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INTRODUCTION
Unruptured intracranial aneurysms (UIAs) are prevalent 
in 3–5% of the population.1 Although the overall risk of 
rupture is low at 1% annually, aneurysmal rupture varies 
by individual and carries high morbidity and mortality. 
Around 27% of patients who develop subarachnoid 
hemorrhage (SAH) may die within one year.2 The treat-
ment of intracranial aneurysms whether by surgical clip-
ping or endovascular treatment carries potential risks of 
morbidity and mortality of around 2–5%.3 Considering 
that a majority of UIAs remain asymptomatic, and in order 
to maximize risk-to-benefit, it is essential to identify UIAs 
at high risk of rupture. Several factors have been included 
in risk stratification scores including patient-specific and 
aneurysm-specific characteristics. Such scores include the 

PHASES score which provides a five-year rupture risk of 
an aneurysm based on the following parameters: ethnicity, 
hypertension, age, aneurysm diameter, prior SAH from 
another ruptured aneurysm and site of aneurysm origin.4 
This scoring system, however, may not be routinely used 
clinically and relies heavily on aneurysm size, limiting 
its value in small-sized aneurysms. Furthermore, many 
ruptured aneurysms may be small and have a low PHASES 
score.5–7 PHASES also does not take into account certain 
patient factors such as smoking, which have been linked to 
UIA rupture.8

Imaging is a cornerstone in the evaluation of intracranial 
aneurysms. Conventional luminal imaging techniques 
include computed tomography angiography (CTA), 

Received: 
13 July 2022

Accepted: 
07 November 2022

Revised: 
05 October 2022

© 2023 The Authors. Published by the British Institute of Radiology

Published online: 
08 December 2022

ABSTRACT

While the rupture rate of cerebral aneurysms is only 1% per year, ruptured aneurysms are associated with significant 
morbidity and mortality, while aneurysm treatments have their own associated risk of morbidity and mortality. Conven-
tional markers for aneurysm rupture include patient-specific and aneurysm-specific characteristics, with the develop-
ment of scoring systems to better assess rupture risk. These scores, however, rely heavily on aneurysm size, and their 
accuracy in assessing risk in smaller aneurysms is limited. While the individual risk of rupture of small aneurysms is low, 
due to their sheer number, the largest proportion of ruptured aneurysms are small aneurysms. Conventional imaging 
techniques are valuable in characterizing aneurysm morphology; however, advanced imaging techniques assessing the 
presence of inflammatory changes within the aneurysm wall, hemodynamic characteristics of blood flow within aneu-
rysm sacs, and imaging visualization of irregular aneurysm wall motion have been used to further determine aneurysm 
instability that otherwise cannot be characterized by conventional imaging techniques. The current manuscript reviews 
conventional imaging techniques and their value and limitations in cerebral aneurysm characterization, and evaluates 
the applications, value and limitations of advanced aneurysm imaging and post-processing techniques including intrac-
ranial vessel wall MRA, 4D-flow, 4D-CTA, and computational fluid dynamic simulations.
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magnetic resonance angiography (MRA), and catheter angiog-
raphy.9 For intracranial vascular diseases, including aneurysms, 
visualization of the vessel wall is of great importance, consid-
ering it is the primary site of pathologic involvement. Advanced 
imaging techniques that assess flow dynamics and associated 
wall shear characteristics also can provide valuable pathophys-
iological data that is not otherwise available with conventional 
cross-sectional imaging approaches. Hence, new imaging and 
post-processing techniques have been developed, including 
high-resolution vessel wall MRI (HR-VWI) and 4D-flow MRI, 
and computational fluid dynamics (CFD) simulations. These 
imaging modalities will be discussed in this review to highlight 
their potential utility in the evaluation of intracranial aneurysms.

