics analysis is the high-throughput 
mining of quantitative image features from medical images such 
as CT, MRI or PET, including statistical features, morphological 
features and texture features, with subsequent analysis to apply to 
clinical decision-support systems. Radiomics methods analyze 
medical images through high-throughput feature mining and 
extraction methods, which can realize the quantitative descrip-
tion of medical images, and solve the problem that a large 
number of image features are easily ignored by the naked eye.13 
Although there have been many studies on HF staging by radio-
mics methods, to our knowledge, few studies have established 
the radiomics models using multimodal MR images to stage HF 
and grade inflammatory activity simultaneously. We hypothe-
sized that models with radiomics features extracted from non-
contrast-enhanced T1 weighted (T1W) and T2W fat-saturated 
(T2WFS) images could comprehensively assess images features 
associated with HF and inflammatory activity. Therefore, this 
study aims to develop and validate radiomics models in the eval-
uation of HF and inflammatory activity by using non-contrast-
enhanced T1W and T2WFS images.

METHODS AND MATERIALS
Study population
This retrospective study was approved by the institutional 
review board of the ethics committee of the Zhengzhou Univer-
sity People’s Hospital & Henan Provincial People’s Hospital. 
Between December 2018 and May 2021, 308 patients with CLD 
were recruited for a routine hepatic magnetic resonance (MR) 
sequence. Inclusion criteria: (a) age >18 years. (b) All patients 
were confirmed pathologically by liver biopsy and met the diag-
nostic criteria of HF. MR imaging was performed before liver 
biopsy, and the interval between the two tests was less than 
1 month. (c) The clinical and pathological data of the included 
cases were complete. Exclusion criteria: (a) MR images with bad 
quality due to large artifacts. (b) Severe diffuse lesions in the liver, 
as tumors or multiple cysts, etc. According to the exclusion and 
inclusion criteria, 28 patients were excluded for the following 
reasons: 15 cases had surgery on the right lobe of the liver, 7 

cases had poor images with artifacts, and 6 patients had multiple 
intrahepatic space-occupying lesions. A total of 280 patients 
were enrolled (mean age 41 years; aged between 18 and 78; 170 
males and 110 females), including 205 cases of hepatitis B, 35 
cases of hepatitis C, 16 cases of autoimmune hepatitis, 12 cases 
of non-alcoholic fatty liver disease, and 12 cases of drug-induced 
hepatitis (Table  1). Meanwhile, the control group recruited 48 
healthy volunteers (mean age 39 years old; age between 22 and 
75 years old). They had no liver biopsy or surgical liver biopsy for 
pathology, nor did they have a history of liver-related diseases 
and evidence. In this study, the liver fibrosis stage of these volun-
teers was defined as F0, and the grade of inflammatory activity 
was classified as A0 (Figure 1). Routine liver MRI was performed 
for all healthy subjects.

Histopathological analysis
Histology of the right lobe and/or right posterior lobe of the liver 
was obtained by a liver pathologist (with 11 years of experience) 
through percutaneous liver biopsy (16G or 18G needles). The 
liver pathologist was blind to the imaging data of all patients 
and used the METAVIR scoring system14 to provide consistent 
scores. The degree of fibrosis was staged as follows: F0 = with no 
fibrosis, F1 = portal fibrosis without septa, F2 = portal fibrosis 
with rare septa, F3 = numerous septa without cirrhosis, and F4 
= cirrhosis. The inflammatory activity was graded as follows: A0 
= no activity, A1 = mild activity, A2 = moderate activity, and A3 
= severe activity.

MRI examinations
All participants were performed MRI by using Discovery 
MR750 (Discovery MR750; GE Medical System, Milwaukee, 
WI) with eight-channel phased array coils (GE Medical System, 
Milwaukee, WI) or Discovery MR750plus tests. The parameters 

Table 1. Characteristics of the study population.

