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Abstract
Background: The exceptional capabilities of artificial intelligence (AI) in extract-
ing image information and processing complex models have led to its recognition 
across various medical fields. With the continuous evolution of AI technologies 
based on deep learning, particularly the advent of convolutional neural networks 
(CNNs), AI presents an expanded horizon of applications in lung cancer screen-
ing, including lung segmentation, nodule detection, false-positive reduction, nod-
ule classification, and prognosis.
Methodology: This review initially analyzes the current status of AI technolo-
gies. It then explores the applications of AI in lung cancer screening, including 
lung segmentation, nodule detection, and classification, and assesses the poten-
tial of AI in enhancing the sensitivity of nodule detection and reducing false-
positive rates. Finally, it addresses the challenges and future directions of AI in 
lung cancer screening.
Results: AI holds substantial prospects in lung cancer screening. It demonstrates 
significant potential in improving nodule detection sensitivity, reducing false-
positive rates, and classifying nodules, while also showing value in predicting 
nodule growth and pathological/genetic typing.
Conclusions: AI offers a promising supportive approach to lung cancer screen-
ing, presenting considerable potential in enhancing nodule detection sensitivity, 
reducing false-positive rates, and classifying nodules. However, the universality 
and interpretability of AI results need further enhancement. Future research 
should focus on the large-scale validation of new deep learning-based algorithms 
and multi-center studies to improve the efficacy of AI in lung cancer screening.
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1   |   INTRODUCTION

Lung cancer (LC) is the primary cause of cancer-related 
mortality worldwide and the second most frequently diag-
nosed cancer globally, as reported by GLOBOCAN 2020.1 
Patients with distant-stage lung cancer exhibit a 5-year 
relative survival rate of 6%, whereas those diagnosed at a 
regional stage show a rate of 33%.2 Due to the lack of early 
symptoms, patients often miss the optimal treatment win-
dow, making early screening crucial for the prevention 
and management of lung cancer.3,4 A non-randomized 
controlled trial conducted by the International Early Lung 
Cancer Action Program (I-ELCAP) reported that more 
than 80% of LC cases can be discovered in their earliest 
stages using low-dose computed tomography (LDCT) 
screening. The 10-year relative survival rate is up to 88% if 
treatment is administered quickly enough.5 According to 
the National Lung Screening Trial (NLST) in the US and 
the Dutch–Belgian Randomized Lung Cancer Screening 
Trial (NELSON) in Europe, screening with LDCT reduces 
LC mortality.6,7 Currently, LDCT is the only internation-
ally recognized screening method that has demonstrated 
a decrease in mortality rates in high-risk populations 
for LC.8 The NLST found that 26.8% of participants had 
lung nodules larger than 4 mm.9 Pulmonary nodules are 
clinically relevant as they can be the initial manifestation 
of LC. In general, pulmonary nodules refer to spherical 
lung opacities or irregular lung lesions that are sized 

from 3 to 30 mm and can appear as a single entity or in 
multiples. Pulmonary nodules display diverse character-
istics including quantity (single or multiple), size, shape 
(regular or irregular), margins (smooth, lobulated, or 
spiculated), location (well-defined, near the pleura, or 
near blood vessels), and density (solid, part-solid, or non-
solid). There may be a correlation between several nodule 
characteristics and a higher likelihood of LC, including 
nodule diameter, position of the superior lobe, and solid 
components.10,11 The nodule volume and mass can reveal 
information about natural evolutionary development.12,13 
Therefore, it is especially important for radiologists to ac-
curately detect nodules and correctly identify their char-
acteristics. However, many nodules are in close proximity 
to the pleura or blood vessels and may be easily missed. 
In numerous instances, distinguishing the contour of 
a nodule is difficult because of inflammation or pleural 
effusion. To summarize, the variety and unpredictability 
of pulmonary nodules significantly complicate their accu-
rate detection and diagnosis.

With advances in computer technology, artificial intel-
ligence (AI) has rapidly emerged and is applied in vari-
ous medical settings (Figure 1). AI is a field in computer 
science that uses available data to predict or categorize 
objects. It encompasses key elements such as training 
datasets, preprocessing techniques, algorithms for cre-
ating predictive models, and pre-trained models for ac-
celerating model development and leveraging previous 

F I G U R E  1   Function diagram of the use of AI for detection, classification, prediction, and prognosis of lung cancer screening. AI, 
artificial intelligence.
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experience.14 The growth in the application of AI to ra-
diology is founded upon two key pillars. The first pillar 
is the expansion of machine learning (ML). ML employs 
statistical methods to automatically construct rules for its 
algorithms using existing training data. Thus, the primary 
objective of ML is to quickly and efficiently recognize pat-
terns within large datasets. It can produce results that are 
more accurate than manual human evaluations;15 There 
are three distinct forms of ML: supervised learning, un-
supervised learning, and reinforcement learning.16,17 The 
learner parameter is changed during supervised learning 
to get closer to the desired outcome. In other words, the 
correct answer label is learned from the training data and 
a learning algorithm is constructed whose output is the 
correct answer label. Next, models are evaluated to see 
if they produce results that are reasonably close to the 
“right label” when applied to sets of unknown data. In 
the area of image recognition, this ML technique is most 
frequently employed for classification and regression 
tasks.18 Supervised learning necessitates a large amount 
of training data, including labeled data, which can be 
challenging to acquire in the medical and biological 
fields. Conversely, unsupervised learning is another type 
of ML that utilizes only input data, without any accompa-
nying “correct answer” data to guide the learning process. 
Reinforcement learning, the final type of ML, updates the 
learning model through a trial-and-error approach to de-
termine the optimal course of action for a given situation. 
Frequently utilized ML algorithms comprise support vec-
tor machines (SVMs), decision trees (DTs), and Bayesian 
networks (BNs).