Conventional CT and MR luminal imaging 
techniques
The conventional imaging modalities used for the evaluation of 
intracranial aneurysms include CTA, MRA, and catheter angi-
ography.10 Although catheter angiography is considered the 
gold standard for vasculopathy diagnosis and characterization, 
it is not often used as a first line approach since it is invasive, 
expensive and has limited availability compared to MRA and 
CTA.11 It is also associated with rare procedural risks including 
stroke, vascular access complications, and contrast-induced 
nephropathy.12

MRA and CTA are usually the first-line imaging techniques for 
screening of intracranial aneurysms. For aneurysms greater than 
3 mm in maximum diameter, CTA has a sensitivity between 77 
and 97% and specificity between 87.5 and 100%, whereas MRA 
has a sensitivity of 70–99% and a specificity of 100%. For aneu-
rysms smaller than 3 mm, both sensitivities of CTA and MRA 
drop to as low as 40%.13,14 One study reviewing 401 aneurysm 
patients with SAH who underwent both CTA and DSA found 
that CTA sensitivity for aneurysms < 5 mm was 57.6%, and 
dropped to 45% for aneurysms originating on the internal 
carotid artery.15 In patients with acute or severe chronic renal 
insufficiency, CTA may be relatively contraindicated due to the 
risk of contrast-induced acute kidney injury; however, this is an 
area of continued evolution of understanding.16,17 Non-contrast 
TOF-MRA can be used instead in these subsets of patients. 
However, the advantage of CTA over MRA is that it takes less 
time to perform is easier to use on critically ill patients, and is 
more widely available.18

Vessel wall MRI
HR-VWI is a reliable advanced imaging modality that comple-
ments traditional imaging in the evaluation of intracranial aneu-
rysms.19,20 Not only can HR-VWI evaluate the lumen as or more 
accurately than conventional luminal imaging methods,21 it 
allows for direct imaging of vessel wall abnormalities that might 
not otherwise be detected with conventional techniques.22–24 
HR-VWI can improve intracranial vasculopathy differentiation 
compared to conventional methods.25–27 In a recent survey of 
the American Society of Neuroradiology membership, 52% of 
respondents indicated performance of HR-VWI in their clin-
ical practices, 72% utilizing the technique at least 1–2 times per 

month, and almost 40% applying the technique to aneurysm 
characterization for instability.28

HR-VWI can accurately assess aneurysm size and morphology 
compared to 3D-DSA as a reference standard and it outper-
formed 3D-Time of Flight (TOF) MRA (coefficient of variance 
was 6.26% for HR-VWI vs 15.54% for TOF-MRA).29 In addi-
tion, HR-VWI can visualize potential intraluminal thrombus, 
which may have critical treatment and pathophysiological 
implications.29

Although several different HR-VWI protocols have been 
described,30–33 the main principle is the suppression of intra-
luminal blood and extraluminal CSF, such that the focus of 
the image is the vessel wall itself using sufficiently small-sized 
voxels to accurately visualize and assess the normal vessel wall 
of medium-sized arteries. Both sufficient signal-to-noise and 
spatial resolution are necessary for appropriate evaluation, 
considering the tortuosity of the small intracranial arteries and 
their thin walls.19 While HR-VWI can be performed at lower field 
strengths, its optimal performance is using at least 3.0-Tesla MRI 
field strength systems.34 A comparison of performance of 3-Tesla 
and 7-Tesla HR-VWI of 29 patients with 29 unruptured intra-
cranial aneurysms showed that 7 T scans had significantly better 
aneurysm wall visualization relative to 3 T (p = 0.003).35 Aneu-
rysm wall thickness (AWT) was 15% thinner on 7 T compared to 
3 T (p < 0.001), and wall sharpness was 57% higher on 7 T (p < 
0.001).35 7T-MRI HR-VWI improvements were due to improved 
signal-to-noise ratio and spatial resolution (0.4 mm isotropic 
resolution at 7 T vs ~0.6 mm isotropic resolution at 3 T).35–37 7 T 
MRI systems, however, are limited to only a few centers.

Studies of surgically excised aneurysm samples showed that 
2D HR-VWI vessel wall measurements were inaccurate when 
compared to light microscopy histological measurements, with 
overestimation of aneurysmal wall thickness (AWT) as wall 
thickness decreased. Measurements were significantly different 
for AWT at the dome (0.24 ± 0.06 mm vs 0.30 ± 0.068 mm for 
HR-VWI, p = 0.0078) and neck (0.25 ± 0.07 mm vs 0.29 ± 0.07 mm 
for HR-VWI, p = 0.0469) of the aneurysm.38 However, this study 
concluded that inaccuracies were minimal and that AWT can 
be measured using HR-VWI provided that the measurement 
ranges are defined by maximum MR resolution ranging from 0 
to 1.2 mm are used.