Characteristic
Patients (n 
= 280)

Healthy volunteers 
(n = 48)

Sex (males) 170 (86.3%) 27 (13.7%)

Mean age ± SD 40.2 ± 8.5 41.5 ± 10.2

Etiology of liver disease
(n = 280)

HBV 205

HCV 35

Autoimmune hepatitis 16

Non-alcoholic fatty liver 
disease

12

Drug-induced hepatitis 12

Fibrosis score 
(METAVIR)

F0/A0 48/48 48

F1/A1 53/73

F2/A2 92/124

F3/A3 73/83

F4 62
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of both inspection equipment were consistent as shown in the 
table below (Table  2). All participants fasted for at least 6 h 
before MR examination. They received conventional liver MRI 
sequences, including axial T1W fast spoiled gradient recalled and 
axial T2WFS fast spin echo sequences (fat suppression).

Imaging analysis
The acquired images were transmitted to the AW4.6 workstation 
(Advantage workstation 4.6; General Electric Medical System) 
for processing and analyzing by a radiologist (6 years of abdom-
inal MRI diagnostic experience) who was unaware of the clin-
ical evaluation and pathological classification. Application of 
ITK-SNAP software (http://www.itk-snap.org) manually delin-
eated the region of interest (ROI) on T1W and T2WFS images, 
respectively, to complete the segmentation of lesion images. The 
radiologist drew the ROI at the right lobe of the T2WFS images, 
drawing three consecutive axial images through the center of the 
liver at the level of the right portal vein (A similar approach has 
previously been used in staging HF).15 In order to maintain the 
consistency of each square ROI, the assessor loaded ROIs with a 
length of 25 pixels on each side-from a file containing a standard 
size ROI box, and copied the ROI to the T1W images of the same 
slice. The ROIs were placed in the liver avoiding the large liver 
blood vessels, bile ducts and artifacts (Figure 2).

Radiomics features extraction and selection
Radiomics analysis was performed with uAI Research Portal 
(United Imaging Intelligence, China), which is a clinical research 
platform and implemented by Python programming language 
(v. 3.7.3, https://www.python.org). Firstly, we pre-processed the 
TIW and T2WFS images of all participants with image brightness 
normalization using the Z-score method. Secondly, the image 
features were calculated using the image data processed by PyRa-
diomics (https://pyradiomics.readthedocs.io/en/latest/index.​
html). Finally, a total of 2600 radiomics features were calculated 
from the original images and the derived images generated by the 
filter, including 450 first-level statistical features, 350 morpho-
logical features and 1800 texture features. The TIW & T2WFS 
features set was generated by means of features stitching.

The data set was randomly divided into training and test cohorts 
at a ratio of 4:1, the training cohort was used for features selec-
tion and models construction, and the test cohort was used 
for models’ evaluation. We used variance threshold method to 
remove features with low variance, and subsequently sieved for 
significant features by F-test (p < 0.05). We further performed 
the least absolute shrinkage and selection operator to eliminate 
features with high collinearity and avoid overfitting. Finally, a 
total of 30 features (8 statistical, 12 structural, and 10 morpho-
logical features) were yielded for the following analysis. For the 
features selected by the above method, scikit-Learn (https://​
scikit-learn.org/stable/) was used for data pre-processing, 
features reduction and models training. Three classification 
models were obtained for each group according to TIW, T2WFS 
and TIW&T2WFS images. The assessor plotted the receiver oper-
ating characteristics (ROC) curve of the models, calculated the 
AUC value and used the DeLong test to evaluate whether there 
was a significant difference between those models.16 For the 
model with the highest AUC value, the Youden index was used 
to determine the fibrosis score threshold, and the sensitivity and 
specificity of the model were calculated.

Model construction
The selected features were modeled using the stochastic gradient 
descent (SGD) classifier, and the feature sample size estimation 
was based on a rule of thumb.17 5–10 highly correlated features 
were extracted from TIW, T2WFS and TIW&T2WFS images, 
including statistical features, texture features, and morphological 
features, to build models for predicting HF stages (including F 
≥ 1, F ≥ 2) and inflammatory activity grades (including A ≥ 1, A 
≥ 2), respectively. The prediction ability of the models was vali-
dated using an internally validated method. AUC was used to 
quantify the power of the prediction models for predicting the 
stage of HF and the grade of inflammatory activity. The corre-
sponding sensitivity and specificity were calculated as well.