The second pillar is represented by the expansion of 
the AI branch, known as deep learning (DL). In con-
trast to traditional ML systems that depend on human-
engineered feature extraction and data structuring from 
images, DL algorithms use raw data and are capable of 
learning the necessary representations for pattern rec-
ognition independently.19 DL, a type of representational 
learning, enables the creation of sophisticated multi-layer 
neural network structures that automatically uncover 
new knowledge through the analysis of input data at 
multiple levels.20 The simultaneous feature selection and 
model fitting technique is an efficient method for con-
structing models using automated procedures and high-
volume data.14,21 DL systems have the ability to convert 
input images into valuable outputs, including object de-
tection through localization, image segmentation through 
pixel labeling, and image classification into various cate-
gories.22 The convolutional neural network (CNN) is the 
most widely used architecture for analysis of medical im-
ages through DL. CNN encompasses a diverse and rich set 
of algorithms (Data S1), which are meticulously designed 
to meet its specific purposes and application requirements. 

CNNs are designed with multiple sequential layers of 
convolution, where the representation generated by each 
layer (beginning with the raw input data) is passed on to 
the subsequent layer, transforming into increasingly ab-
stract representations.19,23 As the computational capacity 
of computers increases, particularly graphics processing 
units, DL has established itself as the preferred approach 
for analyzing medical images, showing impressive results 
in oncology applications ranging from tumor identifica-
tion to prognosis prediction (Figure 2). This article aimed 
to explore the use of AI in CT screening, including lung 
segmentation, nodule detection, nodule classification, 
nodule subtype prediction, and prognosis.

2   |   LUNG SEGMENTATION

Before performing lung nodule detection, it is necessary 
to segment the lung. The purpose of lung lobe segmen-
tation is to accurately define the anatomical structure 
of lung lobes, enabling the differentiation of regions 
associated with lung nodules. Many algorithms have 
been created specifically for this task. The main conven-
tional approaches include thresholding,24 region grow-
ing algorithm,25–27 morphological filters,28,29 connected 
component analysis,30,31 and the boundary tracking al-
gorithm.32,33 A number of improved techniques based on 
traditional methods have further improved the efficacy of 
lung segmentation and optimized the shortcomings of tra-
ditional methods. Shi et al. focused on two-dimensional 
(2D) region-growing algorithms. An optimized thresh-
old was applied to transform the smoothed slice into a 
binary image by utilizing an algorithm that is founded 
on seed-based random walks, allowing for the segrega-
tion of lung regions from thorax regions.34 Soliman et al. 
proposed a learnable multi-graph random field (MGRF) 
system that integrates independent submodels for visual 
appearance and adaptive lung shape. The Dice index was 
98.5%, and the average overlap between the learnable 
model and expert segmentation was 98.0%.35 Filho et al. 
proposed a 3D adaptive crisp active contour method (3D 
ACACM) framework. This framework is initiated with a 
sphere placed within the lung, which is shaped by forces 
toward the lung borders to be segmented. The process is 
executed iteratively with the aim of minimizing the en-
ergy function related to the 3D deformable model, ena-
bling the segmentation of both normal and pathological 
lungs.36 Zhang and Fischer successfully implemented 
advanced techniques in their statistical shape model and 
AI-RAD companion framework. These methods encom-
pass statistical finite element analysis and enhancement 
of 3D lung segmentation through adversarial neural net-
work training.37,38
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Recently, DL algorithms, particularly CNNs, have 
shown promising results in automatically segmenting 
lungs from CT images. Several advanced CNNs are cur-
rently available for lung segmentation, including 3D U-
Net,39 DenseV-Net,40 RPLS-Net,41 and nnU-Net.42 Using 
3D U-Net, Park et al. devised a fully automated method 
for lung-lobe segmentation that was rigorously validated 
using both an internal and external dataset and it exhib-
ited a reasonable level of segmentation accuracy and com-
putational efficiency. Additionally, this method could be 
adapted and utilized in clinical settings to address lung 
lobe segmentation in severe lung diseases.39 Peng et  al. 
proposed an algorithm based on DL called nnU-Net, 
which is capable of auto-configuring itself, including 

preprocessing, network architecture, training, and post-
processing. The pre-operative nnU-Net model achieved a 
dice similarity coefficient (DSC) of 0.964, and the model 
had a DSC of 97.3% after lobectomy.42 The effective meth-
ods that have been proposed and selected are summarized 
in Table 1.

3   |   NODULE DETECTION

Nodule detection consists of two main components: 
Candidate nodule detection and false-positive reduction. 
Traditional techniques primarily encompass classical 
image processing techniques, comprising intensity-based 

F I G U R E  2   Convolutional neural network training model for lung cancer.

T A B L E  1   Recent artificial intelligence-based approaches for lung lobe segmentation.

Year Authors Method No. of cases Quality index Quality index value

2016 Shi et al.34 Thresholding 23 Overlap measure 98.40%

2017 Soliman et al.35 Shape-based 105 Dice index 98.50%

2017 Rebouças Filho et al.36 Deformable model 40 F-measure 99.22%

2019 Zhang et al.37 Statistical finite 
element analysis

20 N/A N/A

2020 Fischer et al.38 AI-RAD 137 N/A N/A

2020 Park et al.39 3D U-Net 196 Dice index 97.00%

Jaccard index 94.00%

2020 Dong et al.99 MV-SIR 874 Dice index 92.60%

2021 Liu et al.41 RPLS-Net 32 Dice index 94.21%

2022 Pang et al.42 nnU-Net 865 Dice index 96.40%
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techniques (such as thresholding and region growing) 
and shape-based techniques (such as the 3D detection 
box, spherical shape enhancement filter, and graph-cut 
method). Feature engineering algorithms were commonly 
applied for nodule detection before the advent of DL.43–45 
The features of tumors, such as intensity, texture, and mor-
phology, were precisely extracted from CT data through 
manual processes and then utilized as inputs for various 
ML classifiers, including SVMs and random forest (RF). 
In contrast, AI methods, especially CNN-based methods, 
are capable of adapting and developing appropriate repre-
sentations through a fully data-driven approach without 
relying on manually derived lung nodule attributes. They 
boast a high level of automation and minimize the need 
for manual intervention.46,47