Despite this limitation, vessel wall thickness can be assessed 
qualitatively by experienced neuroradiologists and was shown 
to correlate with UIA instability. Hartman et al39 evaluated the 
association between the PHASES score and aneurysmal wall 
enhancement (AWE) and wall thinning on HR-VWI. The study 
showed the degree of wall thinning was significantly greater in 
the higher risk group (PHASES>3) (9.2% vs  0%, p = 0.044).39

Aneurysm wall enhancement (AWE) is one of the most studied 
aneurysm characteristics and has shown associations with 
aneurysm rupture and aneurysm instability35,39–46 (Figure  1). 
AWE is an indication of an underlying inflammatory process 
as shown through histopathological studies. In several studies, 
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histological analysis was performed of aneurysms that showed 
AWE on HR-VWI. These studies revealed increased myeloper-
oxidase activity, neovascularization, presence of vasa vasorum, 
and macrophage infiltration.47,48 Another study showed that 
UIA walls were deficient in elastin.49 In addition, UIAs with 
focal enhancement showed thinner walls compared to those 
with circumferential enhancement whereby the histopatholog-
ical analysis revealed thick walls, decreased elastic fibers, and 
decreased cellularity.50 However, aneurysms with focal enhance-
ment were more associated with atherosclerosis than those with 
circumferential enhancement.51

Artifactual enhancement, or “pseudoenhancement” on 3D post-
contrast T1-weighted HR-VWI can result from non-suppression 
of blood signal in the setting of slow or in-plane flow, especially 
in aneurysm sacs, and can mimic pathological enhancement31,33 
(Figure  2). A recent study compared AWE on conventional 
3D-TSE and motion-sensitive-driven-equilibrium (MSDE) 
blood-suppressed 3D-TSE T1 post-contrast sequences, each 
performed on the same UIA patients, and found AWE on 10/30 
conventional and 2/30 MSDE acquisitions (p < .0001).31 Simi-
larly, a recent study evaluated image quality comparing DANTE 
blood and CSF-suppressed 3D-TSE and conventional 3D-TSE 
post-contrast T1-weighted acquisitions performed on the same 
patients, and found significant image quality improvement, 
reduced artefact and improved blood suppression and lesion 
assessment when DANTE suppression was incorporated.33

To measure AWE, qualitative and quantitative approaches have 
been developed. Qualitatively, some studies have graded AWE as 
strong/avid, mild, or none, compared to intracranial enhancing 
structures, such as the pituitary infundibulum34; strong enhance-
ment is enhancement at or above the degree of enhancement of 
the infundibulum, mild enhancement is to a degree less than the 
infundibulum, and none is enhancement that does exceed the 
degree of enhancement of the normal arterial wall. Other studies 
have divided AWE into three categories: focal enhancement, thin 
circumferential, and thick circumferential.40 Focal enhancement 
was defined as enhancement involving a specific portion of the 
aneurysm like the neck or dome. Circumferential enhancement 
is enhancement involving the entire aneurysm and is further 
subdivided into thin (<1 mm) and thick (>1 mm). In a study on 
UIA (n = 307),40 thick circumferential enhancement exhibited 
the highest specificity (84.4%; 233/276; 95% CI: 80.1–88.7%; p = 
.02) and negative-predictive value (94.3%; 233/247) for differen-
tiating stable and unstable lesions. Moreover, the results demon-
strated a significant association between thick circumferential 
enhancement and aneurysm instability (p = .0001). Hartman 
et al39 showed that aneurysms with greater risk of rupture 
(PHASES>3, n = 38) were more likely to show enhancement 
compared to aneurysms of lower rupture risk (PHASES≤3, n = 
27) (42.1% vs  14.8%, p = 0.022).

As for quantitative methods, two approaches have been 
described.9,41 The wall enhancement index (WEI) quantitates 

Figure 1. 62-year-old male who presented with frequent headaches. 3D rotational angiogram of the right ICA (A) shows a right 
MCA trifurcation unruptured saccular aneurysm (arrow). Sagittal T1-weighted pre- (B) and post-contrast (C) High-resolution ves-
sel wall MRI (HR-VWI) demonstrates aneurysm wall enhancement (AWE) (arrowhead), which is shown to be an important indica-
tor of rupture/vulnerability. The aneurysm was treated with endovascular coil embolization.