Statistical analysis
SPSS 26.0 software (SPSS, Chicago, IL) was used for the statis-
tical analysis of data. The data following the normal distribution 

Figure 1. Patients selection flow chart.
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were expressed as mean ± SD. Count data were showed as n (%). 
The DeLong test was used to compare the diagnostic power of 
each machine learning model between fibrosis stages ≤ F0 and 
≥ F1, and stages ≤ F1 and ≥ F2. In addition, the DeLong test was 
used to compare the diagnostic power of each machine learning 
model between inflammatory activity grades ≤ A0 and ≥ A1, and 
grades ≤ A1 and ≥ A2. ROC curves were calculated for all param-
eters to assess the AUC and to determine the best model. Results 
with a p-value < 0.05 were considered significantly different.

RESULTS
Patient characteristics
The characteristics of demographic variables, the stages of HF 
and grades of necrotizing inflammatory activity analysis were 
summarized in Table  1. HF stages and inflammatory activity 
grades were histologically quantified by liver biopsy in 280 
patients. 48 healthy liver volunteers were considered to be 
fibrosis Stage 0 and inflammatory activity Grade 0. The fibrosis 
stages distribution were as follows: F ≥ 1, n = 280 (85.37%); F ≥ 2, 
n = 227 (69.21%); the inflammatory activity grades distribution 
were as follows: A ≥ 1, n = 280 (85.37%); A ≥ 2, n = 207 (63.11%) 
(Figure 1, Table 1).

In Figure 2, A and B were T1W and T2WFS images of normal 
volunteers, respectively; C and D were T1W and T1WFS images 
of fibrous patients with fibrosis Stage 2 and inflammatory activity 
Grade 2, respectively.

Effectiveness of radiomics labels in predicting 
staging of HF
In the test set, when differentiating F ≥ 1, ROC analyses of the 
constructed models based on the radiomics features of T1W, 
T2WFS and T1W&T2WFS images showed that the AUCs of three 
models were 0.844, 0.857 and 0.932, respectively, among them 
the T1W&T2WFS model had the best diagnostic efficacy (all p Ta
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Figure 2. ROI delineation diagram of MR images. The 
above two pictures (A, B) show the normal MR images of a 
44-year-old female. (A) TIW sequence; (B) T2WFS sequence; 
The two images below (C, D) show a 45-year-old male 
patient with chronic viral hepatitis B with fibrosis Stage 2 and 
inflammatory activity Grade 2; (C) TIW sequence; (D) T2WFS 
sequence; The red squares are the ROI. ROI, region of interest.
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< 0.05), and there was no significant difference between T1W 
model and T2WFS model (p > 0.05). When differentiating F ≥ 2, 
the AUCs of T1W, T2WFS and T1W&T2WFS model were 0.857, 
0.781 and 0.915, respectively. Among them, the T1W&T2WFS 
model had the best diagnostic efficacy (all p < 0.05), followed by 
T1W model (Figure 3,Table 3).

Effectiveness of radiomics labels in predicting 
staging of grading of inflammatory activity
In the test set, ROC analyses of the constructed models based on 
the radiomics features of T1W, T2WFS and T1W&T2WFS images, 
when differentiating A ≥ 1, showed that the AUCs of three models 
were 0.831, 0.854 and 0.934, respectively; when differentiating 
A ≥ 2, the AUCs of three models were 0.838, 0.819 and 0.910, 

respectively. The diagnostic efficacy of T1W&T2WFS models was 
the best in both groups (all p < 0.05), and there was no significant 
difference between T1W models and T2WFS model (all p > 0.05) 
(Figure 3, Table 4).