3.1  |  Candidate nodule detection

The increasing popularity of DL has led to the proposal of 
many effective algorithms for nodule detection based on 
CNN techniques.48 The promising performance of CNN in 
pulmonary nodule segmentation tasks can be attributed 
to the network's capacity to learn novel features at differ-
ent levels of the hierarchy. In particular, the network hi-
erarchy architecture can capture the 2D and 3D aspects of 
lung nodules, which have not been previously addressed. 
Network architectures that are effective for nodule detec-
tion include U-Net, region proposal networks (RPNs), 
residual networks (ResNets), and retinal nets. Most detec-
tion techniques can be viewed as variant versions of these 
network architectures.49–54 The other type is a hybrid net-
work consisting of multiple structures arranged in a cas-
cade fashion.55–57

A groundbreaking study highlighted the ability of AI al-
gorithms to support radiologists in diagnosing pulmonary 
nodules during LC screening. This study utilized a specific 
DL system with a multistream convolutional network ar-
chitecture for categorizing lung nodules. Categorization 
was based on the Lung-RADS assessment and PanCan 
malignancy criteria, which were deemed relevant for pa-
tient care. Compared to patch categorization using ML, 
this model performed better and had inter-observer vari-
ability that was on par with that of four human radiolo-
gists.58 Cai et al. utilized a feature pyramid network (FPN) 
to extract feature maps from the input data, which was 
then fed into a Mask R-CNN based on the ResNet50 ar-
chitecture. Next, prospective nodule bounding boxes were 
created using an RPN fed with the feature maps. The pro-
posed technique demonstrated a high sensitivity of 88.70% 
on the LUNA16 dataset, with an average of eight false 
positives per scan, thereby demonstrating its potential ef-
fectiveness.59 A manifold regularized classification deep 

neural network (MRC-DNN), developed by Ren et al., gen-
erated a reconstructed image of an input nodule using an 
encoder-decoder structure for manifold learning. During 
this process, a nodule manifests itself in many ways. A 
manifold can be classified directly using a fully connected 
neural network. In addition, several fusion networks have 
been meticulously investigated using multi-stream topol-
ogies to seamlessly combine the strengths of multiple net-
works and enhance the overall performance.60 Nasrullah 
et  al. employed a cutting-edge approach for nodule de-
tection, utilizing a combination of a Faster R-CNN with 
a U-net-like architecture and a specially designed mixed 
link network (CMixNet). The volumetric CT image was 
divided into 96 × 96 × 96 voxel subvolumes, which were 
processed independently and combined to form the final 
nodule-detection algorithm. This method achieved a re-
markable sensitivity of 94.21% on the LIDC dataset with 
an average of eight false positives per scan.61 Yuan et al. 
devised a sophisticated multi-modal fusion multi-branch 
classification network to detect and categorize pulmonary 
nodules with high accuracy. The network incorporated a 
3D ECA-ResNet that dynamically adapted the extracted 
features. Feature maps from various multilayer receptive 
fields are integrated to obtain comprehensive multiscale 
unstructured characteristics. The nodules were then clas-
sified as benign or malignant based on the results of a fu-
sion of structured and unstructured data, leveraging the 
strengths of multiple modalities.62 The effective methods 
proposed are selected and summarized in Table 2.

3.2  |  False positive reduction

Reducing the number of false positives following the can-
didate nodule detection stage is of utmost importance 
to enhance the overall accuracy of nodule detection. 
According to a recent review by Schreuder et  al., algo-
rithms have lower or similar sensitivities to assessments 
by radiologists, but at the cost of higher false-positive 
rates.63 In essence, false-positive reduction can be con-
sidered a preparatory phase for nodule classification. 
The steps involved in reducing false positives generally 
include feature extraction, feature selection, and nodule 
classification (except for deep-learning techniques based 
on CNN, which can automatically learn discriminative 
features). The primary objective of feature extraction is 
the extraction of 2D or 3D features of lung nodules and 
the subsequent analysis of candidate nodule images based 
on properties such as intensity, morphology, and texture. 
Nodule classification relies heavily on precise and perti-
nent criteria. These extracted features are then utilized by 
various ML classifiers, such as SVM, RF, k-nearest neigh-
bor classifiers, linear discriminant classifiers, and boosting 
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classifiers, to differentiate between true nodules and non-
nodules.64–66 Tartar used principal component analysis to 
extract features and combine morphological and statisti-
cal features into a mixture of parameters, and fed the ex-
tracted parameters into various classifiers, including RF, 
Bagging, and Adaboost to reduce false positives.67 Gong 
presented a novel approach for the automatic detection of 
lung nodules by combining a 3D tensor filtering technique 
with local image feature analysis. This approach uses a 
3D level-set segmentation method to define the borders 
of potential nodule candidates precisely. The correlation 
feature selection subset evaluator was employed to extract 
the best features from the identified candidates. The final 
step involves training an RF classifier to categorize the 
candidates, resulting in improved sensitivity for detecting 
large nodules.29

Recently, several CNN-based methods have been pro-
posed for false positive reduction. Due to the differences 
in the structures of the networks, they can be divided 
into two categories: Advanced off-the-shelf CNNs and 
multistream heterogeneous CNNs. Kim et  al. proposed 
a groundbreaking multiscale gradual integration CNN 
that significantly reduced false positives in the detection 
of pulmonary nodules, achieving competitive perfor-
mance metrics (CPM) of 0.908 and 0.942 in two subsets 
of LUNA16. The advantage of this model is that it can use 
3D multiscale inputs and progressively extract features 
from the multiscale inputs of different layers. In addition, 
to more effectively utilize complementary information, 
they employed multi-stream feature integration to seam-
lessly integrate abstract-level feature representations.68 
Zuo et al. suggested using an embedded multi-branch 3D 
CNN to detect lung nodules with lower false positives. 
Each branch processed a feature map from a distinct layer. 
All these branches are cascaded at their endpoints. Hence, 
characteristics from various depth layers are pooled to 
forecast the candidate categories. In the validation set, the 
accuracy and specificity were 0.978 and 0.877, respectively, 
with a CPM of 0.83.69 Masood created an innovative auto-
mated clinical decision support system for lung detection 
that leverages a 3D CNN architecture. The system utilizes 
a novel median intensity projection and introduces an in-
novative multiregion proposal network for the automatic 
selection of potential regions-of-interest. To minimize the 
false-positive results, a computer-aided decision (CAD) 
support system was adapted for integration with cloud 
computing. The system obtained an impressive 98.7% 
sensitivity at 1.97 false positives per scan.70 Yuan et  al. 
recently proposed an MP-3D-CNN model to efficiently 
extract spatial information of potential nodule properties 
via a hierarchical structure. By adopting and concatenat-
ing three routes representing three receptive field widths 
into the network model, the feature information was fully 

retrieved and fused to dynamically adapt to the differences 
in shape, size, and context across the pulmonary nodules. 
Sensitivities of 0.952 and 0.962 were achieved at 4 and 8 
false positives per scan, respectively, demonstrating excep-
tional performance.71 The effective methods proposed are 
summarized in Table 3.