Figure 2. 45-year-old male undergoing evaluation of aneurysm. Sagittal T1-weighted pre-contrast HR-VWI (A) shows right MCA 
bifurcation aneurysm (short arrow). Sagittal conventional T1-SPACE post-contrast (B) shows multifocal AWE (arrowheads), which 
is not seen on T1-DANTE-SPACE blood-suppressed acquisition (C). The wall signal seen in (B) represents flow artefact mimicking 
AWE.
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wall enhancement by comparing pre- and post-contrast signal 
intensity, while the aneurysm enhancement integral (AEI) 
compares this ratio to white matter enhancement.41

The second method compares aneurysm wall to pituitary infun-
dibulum enhancement.9 In a recent prospective cohort study with 
273 UIA in 225 patients, both AWE pattern and WEI were shown 
to be independently associated with symptomatic (sentinel head-
ache or oculomotor nerve palsy) UIAs.41 The combination of the 
two had a sensitivity and specificity of 95.7% and 73.4%, respec-
tively, for identifying symptomatic aneurysms. Several other 
studies have also identified AWE as an independent marker for 
aneurysm instability.42,44,45

Surrogates for rupture such as aneurysm growth, aneurysm diam-
eter, and mass effect are associated with AWE on HR-VWI. In a 
study of 108 aneurysms, 87% (27/31) of the unstable aneurysms 
showed circumferential AWE as compared to 28.6% (22/77) of 
stable aneurysms (p < 0.0001).52 Unstable aneurysms were those 
that showed growth, were symptomatic, or had ruptured. In the 
evaluation of 61 aneurysms with HR-VWI, Liu et al44 found aneu-
rysm size to be independently associated with AWE (OR 2.46 
per mm increase). For aneurysms measuring <7 mm, however, 
12% exhibited AWE. A recent meta-analysis which included 505 
aneurysms confirmed that AWE was associated with aneurysm 
instability (OR 20; 95% CI 6.4–62.1).53 While AWE is signifi-
cantly more frequent in symptomatic, unstable, ruptured or 
growing aneurysms as compared to stable UIAs, it may also be 
seen in stable UIAs. The above meta-analysis found that the lack 
of AWE was a strong predictor for aneurysm stability.53 More 
than 90% of saccular aneurysms without circumferential wall 
enhancement remain unruptured and asymptomatic.52

AWE of fusiform aneurysms differs from that seen with 
saccular aneurysms.37 In one small study, all fusiform aneu-
rysms (11/11) showed AWE, almost all of which was diffuse 
enhancement (Figure 3), compared to 57% (12/21) of saccular 
aneurysms showing enhancement, 75% of which was localized, 
focal enhancement. The increased enhancement frequency and 
extent in fusiform aneurysms correlates with increased aneu-
rysm growth rate (6% vs 3% per year, respectively) and increased 
rupture rate (3% vs.<1% per year, respectively), compared to 
saccular aneurysms.54,55

Another utility of HR-VWI is its ability to identify the culprit 
aneurysm in the setting of acute SAH and aneurysm multiplicity 
(Figure 4). SAH is most often caused by a ruptured aneurysm, 
but in 30% of SAH cases, multiple aneurysms are present.56 The 
identification of the culprit aneurysm is needed to guide treat-
ment. When several aneurysms are present, AWE can identify 
the most likely involved aneurysm.45,57 This is of added value 
since the location of SAH does not always identify the respon-
sible aneurysm. Studies have shown that ruptured aneurysms 
are associated with increased wall enhancement and increased 
inflammatory cells on histopathological analysis.58 However, 
a recent study59 including patients with SAH suggests that the 
role of HR-VWI in the identification of the culprit aneurysm is 
subject to limitations. In this study, aneurysm rupture was esti-
mated based on distribution of SAH and aneurysmal wall char-
acteristics on HR-VWI. Confirmation of the aneurysm rupture 
site was performed intraoperatively during the surgical clipping. 
Interestingly, the accuracy rate of rupture site identification 
was 69.2%. The remaining percentage of cases demonstrated 
enhancement of the unruptured aneurysm to a greater degree 
than the actual ruptured aneurysm. One possible cause for this 
is the presence of atherosclerosis in the vessel containing the 
unruptured aneurysm. Thus, HR-VWI may be used in combi-
nation with other factors for the identification of the culprit 
aneurysm, but must be interpreted with caution as a standalone 
biomarker.