DISCUSSION
Our study constructed the radiomics models of MR images that 
showed good diagnostic efficacy in assessing HF and inflam-
matory activity. The model of T1W images was more effective 
than the model of T2WFS images in diagnosing F ≥ 2 of HF 
stage, which might be related to the extracted radiomic features. 
The gray-level co-occurrence matrix and gray-level run-length 
matrix are the most commonly used eigenvalues to reflect the 
radiographic maximum grayscale intensity that depends on the 
maximum grayscale intensity within the selected liver segment.18 
One study showed that iron deposition of different degrees could 
occur with HF development.19 So, the decreased gray value of 
T2WFS images might be the reason for the difference in the diag-
nostic efficacy. The similar result was found in previous studies.20

Hepatocyte injury-induced inflammation and HF can lead to 
changes in the water content and distribution ratio in the liver 
tissue. Factors, such as cell edema and an increased ratio of free 
water to bound water, could lead to increased T1 and T2 values.21 
Severe HF and cirrhosis can be diagnosed on conventional MR 
images due to significant reticular and nodular changes in liver 
texture. Conversely, it is difficult to diagnose less severe HF due 
to relatively mild texture changes, yet radiomics has the poten-
tial to quantitatively measure hepatic heterogeneity and captures 
subtle alterations. Though, several prior studies22–24 have 
reported that texture analyses based on conventional T1W and/
or T2WFS images have some diagnostic power for staging HF, 
these studies simply analyzed texture features on T1W and T2W 
images, and there was no analysis based on the combination of 
the two sequences. Therefore, our study may be the first, as far 
as we know, to explore models from T1W images combined with 
T2WFS images for staging fibrosis and grading inflammatory 
activity.

Previous studies have reported that the value of T1 and T2 were 
correlated with the pathological degree of liver fibrosis, and 
found that the T1 relaxation time/T2 relaxation time prolonged 
with the aggravation of liver fibrosis,25,26 we found similar 

Figure 3. ROC curves of the models for predicting the stage 
of liver fibrosis and the grade of inflammatory activity

(a), (b) ROC curves for models built based on radiomics fea-
tures of T1W, T2WFS, and T1W&T2WFS images for discrimi-
nating fibrosis stage F ≥ 1 and F ≥ 2; (c), (d) ROC curves for 
models built based on radiomics features of T1W, T2WFS, and 
T1W&T2WFS images for discriminating inflammatory activity 
grade A ≥ 1 and A ≥ 2. ROC, receiver operating characteristic.

Table 3. Performance of machine learning models in predicting fibrosis stage

Radiomics label AUC 95% CI
Sensitivity
(%)

Specificity
(%) Delong Test

F ≥ 1 T1W 0.844 0.800–0.881 91.87 73.33 ‍ ‍

T2W 0.857 0.815–0.893 73.50 86.67 pa=0.984

T1W&T2W 0.932 0.899–0.957 78.80 97.78 p†<0.05, p‡<0.05

F ≥ 2 T1W 0.857 0.815–0.893 73.57 89.11 ‍ ‍

T2W 0.781 0.733–0.825 65.93 83.17 pa<0.05

T1W&T2WFS 0.915 0.880–0.913 85.46 93.07 p†<0.05, p‡<0.05

AUC, area under the curve; CI, confidence interval.
a:p > 0.05 compared to model built with T1W；†:p < 0.05 compared to model built with T1W；‡:p < 0.05 compared to model built with T2W.
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results in our study. Furthermore, Hiroki et al27 found a weak 
correlation between the average gray value of T2W images and 
the degree of liver fibrosis by both computer algorithm analysis 
and radiologist evaluation. We considered that the discrepancies 
between our findings and those of Hiroki et al might be due to 
different data processing methods and different sample sizes at 
each stage of liver fibrosis. In addition, the difference in magnetic 
field intensity could also, to a certain extent, affect the results. 
According to the previous literature,28 the classification accuracy 
of 3.0 T MRI modalities was better than that of 1.5 T MRI in the 
classification of liver fibrosis.