4   |   NODULE CLASSIFICATION

The classification of pulmonary nodules is a central aspect 
of LC screening. While most AI systems focus on predict-
ing malignancy and determining the nature of a nodule, 
only some have been designed specifically to categorize 
nodule types. For instance, Savitha proposed a fully au-
tomated CAD system for the identification and classifi-
cation of nodule types during LC screening. The system 
utilizes gray-level covariance matrix and principal compo-
nent analysis algorithms to extract feature vectors. Nodule 
localization was performed using SVM, Fuzzy C-means, 
and RF classification algorithms. The identified nodules 
were then categorized into solid and sub-solid types by ex-
tracting histogram of gradient features.72

The performance of the classifier is crucial for the 
classification of benign and malignant nodules. To better 
arrange the presentation of relevant papers, we split the 
classifiers into two groups: Conventional and DL classi-
fiers. Although traditional ML classifiers such as SVM 
and RF often produce satisfactory results, they have sev-
eral limitations. For example, deploying an SVM becomes 
challenging when dealing with multi-classification prob-
lems and large training datasets, and typical ML classifiers 
require human feature extraction to obtain optimal perfor-
mance. Manual feature extraction can be a labor-intensive 
and intricate process, particularly in the context of medical 
image analysis, where diagnostic complexity and limited 
prior knowledge exacerbate the challenge. Indeed, despite 
clinicians' experience, there is a lack of understanding of 
the quantitative imaging features that best predict out-
comes. Moreover, the manual feature extraction of lung 
nodule characteristics is difficult. DL algorithms possess 
a high degree of automation and require minimal manual 
intervention because they can automatically develop a rel-
evant representation through data-driven learning with-
out relying on manually obtained information about the 
lung nodules. In addition, the knowledge acquired by DL 
algorithms from other domains can be transferred more 
easily to the domain of LC diagnosis than the knowledge 
gained by traditional ML algorithms.73,74 Consequently, 
DL algorithms provide several benefits when assessing 
the LC data.

DL based on CNN has produced a variety of classifica-
tion techniques:
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1.	 Advanced off-the-shelf CNNs.51,75,76 To distinguish 
malignant from benign forms, Filho et  al. used stan-
dardized taxic weights and index basic taxic weights.77 
Topology-based phylogenetic diversity indices were 
proposed for feature selection, and feature data were 
fed to 2D CNNs. The proposed approach demonstrated 
exceptional performance in the diagnosis of cancer 
and benignity; the obtained results showing that the 
accuracy, sensitivity, specificity, and area under the 
curve (AUC) were 92.63%, 90.7%, 93.4%, and 0.93, 
respectively. Xie et al.utilized a multi-view knowledge-
based collaborative deep model to distinguish between 
benign and malignant lung nodules. The 3D nodule 
was divided into nine fixed views, each of which 
served as a KBC submodel. To enhance the charac-
terization of the nodules' overall appearance, voxels, 
and form heterogeneity, three types of picture patches 
were designed for each submodel and used to fine-
tune the three pre-trained ResNet-50 networks. The 
nine submodels were integrated using an adaptive 
weighting approach derived from error backpropaga-
tion, and a penalty loss function was employed to 
reduce the false negative rate with minimal impact 

on the results. This approach achieved an accuracy 
of 91.60% and AUC of 95.70%.78

2.	 CNNs integrated with ML classifiers. Zhu et al. intro-
duced a fully automated LC diagnostic system called 
DeepLung. This system featured a 3D Faster R-CNN in-
corporating 3D dual-path blocks and a U-net-inspired 
encoder-decoder structure for nodule detection. In addi-
tion, the system employed a gradient boosting machine 
(GBM) equipped with 3D dual-path network charac-
teristics for nodule classification. The nodule classifica-
tion subnetwork was validated using a public dataset 
from LIDC-IDRI.50 Nasrullah and Zhu shared a similar 
research idea, but Nasrullah used the hybrid network 
CMixNet through R-CNN for learning nodule features. 
Nasrullah's 3D-CMixNet architecture includes a GBM 
for nodule classification using learned characteristics. 
To further reduce misdiagnosis, physiological symp-
toms and clinical biomarkers are combined. With the 
LIDC-IDRI dataset, the proposed system was assessed 
based on sensitivity (94%) and specificity (91%).61

3.	 Multistream HCNNs. Liu et al. presented MTMR-Net, 
a multi-task deep model with a margin ranking loss 
for automated lung nodule analysis. This multi-task 

T A B L E  3   The latest artificial intelligence-based methods for reducing the false positive rate.