AWE on HR-VWI can serve as a marker for treatment response 
for UIAs. A recent randomized controlled trial longitudinally 
imaging UIAs with AWE at baseline, found that in those aneu-
rysms treated with atorvastatin, there was significantly reduced 
quantitative AWE between baseline and 6-month follow-up (p 
< .01), while there was no significant reduction of AWE in the 
placebo group (p = .27).43 AWE was significantly lower in the 
atorvastatin group, compared to placebo (p = .02). The changes 
in serum inflammatory markers (IL-6, c-reactive protein, and 
tumor-necrosis-factor-α) mirrored the changes in AWE, with 
significant reductions in levels after 6 month atorvastatin treat-
ment (p = .033,.049, and.023, respectively). There were no 
changes in aneurysm morphology or size, supporting AWE on 
HR-VWI as a potential better marker for treatment response 
than aneurysm morphology.

Figure 3. 66-year-old male who had an incidentally found aneurysm. CTA head sagittal multiplanar reformat (A),shows a short 
segment fusiform basilar artery aneurysm (short arrow). Sagittal T1-weighted pre- (B) and post-contrast (C) HR-VWI demonstrate 
AWE of the aneurysm (arrowheads). The aneurysm was subsequently treated with endovascular stenting.

http://birpublications.org/bjr


Br J Radiol;96:20220686

BJR Diab et al

5 of 13 birpublications.org/bjr

Figure 4. 42-year-old patient who presented with severe headache. On axial non-contrast CT head (A), there is subarachnoid 
hemorrhage in the left suprasellar cistern. On CTA head coronal reconstruction (B), cone-shaped outpouching projecting from 
the superior aspect of the left carotid terminus (arrow) was presumed to represent infundibulum due to its configuration and the 
appearance of a branch artery arising from its apex. Coronal T1-weighted pre- (C) and post-contrast (D) HR-VWI redemonstrates 
the cone-shaped outpouching that shows AWE at its dome, a finding associated with aneurysm vulnerability, and not present in 
infundibula. 3D digital subtraction angiographic reconstruction (E) confirms the superiorly projecting carotid terminus outpouch-
ing does not have branches and represents aneurysm. The ruptured aneurysm was subsequently treated surgically.
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AWE has also been used as a potential imaging marker for angio-
graphic vasospasm after aneurysmal SAH (Figure 5). One study 
prospectively evaluated 29 patients with 30 treated aneurysms 
(22 ruptured and eight unruptured) with HR-VWI immediately 
after intervention.60 Ruptured aneurysm cases had a significantly 
higher number of enhancing arterial segments than unruptured 
cases (29.9% vs  7.2%, odds ratio 5.5, 95% CI 2.2–13.7), likely 
due to the inflammatory nature of SAH. For ruptured aneu-
rysms, the presence of AWE was significantly associated with 
the development of angiographic vasospasm, when controlling 

for modified Fischer scale score of SAH (adjusted odds ratio 
3.9, 95% CI 1.7–9.4). Another study evaluated the correlation of 
wall enhancement and delayed cerebral ischemia in 32 patients 
with aneurysmal SAH stratified into high- and low-risk based 
on Vasograde score, evaluated at two time points with HR-VWI, 
and found wall enhancement was significantly more common 
in the high-risk group at the early HR-VWI acquisition (36.7% 
vs  20%, p = 0.024).61 Wall enhancement on both the early 
and late HR-VWI were associated with delayed cerebral isch-
emia development. Future comparison between HR-VWI and 

Figure 5. 25 year old female who presented with severe headache and altered mental status. On axial non-contrast CT head (A), 
there was diffuse basilar subarachnoid hemorrhage and intraventricular blood in the left temporal horn. 3D rotational angiogram 
of the left vertebral artery (B), demonstrated posteriorly directed, lobulated left superior cerebellar artery aneurysm (short arrow). 
After the ruptured aneurysm was treated with coil embolization, sagittal T1-weighted pre- (C) and post-contrast (D) HR-VWI 
demonstrated right M1 MCA segment wall enhancement. This finding is significantly associated with subsequent angiographic 
vasospasm. CTA coronal MIP (E) obtained two days after HR-VWI performance, when compared to initial presentation CTA coro-
nal MIP (F), showed diffuse angiographic vasospasm.
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conventional imaging techniques62 for associations with subse-
quent vasospasm would be helpful to refine imaging algorithms 
in the setting of aneurysmal subarachnoid hemorrhage, as vessel 
wall enhancement could serve as a marker for subsequent vaso-
spasm development and guide preventive treatment if further 
validated.