In our study, the radiomics models constructed from T1W, T2WFS 
and T1W&T2WFS images could effectively diagnose fibrosis 
Stage 2. According to relevant study, the presence of significant 
fibrosis that referred to METAVIR score reaching F2, was a clear 
indicator of disease progression to end-stage liver disease.2 For 
the patients whose HF stage is more than F2, additional therapy, 
besides symptomatic treatment, is required to realize the preven-
tion of CLD. Therefore, early detection of significant fibrosis is 
important to making proper treatment decisions.

In most cases, chronic hepatitis precedes fibrosis. The persistence 
of chronic inflammation is closely related to the development of 
HF and cirrhosis.29 Therefore, the evaluation of inflammatory 
activity is also very important. It has been reported that CLD 
patients with inflammatory activity A2 have a higher risk of 
cirrhosis.30 Thus, accurate diagnosis of inflammatory activity A2 
has important clinical significance. In this study, the radiomics 
models created based on T1W, T2WFS, and T1W&T2WFS images 
showed excellent diagnostic performance in detecting ≥A1/2 
grades. Thus, we believe that radiomics models-based conven-
tional MR images have the potential to diagnose and predict the 
grades of inflammatory activity.

As a simple iterative algorithm, the SGD classifier has been 
shown to be a very effective machine learning method, with the 
significant advantage of shortening the training time without 

affecting the accuracy of the model results and capable of effec-
tively reducing training errors.31,32 However, when the SGD 
classifier operates on large-scale problems, slow convergence 
and difficulty in regulation will occur, which requires further 
explore appropriate machine learning algorithms in depth in 
the future. In addition, because T1W and T2WFS images scans 
can be affected by a variety of factors, such as imaging param-
eters, hepatic iron concentration and fat content, future studies 
shall validate the suitability of the models and characterize these 
effects to improve model diagnostics efficacy.

LIMITATIONS
This study has some limitations. Firstly, our research was single 
center, which might lead to potentially biased results. External 
validation of the model in a larger multicenter cohort study 
should be required to demonstrate its robustness before being put 
into clinical practice. Secondly, the etiology of CLD was compli-
cated, which included hepatitis C, hepatitis B, autoimmune 
hepatitis, non-alcoholic fatty liver disease and drug-induced 
hepatitis. Moreover, considering that too few patients in the F0/
A0 group had liver biopsy, we included the normal number of 
cases in the F0/A0 group, which might lead to some bias in the 
results. Finally, the ROI selected was a local range at the level of 
right hepatic portal vein, avoiding large blood vessels and bile 
ducts. However, due to the heterogeneity of HF, the choice of 
ROI might affect models test performance. We will further test 
the potential influence of ROI selection in the future.

CONCLUSION
Radiomics models built on conventional non-contrast MRI scans 
can be used for predicting the stages of liver fibrosis and the 
grades of inflammatory activity. The models built on combining 
both sequences may have better diagnostic performance than 
those built on T1W or T2WFS images alone.
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Table 4. Performance of machine learning models in predicting inflammatory activity grading

Radiomics label AUC 95% CI
Sensitivity
(%)

Specificity
(%) Delong test

A ≥ 1 T1W 0.831 0.786–0.870 63.86 87.50 ‍ ‍

T2W 0.854 0.811–0.890 75.36 85.33 pa=0.541

T1W&T2W 0.934 0.902–0.959 94.29 85.42 p†<0.05, p‡<0.05

A ≥ 2 T1W 0.838 0.794–0.877 91.94 64.10 ‍ ‍

T2W 0.819 0.772–0.859 70.62 70.49 pa=0.155

T1W&T2W 0.910 0.873–0.938 79.83 91.45 p†<0.05, p‡<0.05

AUC, area under the curve; CI, confidence interval.
a:p > 0.05 compared to model built with T1W；†:p < 0.05 compared to model built with T1W；‡:p < 0.05 compared to model built with T2W.
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