Year Authors Method/identified features Dataset Quality index
Quality 
index value

2013 Tartar et al.67 Shape features Dataset from Cerrahpasa 
Medicine Faculty, Istanbul 
University

Sensitivity 0.896

Specificity 0.875

2014 Teramoto et al.107 Shape features, intensity Cancer-screening program at 
the East Nagoya Imaging 
Diagnosis Center

Sensitivity 0.83

2018 Gong et al.29 Intensity, shape, texture features LUNA16/ANODE09 Sensitivity 0.8462

2019 Zuo et al.108 Multi-resolution features integrated 
2D CNN

LUNA16 Accuracy 0.9733

2019 Zhou et al.95 2/3D Models Genesis with encoder-
decoder architecture

LUNA16 AUC 0.982

2019 Kim et al.68 Multi-scale gradual integration CNN LUNA16 CPM 0.942

2020 Sun et al.109 S-transform Dataset from Sichuan 
Provincial People's Hospital

Sensitivity 0.9787

2020 Zuo et al.69 Multi-branch 3D CNN LUNA16 CPM 0.83

2020 Masood et al.70 Multi-PRN inspired by VGG-16 LUNA16/LIDC-IDRI Sensitivity 0.974

2021 Majidpourkhoei 
et al.110

CADe/CADx LIDC-IDRI Accuracy 0.901

Sensitivity 0.841

Specificity 0.917

2021 Yuan et al.71 MP-3D-CNN LUNA16 CPM 0.881

Sensitivity 0.962

2023 Mkindu et al.111 3D residual CNN with 3D ECA LUNA16 CPM 0.911

Sensitivity 0.9865

Abbreviations: AUC, area under the curve; CNN, convolutional neural network; CPM, competitive performance metrics.
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deep model investigated the causal relationship be-
tween lung nodule categorization and attribute score 
regression. The model also incorporates a Siamese 
network with margin ranking loss to enhance its abil-
ity to distinguish challenging nodule scenarios. The 
effectiveness of the MTMR-Net model was validated 
in an LIDC-IDRI dataset.79 Bonavita et  al. developed 
a malignancy classifier based on a 3D CNN, utilizing 
annotations from radiologists on lung nodules. This 
classifier was integrated into the LC classification pipe-
line, and its performance was compared with that of 
the baseline pipeline. The contribution of nodule ma-
lignancy classifiers was quantified in the prediction of 
LC, and the results demonstrated that the integration 
of these predictive models enhanced the accuracy of LC 
prediction.80

4.	 CNNs were trained using transfer learning algorithms. 
Transfer learning involves utilizing the understand-
ing acquired by training a model on a certain task and 
applying it to solve new or related problems, thereby 
reducing the need for extensive training data. When 
analyzing natural images, deep CNNs have exhib-
ited remarkable performance. However, the ability to 
achieve such high performance is highly dependent on 
a substantial number of datasets. Medical images are 
far from adequate in number compared to natural im-
ages, which limits the development of CNN to some ex-
tent. Therefore, transfer learning can potentially serve 
as an alternative approach for analyzing lung nodules 
in medical images through the utilization of deep CNN 
models. Harsono et  al. developed I3DR-Net, a one-
stage detector for detecting and classifying lung nod-
ules that combines an FPN with a pretrained inflated 
3D ConvNet (I3D) on a multiscale 3D thoracic CT scan 
dataset. The I3DR-Net outperformed Retina U-Net and 
U-FRCNN, achieving a 7.9% and 7.2% increase in mean 
average precision (mAP) for the detection and classifi-
cation of malignant nodules.81 The effective methods 
proposed are selected and summarized in Table 4.

5   |   PREDICTION AND 
PROGNOSTICATION

The successful application of AI in medical diagnosis 
has led to increased interest in utilizing AI-based im-
aging analysis to address complex clinical challenges 
in cancer diagnosis. Advances in computer vision and 
pattern recognition have enabled the development of 
AI-based imaging biomarkers that are quantitative rep-
resentations of tumor characteristics derived from ra-
diological images and correlated with clinical outcomes. 
There are two main categories of AI-based radiological 

biomarkers: Radiomics and AI. Radiomics involves 
manually outlining the region of interest, extracting 
quantitative features such as morphology, volume, in-
tensity, texture, heterogeneity, and peritumor features, 
and then using an ML model to predict clinical outcomes 
based on these feature representations. In AI methods, a 
DL neural network is trained on a large dataset to learn 
novel representations that can be used for predictions. 
This chapter focuses on the predictive ability of AI for 
the diagnosis of early-stage LC.

AI can predict nodule growth trends. Qi et  al. stud-
ied the progression of persistent pure ground-glass nod-
ules (pGGNs) utilizing DL for nodule segmentation. The 
study analyzed 110 pGGNs from 110 patients with long-
term follow-up using the Dr. Wise system, which utilizes 
a CNN to automatically segment the pGGNs from initial 
and subsequent CT scans. Research indicates that the 
growth of persistent pGGNs is most likely to follow an 
exponential growth model. Within the first 35 months of 
follow-up, the growth rate of pGGNs remains relatively 
constant and then gradually slows down. It has also been 
found that pGGNs exhibiting lobulation and a larger ini-
tial diameter, volume, and mass are more likely to exhibit 
growth.12 Another study employing a volumetric segmen-
tation technique to analyze the growth trends of subsolid 
nodules with different pathological types revealed that 
the exponential model (with determination coefficients 
of 0.89 and 0.95) better captured the overall growth and 
solid component growth compared to quadratic, linear, or 
power-law models. Faster total volume growth was asso-
ciated with a history of lung cancer, baseline nodule vol-
ume <500 mm3, and histopathological results indicating 
invasive adenocarcinoma. Non-invasive adenocarcinoma 
exhibited a significantly longer median volume doubling 
time compared to invasive adenocarcinoma.13

AI can predict the histological types of LC. Guo et al. 
developed two automated classification models to dis-
tinguish between the different histological types and 
subtypes of LC (small cell lung cancer, SCLC; adeno-
carcinoma, ADC; squamous cell carcinoma, SCC) using 
non-enhanced CT images. The first model, ProNet, is 
a 3D CNN that employs a ResNet-style skip connection 
mechanism. Based on the test data, ProNet achieved an 
overall accuracy of 72% and an AUC of 84%. The second 
model, comradNet, is based on radiomics and comprises 
four fully connected layers. PyRadiomics was used to ex-
tract 1743 radiomic features, and after feature selection, 20 
features were fed into ComradNet. The overall accuracy 
of com radNet was 75%, and its AUC was 79%. Although 
both models successfully differentiated SCLC, ADC, and 
SCC, ProNet performed better than com radNet.82

For the prognosis of patients with LC, Kim et al. cre-
ated a CNN model to examine preoperative CT scans for 
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predictive performance. The model was initially trained, 
adjusted, and validated using a dataset of patients with 
T1-4N0M0 ADC. For external validation, the model was 
tested on a separate dataset of patients with stage I (T1-
2aN0M0) ADC. In addition, the model considers relevant 
clinical risk factors. Cox regression analysis was utilized 
to assess the impact of various factors on disease-free 

survival, quantified by hazard ratios (HRs). The analysis 
revealed that patients with stage I lung ADC undergoing 
surgery can benefit from the predictions made by this DL 
algorithm based on their chest CT scans.83 Shimada et al. 
conducted a study to evaluate the effectiveness of using ra-
diomics in conjunction with AI to predict early recurrence 
(within 2 years after surgery) in patients with clinical stage 

T A B L E  4   The latest artificial intelligence-based methods for classifying benign and malignant nodules.