HR-VWI can help aneurysm thrombus workup.63–65 A partially 
thrombosed aneurysm has a multi-lamellated “onion skin” 
appearance, with layers of variable signal intensity thrombus 
on T1 and T2-weighted HR-VWI, with areas of T1 hyper- 
and iso-intensity, and mixed T2 hypo- and hyper-intensity 
(Figure 6). AWE can also be seen on HR-VWI in partially or 
completely thrombosed aneurysms. Since the thrombosed 
portion may enlarge regardless of the lumen size, it is of added 
value to be able to visualize the lumen, thrombus and aneu-
rysm wall independently, which can be achieved by the use of 
HR-VWI.66

There are a number of potential pitfalls that exist with HR-VWI. 
Slow or turbulent flow can lead to loss of blood signal suppres-
sion, which is exacerbated on post-contrast T1-weighted 
sequences due to shortening of the inversion time, and can lead 
to the false appearance of AWE.9,31,33 Slow flow can be normally 
found at the periphery of normal arteries by virtue of the para-
bolic velocity curve. Turbulent flow can be seen in a number 
of pathological processes, including in the setting of arterial 
stenoses, within aneurysm sacs or an arteriovenous malforma-
tion nidus. With lower resolution imaging, venous structures in 
close proximity to an aneurysm may be misconstrued as aneu-
rysm wall enhancement, as veins will frequently show artifactual 
wall and luminal enhancement secondary to slow venous flow 
and loss of blood suppression. Moreover, some sites of AWE can 
be challenging to assess especially those in close proximity to the 
dura or within the cavernous sinus due to venous enhancement 
that can obscure wall assessment.67 AWE should be assessed in 
multiple planes considering that tangential planes have been 
shown to overestimate enhancement.68

Figure 6. 48 year old with partially thrombosed right MCA aneurysm. Coronal MIP CTA reconstruction (A) shows patent aneurysm 
lumen projecting inferiorly from the MCA trifurcation (short arrow), with subtle boundary representing the margin of the throm-
bosed aneurysm sac (arrowheads). On axial T2-weighted HR-VWI (B), aneurysm sac thrombus shows heterogeneous signal with 
central T2 hypointensity and peripheral hyperintensity. On sagittal T1-weighted HR-VWI (C), patent aneurysm lumen projecting 
inferiorly from the MCA (short arrow), with inferior aneurysm heterogeneous intraluminal thrombus (arrowheads) are appreciated. 
On sagittal post-contrast T1-weighted HR-VWI (D), there is AWE (thick arrows).
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Hemodynamic imaging: Computational fluid 
dynamic simulations and 4D-Flow MRI
Hemodynamic flow associated with cerebral aneurysms has been 
shown to be a major cause for aneurysm formation, growth, 
and rupture.69,70 Advanced techniques that can be used to eval-
uate hemodynamic parameters of cerebral aneurysms include 
4D-CTA and 4D-flow MRI, while post-processing techniques 
such as computational fluid dynamics (CFD), can use 3D luminal 
data (CTA, MRA, DSA) combined with normative or actual flow 
data to generate simulations to calculate hemodynamic param-
eters.71 While many hemodynamic parameters have been inves-
tigated for CFD, the main parameters include Wall Shear Stress, 
Oscillatory Shear Index, Pressure Difference, and Pressure Loss 
Coefficient.71

Wall Shear Stress (WSS) is a frictional force on the arterial wall 
produced by blood flow in a direction toward a local tangent 
plane and is impacted by blood viscosity.71 This leads to forma-
tion of a boundary layer adjacent to arterial wall, a layer of fluid 
where flow velocity is zero, with a gradient of velocities to the 
center of the lumen, where there is maximum velocity. Contro-
versial results of both high and low WSS (Figure  7)70,72 have 
shown correlation with aneurysm rupture. Meng et al73 indi-
cated that the variability of the association of aneurysm rupture 
and WSS characteristics resulted from differences in aneurysm 
phenotypes and pathophysiological mechanisms of rupture. 
High WSS may be related to mural cell–mediated destructive 
remodeling, which can cause aneurysm rupture from mural 
cell damage.74 High WSS has also shown an association with 

aneurysm initiation and growth from these pathophysiolog-
ical changes.74,75 On the other hand, low WSS is associated 
with regions of aneurysm dome wall thinning, with low WSS 
being an independent correlate with wall thinning on ROC 
analysis.76 WSS more commonly, however, may vary during 
the development and progression of an aneurysm as well, with 
high WSS contributing to aneurysm formation, and as the aneu-
rysm grows, changes in local environment result in low WSS 
within the aneurysm sac, leading to an endothelial inflamma-
tory response, extracellular matrix degradation and continued 
aneurysm progression.75