Year Authors Data source Method Quality index
Quality index 
value

2016 Petousis et al.112 NLST dataset DBNs
Including three expert-driven DBNs and 

two DBNs derived from structure 
learning methods

AUC >0.75

2018 Filho et al.77 LIDC-IDRI Topology-based phylogenetic diversity 
indices are proposed for features 
engineering and selection. Feature data 
are fed to 2D CNNs

Accuracy 0.9263

AUC 0.934

2018 Causey et al.90 LIDC-IDRI Training 3D CNN models and collecting 
output features. A 3D CNN is then used 
for malignancy classification based on 
quantitative image features

AUC 0.99

2018 Dey et al.91 LIDC-IDRI Performance comparison between 3D 
DCNN and 3D DenseNet variants

Accuracy 0.899

AUC 0.9459

2019 Balagurunathan 
et al.113

NLST dataset Optimal linear classifiers AUC 0.85

2019 Al-Shabi et al.114 LIDC-IDRI Deep Local-G lobal networks containing 
residual blocks and non-local blocks

AUC 0.9562

2019 Chen et al.115 LIDC-IDRI Using Med3D models pre-trained on 
ResNets, initialize classification 
networks using Med3D models

Accuracy 0.9192

2020 Harsono et al.81 LIDC-IDRI Integrated modified pre-trained inflated 3D 
ConvNct with FPN

AUC 0.8184

2020 Yang et al.116 LIDC-IDRI Self-attention transformer based on 3D 
DenseNets and MIL algorithms

AUC 0.932

2021 Yu et al.103 LIDC-IDRI Res-trans networks Accuracy 0.9292

AUC 0.9628

2021 Halder et al.117 LIDC-IDRI Two-path morphological 2D CNN Accuracy 0.9610

AUC 0.9936

2019 Xie et al.78 LIDC-IDRI MV-KBC model can learn 3-D lung nodule 
characteristics by decomposing a 3D 
nodule into nine fixed views

Accuracy 0.916

AUC 0.957

2018 Zhu et al.50 LIDC-IDRI R-CNN-GBM Accuracy 0.9274

2019 Nasrullah et al.61 LIDC-IDRI CMixNet-GBM Sensitivity 0.94

2023 Mikhael et al.118 NLST 3D Resnet AUC 0.92

2023 Bushara et al.119 LIDC LCD-CapsNet Accuracy 0.94

AUC 0.989

2023 Irshad et al.120 Exasens dataset An IGWO-based DCNN model Accuracy 98.27%

Sensitivity 97.67%

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; AUC, area under the curve; CNN, convolutional neural network; NLST, National Lung Screening 
Trial.
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0-IA NSCLC. The study analyzed data from 642 patients 
with early recurrence who were divided into a derivation 
cohort and a validation cohort with a 2:1 ratio. The AI 
software Beta Version (Fujifilm Corporation, Japan) was 
used to extract 39 imaging factors from nodule charac-
terization analysis, including 17 AI GGN analysis factors 
and 22 radiomic features. These results indicate that the 
combination of CT-based radiomics and AI can effectively 
categorize the postoperative recurrence population and 
noninvasively predict early recurrence in patients with 
clinical stage 0-IA NSCLC.84

A new, fully automated AI system (FAIS) that predicts 
the EGFR genotype was developed in the latest prospec-
tive multi-center study published in The Lancet Digital 
Health. The study included 18,232 LC patients from nine 
cohorts in China and the United States who underwent 
CT scans and genetic sequencing. The FAIS achieved an 
AUC of 0.748–0.813 in six retrospective and prospective 
test cohorts, outperforming commonly used traditional 
tumor-based DL models.85 Wang et al. created a DL model 
to forecast EGFR mutations in LC patients using non-
invasive CT scans. Information from 844 patients with LC 
at two hospitals, including preoperative CT scans (14,926 
images), EGFR mutations, and patient details was ana-
lyzed. The first 20 layers of the model were trained using 
1.28 million natural images from ImageNet through trans-
fer learning. The CT images were then processed using 
an end-to-end algorithm to predict the EGFR mutation 
status. This model predicts the probability of an EGFR-
mutant tumor directly from a CT image without requiring 
additional image processing or segmentation.86

6   |   BIOMARKERS

The advantage of LDCT lies in its simplicity and high sen-
sitivity, with the current definition of positive nodules pri-
marily based on the size and/or volume of the nodules. 
However, to address the prevalent issue of high false-
positive rates in screening, even with refined definitions of 
positive nodules, new screening indicators are needed to 
complement and improve the existing screening systems. 
Thus, an evidence-based biomarker for an overall risk as-
sessment could be a future direction.87

Research findings have indicated that the application 
of a microRNA signature classifier (MSC) is capable of 
decreasing the false-positive rate associated with LDCT 
by up to 80% and the sensitivity increased from 84% of 
LDCT alone to an impressive 98%.88 Serum microRNA 
testing has a negative predictive value greater than 99%. 
This implies that individuals who test negative can 
safely avoid subsequent LDCT follow-ups. Studies have 
shown that ML models based on serum RNA levels can 

predict the occurrence of LC several years before diagno-
sis or the appearance of symptoms. The study collected 
1061 samples from 925 patients within 10 years before 
LC diagnosis, performing an average of 18 million RNA 
sequencing per sample. The average AUCs for NSCLC 
prediction models 0–2 years and 6–8 years before diag-
nosis were 0.89 (95% CI, 0.84–0.96) and 0.82 (95% CI, 
0.76–0.88), respectively.89

AI can be utilized for the detection, diagnosis, and 
prognosis of LC, while biomarkers are also needed to re-
fine screening criteria for participants, aiming to reduce 
the costs associated with LC screening. The trends in LC 
screening include the integration of LDCT with biomark-
ers and the intersectional application of AI in molecular 
biology. Although there may be significant expenses in 
the short term, the continuous advancement of AI and 
the development of novel biomarkers undoubtedly pres-
ent vast potential and opportunities for improvement. The 
long-term outcomes are expected to be more efficient and 
promising.

7   |   DISCUSSION

Compared to conventional ML approaches, CNNs have 
shown remarkable advantages in the field of medical 
image analysis, particularly in various facets of lung im-
aging—including but not limited to lung segmentation, 
nodule detection, and nodule classification, as well as pre-
dictive and prognostic evaluations. As a result, CNNs have 
emerged as a more effective alternative for medical image 
analytics. In this section, we delve into the key factors that 
contribute to the performance gap between CNNs and 
traditional methodologies, along with the associated chal-
lenges and prospective directions.

7.1  |  Advantages of CNNs

The principal advantage of CNNs over conventional ML 
algorithms lies in their robust feature extraction capa-
bilities. CNNs are designed to autonomously learn both 
high-level and nuanced deep-level features from image 
data. These features can encompass various attributes 
of nodules such as shape, size, density, and texture, 
thereby enhancing the accuracy of nodule detection. 
This is particularly vital for identifying intricate image 
characteristics that may correlate with specific patho-
logical or genetic subtypes, as well as prognostic indi-
cators.82,85 In contrast, traditional ML approaches often 
depend on hand-engineered features, which may lack 
the depth and complexity required to capture subtle 
but critical information embedded within the images. 
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Moreover, the deep architecture of CNNs enables the 
nonlinear and multi-scale processing of image data. 
This multi-scale perspective is crucial for understand-
ing that lung nodules may manifest diverse character-
istics at different resolutions or scales. Through the 
utilization of convolutional kernels and pooling layers 
of variable dimensions, along with techniques for multi-
scale feature fusion, CNNs are adept at conducting 
scale-sensitive image analysis. Given the complex non-
linear associations that may exist among lung nodule 
features such as shape, size, and texture, CNNs employ 
nonlinear activation functions. This allows the model to 
capture and understand these nonlinear relationships 
effectively, which is crucial for accurate nodule clas-
sification.90,91 Next, the intricate architecture of CNNs 
endows them with greater flexibility, allowing them 
to adapt to a wider array of data distributions and re-
lational patterns. In addition to capturing the intrinsic 
features of nodules, CNNs can account for the contex-
tual elements such as the adjacent tissue structure and 
background, factors that may be significant for patho-
logical or genetic subtyping and prognostic evaluation. 
Simultaneously, CNNs are proficient at discerning the 
spatial relationships between lung nodules and their 
immediate environment. This capability is especially 
beneficial for the detection of ambiguous or subtle nod-
ules that pose challenges to medical interpretation.59,68 
Conventional methods may place excessive empha-
sis on local features, thereby risking the omission of 
vital contextual information surrounding the nodules. 
Moreover, CNNs utilize large datasets with extensive 
annotations for training to counteract the risk of overfit-
ting. By training on such comprehensive datasets, CNNs 
are better equipped to generalize across a variety of lung 
nodule conditions. When provided with adequate data, 
these networks can deliver outstanding performance. 
Leveraging GPU acceleration, CNNs enable near-real-
time detection of lung nodules, thus facilitating rapid 
responses to clinical feedback.61 As new data become 
available, CNNs can be efficiently fine-tuned and up-
dated, unlike traditional ML models that may require 
exhaustive retraining. Additionally, CNNs offer the ben-
efit of knowledge transfer between related tasks, thereby 
accelerating the training phase and augmenting overall 
performance.81 These CNN architectures can also seam-
lessly integrate with other ML models, further enhanc-
ing the robustness of the entire system.50,61 Lastly, some 
advanced CNN architectures incorporate visualization 
algorithms such as gradient-weighted class activation 
mapping (Grad-CAM) and SHapley Additive exPlana-
tions (SHAP) to tackle the “black-box” issue often inher-
ent in DL models. By equipping CNNs with augmented 
localization capabilities and integrating Shapley values 

from game theory, these methodologies offer not only 
visualization but also interpretability for the underlying 
decision-making mechanisms within data-driven DL 
frameworks.92,93

7.2  |  Challenges

While the application and impact of AI in medical di-
agnosis have been the subjects of extensive study, its ef-
ficacy and potential are intricately linked to overcoming 
the challenges that presently limit its broader adoption in 
the field of medical imaging. These challenges, discussed 
below, are not only barriers to performance optimization 
but are also factors that can potentially impede the trust 
radiologists place in AI-driven results.

7.2.1  |  Scarcity of comprehensive and 
well-annotated datasets

It is widely accepted that a substantial quantity of well-
labeled data is imperative to develop an effective DL 
model for medical imaging analysis. Although LC is one 
of the few diseases for which public datasets are avail-
able to train AI systems, there are still inconsistencies in 
the labeling of lung CT scan datasets, leading to varia-
tions in annotations across different datasets. Acquiring 
vast amounts of lung CT data with precise labels re-
mains challenging. The collection of individual lung CT 
scans may be hindered by privacy concerns, and by cer-
tain hospital restrictions and national policies related 
to the protection of personal information. In addition, 
radiologists require considerable time to annotate medi-
cal images, and assigning this task to someone with-
out the necessary competence may result in inaccurate 
classifications.