Oscillatory Shear Index (OSI)71 measures the directional changes 
of WSS during the cardiac cycle. OSI becomes larger with greater 
angle changes of WSS direction and is often used to describe 
the disturbance of a flow field. Previous studies reported that a 
higher OSI was observed in ruptured than in unruptured aneu-
rysms, or high OSI corresponded to the rupture point.56

Pressure difference (Pd) was calculated by subtracting the 
average pressure (Pave) from the maximum pressure (Pmax) 
and normalized by dividing this by the dynamic pressure at the 
aneurysm inlet side. Suzuki et al77 evaluated 23 saccular MCA 
bifurcation aneurysms, and suggested high Pd combined with 
low WSS at the Pmax area is a useful hemodynamic parameter 
for differentiating rupture status. Another study found that the 
maximum Pd corresponded to aneurysm wall thinning in 82.0%, 
which further indicates its relationship with aneurysm rupture 
risk.78

Figure 7. 48-year-old with unruptured 4 mm anterior communicating aneurysm. Computational fluid dynamic Time averaged wall 
shear stress map shows a prominent region of reduced wall shear stress involving one of the aneurysm lobes (arrow).
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The pressure loss coefficient (PLc) calculates pressure loss 
associated with course of blood flow. Pathways with resistance 
to flow, such as tortuous arterial course or aneurysm flow can 
contribute to increased PLc.71 PLc has been shown to be reduced 
in ruptured aneurysms compared to UIAs.79 It is hypothesized 
that high PLc contributes to aneurysm remodeling and growth, 
leading to hemodynamic stabilization, however, the morpholog-
ical changes contribute to aneurysm instability.79

There are several limitations of CFD.71 First, most large CFD 
studies only use morphological aneurysm data and otherwise rely 
on normative patient information. Patient physiological infor-
mation such as blood pressure, flow velocity, blood viscosity, and 
heart rate are usually fixed as a uniform condition. The simula-
tions assume the arterial wall to be rigid, and blood is considered 
as a Newtonian fluid with specific values of density and viscosity. 
These assumptions and use of normative data can lead to inac-
curate simulation output, as these variables differ from patient to 
patient, and anatomic abnormalities, including aneurysm irreg-
ularity, can result in non-Newtonian flow. These shortcomings 
have limited the application of CFD as a clinical decision-making 
tool in assessing flow and its impact on vascular pathology.75

Individual 2D phase-contrast MRI imaging slices have been 
traditionally used to evaluate blood flow, however, these acqui-
sitions can be time-consuming, especially when considering 
complex, multidirectional intracranial vasculature. 2D phase-
contrast can also be of limited value due to the small number 
of arteries that can be sampled in a single imaging session. 
Recently, however, 4D-flow MRI or time-resolved 3D phase-
contrast velocity mapping has been introduced, which is 3D 
spatial encoding combined with three-directional velocity-
encoded Phase contrast MRI to evaluate more detailed flow 

information.80,81 4D-flow allows for accurate hemodynamic 
information based on true flow velocity data, producing accurate 
measures of WSS, pressure differences and other hemodynamic 
parameters. 4D-flow has shown good reproducibility and inter- 
and intrareader reliability.82,83 Compared to CFD simulations, 
4D-flow closely approximates intraaneurysmal flow patterns in 
different aneurysm morphologies.84–86 Limitations of 4D-flow 
include longer image acquisition times and lower spatial and 
temporal resolution. Another challenge of hemodynamic assess-
ments, including CFD and 4D-flow is the lack of consensus on 
which metrics to rely on for evaluation of aneurysm stability/
instability, which is a result of the large volume of hemodynamic 
data and parameters generated. Technological advancements to 
improve spatiotemporal resolution and overcome some of the 
4D-flow limitations include k-t parallel imaging acceleration, 
compressed sensing, and simultaneous encoding of two Venc 
measures.80,83 With continued advancements and prospec-
tive validation, 4D-flow has the potential to provide imaging 
markers for aneurysm stability that can contribute to clinical 
decision-making.