7.2.2  |  Poor interpretability of 
diagnostic result

Using CNN-based models, nodules can be automatically 
identified and classified. However, pathogenic explana-
tions are not provided. Radiologists must be able to inter-
pret models to determine the exact cause of the disease. 
Radiologists cannot make an accurate diagnosis or formu-
late an appropriate treatment plan based solely on detec-
tion results or diagnosis scores. Consequently, it is crucial 
to pay attention to CNN-based models, which may reveal 
connections between input data and diagnostic results 
and indicate which nodule characteristics are associated 
with the existence of cancer.
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7.2.3  |  Challenges with the 
generalization ability

In the realm of medical diagnostics, a multitude of DL-
based models have been developed to tackle a broad spec-
trum of diagnostic challenges. While these models often 
exhibit remarkable performance and accuracy within 
their specific use-cases, a pervasive issue remains: mod-
els that excel in one specialized task frequently struggle 
to generalize effectively to other, even subtly different 
tasks. Inferior generalization capabilities could heighten 
the likelihood of both misdiagnoses and missed diagnoses, 
posing significant risks to patient health and the efficacy 
of subsequent treatment strategies.

7.3  |  Future directions

First, to address the issue of dataset scarcity, data augmen-
tation techniques, such as cropping, rotation, flipping, 
and proper labeling, can be employed to enhance both 
the quantity and diversity of datasets. Additionally, the 
use of generative adversarial networks can be leveraged 
to generate additional synthetic images and serve as a 
complementary source of data.94 It is possible to train ad-
vanced off-the-shelf CNNs using semi/unsupervised and 
self-supervised learning methods on raw CT scans with-
out labels when sufficient raw CT images are available, 
which will lead to achieving a higher level of performance 
than supervised learning techniques.95,96 The accuracy of 
nodule identification and classification tasks with limited 
data can be improved through utilizing transfer learning 
techniques by pre-training 3D CNNs on extensive datasets.

Second, people often focus on the performance metrics 
of CNN models at the expense of neglecting the interpret-
ability of the results. Enhancing the interpretability of DL-
based models serves not only to clarify how predictions 
are generated, but also to gain a clear understanding of 
how outcomes for specific patients are obtained. This has 
the potential to contribute to the formulation of more 
accurate and reliable clinical decision-making guide-
lines. Using the Markov Chain Monte Carlo technique, a 
BN-based inference model was designed to enhance the 
interpretability of CNN-based systems.97 In addition, a 
cause-and-effect inference could be extended to the task 
of predicting features and categorizing benign and malig-
nant tumors. The diagnostic results can be causally cor-
related with the predicted feature scores.98

Third, employing a multi-task learning paradigm allows 
the model to learn multiple related tasks simultaneously 
while sharing certain model parameters, thereby enhanc-
ing the model's generalization capabilities.68 Leveraging 
cloud computing technology, diagnostic records can be 

sent to cloud storage to update the training dataset, en-
abling the proposed CNN to be trained on a cloud back-
end to continuously adapt to real-time changes.70 Given 
that various medical scanning devices operate in diverse 
settings and involve multiple imaging modalities, these 
factors could potentially compromise the generalizability 
of DL models. Therefore, a deeper exploration into how 
scanning parameters and image reconstruction tech-
niques specifically affect model performance, followed 
by optimization tailored to these different device settings, 
may enhance the model's generalization capabilities.

Beyond the aforementioned future directions, assessing 
the efficacy of AI in the detection of solid nodule cancers 
with confirmed pathology is imperative instead of rely-
ing on the radiologists' consensus on suspicious nodules. 
Further studies evaluating the performance of innovative 
AI systems based on DL should be conducted using multi-
center evaluations. The influence of an AI-generated risk 
score on the performance of radiologists must also be ana-
lyzed in multi-center studies. Additionally, the possibility 
and feasibility of integrating AI-generated risk scores into 
nodule follow-up protocols should be considered.

8  |  CONCLUSION

With the advancements and implementation of cutting-
edge technologies, such as neural networks and DL algo-
rithms, the potential for AI applications in LC screening 
has been continuously explored. AI plays a crucial role 
in lung segmentation, nodule detection, false-positive re-
duction, nodule classification, prediction, and prognosis 
assessment. AI offers an objective, efficient, multivariate, 
and reproducible approach to these tasks, thereby reduc-
ing the burden on clinicians, minimizing misdiagnoses 
due to fatigue, and potentially transforming current medi-
cal models.

AI models are increasingly applied to various data 
sources, including clinical information, imaging histology, 
histopathology, and molecular biomarkers, to improve 
the accuracy of assessment of disease risk, detection, and 
treatment response prediction. Despite these promising 
results, AI is still in its early stages and has limitations 
when applied to LC screening, thus requiring further ex-
ploration and improvement to standardize AI data and 
enhance the generalizability and interpretability of the re-
sults. Future research should focus on the large-scale vali-
dation of novel algorithms based on DL and the initiation 
of multi-center clinical studies to verify the effectiveness 
of CNN-based automated categorization in improving pa-
tient outcomes. The integration of AI algorithms can as-
sist well-trained readers in classifying normal scans and 
has the potential to improve screening cost-effectiveness. 
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Although further research is warranted, it is clear that 
AI will play a leading role in LC screening in the coming 
decades.

9   |   APPENDIX

In this benchmark analysis, we followed a four-step meth-
odology: (1) keywords were searched in multiple academic 
databases (IEEE Xplore, Scopus, Google Scholar, Science 
Direct, PubMed, and Web of Science); (2) relevant studies 
were collected and duplicates were removed; (3) selection 
criteria were applied to focus on AI technologies using CT 
images for lung cancer screening, including lung segmen-
tation, nodule detection, nodule classification, benign-
malignant nodule analysis, and nodule prognosis; and (4) 
system performance was evaluated using established met-
rics. For our search, we employed an array of keywords 
including “lung cancer,” “pulmonary nodule,” “lung nod-
ule,” “segmentation,” “detection,” “classification,” “false 
positive reduction,” “prediction,” “prognosis,” “CNN,” 
“convolutional neural network,” “deep learning,” “artifi-
cial intelligence,” and “AI.” These keywords were strate-
gically combined using the Boolean operators “OR” and 
“AND” to optimize the comprehensiveness and specificity 
of our search results.
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