Four-Dimensional CTA
4D-CTA can evaluate aneurysm wall motion, and thus iden-
tify focal, irregular, disconjugate pulsation (Figure 8), which is 
significantly associated with shape change on follow-up CTA,87 
wall thinning during intraoperative evaluation,88 higher rupture 
risk89 and aneurysm rupture.90 Zhang et al89 reviewed 117 aneu-
rysms, 48 of which showed irregular wall motion, defined as 
≥1 mm temporary focal wall protuberance lasting for at least 
three consecutive frames. Aneurysms with irregular wall motion 
had more than a 6-fold higher 1 year and 5 year rupture risk 
(2.4 and 1.56%, respectively) compared to aneurysms without 
irregular wall motion (0.4 and 0.23%, respectively) (p < .001). 
In a separate study, the same group looked at 328 aneurysms 
(37 ruptured, 60 symptomatic, and 231 asymptomatic), and 
found that irregular aneurysm wall motion was an indepen-
dent association with aneurysm symptomatic/ruptured status 
(OR 5.03; 95% CI 2.83–8.92). For UIAs, irregular wall motion 
was independently associated with aneurysm symptoms (OR 
6.31; 95% CI 3.02–13.2). Hayakawa et al87 studied 62 UIAs who 
underwent baseline 4D-CTA with follow-up conventional CTA 
performed after more than 120 days, and found those with irreg-
ular aneurysm wall pulsation were significantly more likely to 
have morphological aneurysm changes on follow-up CTA than 
without aneurysm wall pulsation (p = .04).

Incorporation into clinical practice
Table 1 compares conventional and advanced aneurysm imaging 
techniques. At our institution, we have employed HR-VWI into 
clinical practice. We also perform HR-VWI in small or suspi-
cious aneurysms, to inform potential aneurysm instability that 
would not otherwise be evaluable. Aneurysms characteristics 
on HR-VWI, in combination with additional clinical informa-
tion, may push towards more aggressive treatment or follow-up. 
Conversely, aneurysms without enhancement, may be followed 
less frequently. HR-VWI is routinely performed after aneurysm 
treatment, to potentially predict risk of vasospasm develop-
ment and guide prophylactic calcium-channel blocker therapy. 

Figure 8. A patient presenting with headache. On CTA MIP 
reconstructed image in oblique plane (A), and axial CTA 
source image (B) there is an unruptured anterior communicat-
ing artery aneurysm (arrows) that has focal lobulation along 
its left side (arrowheads). 4D-CTA frames (C) show a focal 
protuberance at the dome of the aneurysm (arrowheads), 
that disappears on subsequent frames (thick arrow), indicat-
ing irregular pulsation. The maximum perpendicular height of 
the focal temporary protuberance was 1.1 mm.

http://birpublications.org/bjr
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4D-CTA has been used, although not with consistency, and 
4D-flow and CFD simulations are currently not used clinically.

CONCLUSION
Evaluation of intracranial aneurysms by advanced imaging 
modalities is emerging as a useful method to guide treatment 

approaches. HR-VWI, 4D-flow, 4D-CTA, and CFD simula-
tions can be used in combination with patient factors and aneu-
rysmal factors to determine the rupture risk of an aneurysm. In 
the future, limitations to each technique must be overcome to 
improve their applicability, and prospective studies are needed to 
assess their diagnostic value.

Table 1. Benefits of advanced and conventional aneurysm imaging modalities

HR-VWI
4D-flow 
MRI

CFD 
Simulations 4D-CTA

Conventional 
CTA

Conventional 
MRA

Pathophysiological 
data on wall 
inflammation

+++ - - - - -

Dynamic wall motion 
information

- - - +++ _ -

Morphologic 
information (size, 
anatomy, irregular 
shape, dimensions)

++ + ++ +++ +++ ++

Hemodynamic flow 
information

+ +++ +++ - - -

Aneurysm origin ++ + ++ ++ +++ ++

Anatomic 
relationships

++ + ++ +++ +++ ++

Thrombus detection +++ - - ++ ++ ++
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